1
|
Naudascher R, Boes RM, Fernandez V, Wittmann J, Holzner M, Vanzo D, Silva LGM, Stocker R. Fine-scale movement response of juvenile brown trout to hydropeaking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175679. [PMID: 39218092 DOI: 10.1016/j.scitotenv.2024.175679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Juvenile fish are known to be the most impacted during hydropeaking events due to stranding or uncontrolled drift resulting from changes to water depth and flow velocity. To shed light on their response to such hydraulic alterations, we coupled flume experiments with image-based fish tracking and quantified the fine-scale movement behavior of wild (n = 30) and hatchery-reared (n = 38) brown trout (Salmo trutta) parr. We exposed fish to two distinct hydropeaking treatments in a laterally inclined (14 %) flume section stocked with real cobbles to create refuge and heterogeneous hydraulic conditions. Fish were individually acclimated (20 min) to baseflow (Q = 1.6 L s-1) and then exposed to three consecutive hydropeaking events, reaching peakflows tenfold larger than baseflow (Q = 16 L s-1). We found that, within just minutes, fish exhibited fine-scale movement responses to cope with the change of hydrodynamic conditions. Fish moved perpendicular to the main flow direction to shallow areas as these became submerged during discharge increase, holding position at low velocity zones. This resulted in a significant difference (p < 0.001) in lateral occupancy of the experimental section between baseflow and peakflow. During peakflow, fish occupied specific positions around cobbles and exhibited swimming behaviors, including bow-riding and entraining, that allowed them to hold position while likely minimizing energy expenditure. As a result, swimming distance reduced 60-70 % compared to baseflow. During the decrease in discharge following peakflow, fish abandoned areas falling dry by moving laterally. In the treatment with the larger down-ramping rate, the time to initiate relocation was lower while the relocation speed was higher. This study shows that, for the conditions investigated here, brown trout parr is capable of swiftly deploying multiple behavioral responses to navigate rapid changes in hydrodynamic conditions. These findings can be incorporated into habitat modeling and improve our capacity to inform hydropeaking mitigation efforts.
Collapse
Affiliation(s)
- Robert Naudascher
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Laura-Hezner-Weg 7, Zurich 8093, Switzerland; Laboratory of Hydraulics, Hydrology and Glaciology, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Hönggerbergring 26, Zurich 8093, Switzerland.
| | - Robert M Boes
- Laboratory of Hydraulics, Hydrology and Glaciology, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Hönggerbergring 26, Zurich 8093, Switzerland
| | - Vicente Fernandez
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Laura-Hezner-Weg 7, Zurich 8093, Switzerland
| | - Joël Wittmann
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Laura-Hezner-Weg 7, Zurich 8093, Switzerland
| | - Markus Holzner
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Laura-Hezner-Weg 7, Zurich 8093, Switzerland; Swiss Federal Institute of Forest, Snow and Landscape Research WSL, Birmensdorf 8903, Switzerland
| | - Davide Vanzo
- Laboratory of Hydraulics, Hydrology and Glaciology, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Hönggerbergring 26, Zurich 8093, Switzerland; Karlsruhe Institute for Technology, Institute for Water and Environment, Kaiserstrasse 12, Karlsruhe 76131, Germany
| | - Luiz G M Silva
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Laura-Hezner-Weg 7, Zurich 8093, Switzerland
| | - Roman Stocker
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Laura-Hezner-Weg 7, Zurich 8093, Switzerland
| |
Collapse
|
2
|
Ward RH, Quinn TP, Dittman AH, Yopak KE. The Effects of Rearing Environment on Organization of the Olfactory System and Brain of Juvenile Sockeye Salmon, Oncorhynchus nerka. Integr Comp Biol 2024; 64:92-106. [PMID: 38373826 DOI: 10.1093/icb/icae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Pacific salmon (Oncorhynchus spp.) hatch and feed in freshwater habitats, migrate to sea to mature, and return to spawn at natal sites. The final, riverine stages of the return migrations are mediated by chemical properties of the natal stream that they learned as juveniles. Like some other fish, salmon growth is asymptotic; they grow continuously throughout life toward a maximum size. The continued growth of the nervous system may be plastic in response to environmental variables. Due to the ecological, cultural, and economic importance of Pacific salmon, individuals are often reared in hatcheries and released into the wild as juveniles to supplement natural populations. However, hatchery-reared individuals display lower survivorship and may also stray (i.e., spawn in a non-natal stream) at higher rates than their wild counterparts. Hatchery environments may lack stimuli needed to promote normal development of the nervous system, thus leading to behavioral deficits and a higher incidence of straying. This study compared the peripheral olfactory system and brain organization of hatchery-reared and wild-origin sockeye salmon fry (Oncorhynchus nerka). Surface area of the olfactory rosette, diameter of the olfactory nerve, total brain size, and size of major brain regions were measured from histological sections and compared between wild and hatchery-origin individuals. Hatchery-origin fish had significantly larger optic tecta, and marginally insignificant, yet noteworthy trends, existed in the valvula cerebelli (hatchery > wild) and olfactory bulbs (hatchery < wild). We also found a putative difference in olfactory nerve diameter (dmin) (hatchery > wild), but the validity of this finding needs further analyses with higher resolution methods. Overall, these results provide insight into the potential effects of hatchery rearing on nervous system development in salmonids, and may explain behavioral deficits displayed by hatchery-origin individuals post-release.
Collapse
Affiliation(s)
- Russell H Ward
- Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA
| | - Thomas P Quinn
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| | - Andrew H Dittman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, USA
| | - Kara E Yopak
- School of Aquatic and Fishery Sciences, University of Washington, Seattle WA 98195, USA
| |
Collapse
|
3
|
Qi Y, Liu C, Yuan G, Guo H, Näslund J, Wang Y, Ru J, Ou Y, Chai X, Zhang X. Disparities in Body Color Adaptability and Ambient Light Color Preference between Wild and Hatchery-Reared Marbled Rockfish ( Sebastiscus marmoratus). Animals (Basel) 2024; 14:1701. [PMID: 38891750 PMCID: PMC11171049 DOI: 10.3390/ani14111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/21/2024] Open
Abstract
Hatchery rearing significantly influences the phenotypic development of fish, with potential adverse effects for the post-release performance of hatchery-reared individuals in natural environments, especially when targeted for stock enhancement. To assess the suitability of releasing hatchery-reared fish, a comprehensive understanding of the phenotypic effects of captive rearing, through comparisons with their wild conspecifics, is essential. In this study, we investigated the divergence in body coloration between wild and hatchery-reared marbled rockfish Sebastiscus marmoratus. We examined the selection preferences for different light colors and assessed the impact of different ambient light colors on the morphological color-changing ability of juvenile marbled rockfish. Our findings revealed significant differences in body color between wild and hatchery-reared marbled rockfish. The hue and saturation values of wild marbled rockfish were significantly higher than those of their hatchery-reared counterparts, indicative of deeper and more vibrant body coloration in the wild population. Following a ten-day rearing period under various light color environments, the color of wild marbled rockfish remained relatively unchanged. In contrast, hatchery-reared marbled rockfish tended to change their color, albeit not reaching wild-like coloration. Light color preference tests demonstrated that wild juvenile marbled rockfish exhibited a preference for a red-light environment, while hatchery-reared individuals showed a similar but weaker response. Both wild and hatchery-reared marbled rockfish displayed notable negative phototaxis in the presence of yellow and blue ambient light. These results highlight the impact of hatchery rearing conditions on the body color and morphological color-changing ability, and provide insight into light color selection preferences of marbled rockfish. To mitigate the divergence in phenotypic development and produce more wild-like fish for stocking purposes, modifications to the hatchery environment, such as the regulation of ambient light color, should be considered.
Collapse
Affiliation(s)
- Yulu Qi
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| | - Chenhui Liu
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| | - Guozi Yuan
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| | - Haoyu Guo
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| | - Joacim Näslund
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 178 93 Drottningholm, Sweden;
| | - Yucheng Wang
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| | - Jiangfeng Ru
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| | - Yingying Ou
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| | - Xuejun Chai
- Key Laboratory of Mariculture & Enhancement, Marine Fisheries Research Institute of Zhejiang Province, Zhoushan 316022, China;
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, No. 1, Haida South Road, Lincheng Changzhi Island, Zhoushan 316022, China; (Y.Q.); (C.L.); (G.Y.); (Y.W.); (J.R.); (Y.O.); (X.Z.)
| |
Collapse
|
4
|
Freire R, Michie M, Rogers L, Shamsi S. Age-Related Changes in Survival Behaviour in Parasite-Free Hatchery-Reared Rainbow Trout ( Oncorhynchus mykiss). Animals (Basel) 2024; 14:1315. [PMID: 38731319 PMCID: PMC11083660 DOI: 10.3390/ani14091315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Millions of hatchery-reared Rainbow trout are currently released in Australian waters to support recreational fisheries objectives, yet many of these fish die soon after release. In addition, little is known whether these fish harbour parasites that can potentially threaten freshwater ecosystems and human health. Here, we tested the behaviour of hatchery-reared trout using six tank-based tests at six different ages to evaluate their chances of survival and then dissected fish to investigate parasite prevalence. At 7 weeks of age fish readily emerged from a hide and showed the greatest number of startle responses to predators. Behaviour around 25-29 weeks of age was relatively "shy", staying in shelter and avoiding open water. At around 37-41 weeks of age though, behaviour changed, with fish emerging from a hide more readily and exploring the environment. Interestingly, at 58 weeks of age fish were slower to initiate exploration, possibly indicating a return to "shyer" behaviour. All fish underwent thorough parasite examination, revealing no infections. We conclude that knowledge of the behaviour of hatchery-reared fish at different ages is useful for decisions around the timing of release that balance the needs of recreational fishers whilst managing the impact on freshwater ecosystem.
Collapse
Affiliation(s)
- Rafael Freire
- Gulbali Institute, Charles Sturt University, Elizabeth Mitchell Drive, Albury, NSW 2640, Australia (L.R.); (S.S.)
| | | | | | | |
Collapse
|
5
|
Sortland LK, Aarestrup K, Birnie-Gauvin K. Comparing the migration behavior and survival of Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) smolts. JOURNAL OF FISH BIOLOGY 2024. [PMID: 38622843 DOI: 10.1111/jfb.15749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024]
Abstract
Many organisms rely on migrations between habitats to maximize lifetime fitness, but these migrations can be risky due to a suite of factors. In anadromous salmonids, the smolt migration from fresh water to sea is a critical life stage, during which smolts can experience high mortality from multiple sources. This study investigated the migratory behavior and survival of Atlantic salmon (Salmo salar) and anadromous brown trout (Salmo trutta) smolts during their seaward migration using acoustic telemetry between March and May 2021. Due to the extinction of wild salmon in the River Gudenaa after the construction of the Tange hydropower plant, this study used hatchery-reared salmon originating from a nearby Danish river. A total of 75 hatchery-reared salmon smolts, 75 hatchery-reared trout smolts, and 75 wild trout smolts were tagged with acoustic transmitters and released into River Gudenaa, Denmark. The downstream movements of tagged fish were monitored using acoustic receivers deployed in the river and fjord. Hatchery-reared trout initiated migration first, followed by hatchery-reared salmon, with wild trout being the last to migrate. There was no difference in riverine progression rates among the three smolt groups, but noticeable differences emerged once in the fjord: trout (wild and hatchery) slowed down, whereas hatchery-reared salmon maintained their speed. Riverine migration was predominantly nocturnal for all smolts; however, daytime migration increased at the fjord arrays. Day-of-year significantly influenced diurnal patterns in the river and fjord, where daytime migration increased later in the year. Hatchery-reared salmon and wild trout had reasonably good overall survival from river to sea entry (≥66%), whereas hatchery-reared trout had poor survival (c.26%). The fjord was the major bottleneck for survival of hatchery-reared trout. We found no strong evidence for differences in progression rate or diurnal patterns between wild and hatchery-reared trout to explain the lower survival. This study demonstrates that salmon and trout differ in their life-history strategy already in the post-smolt phase, and that stocking is a sub-optimal strategy to aid wild populations.
Collapse
Affiliation(s)
- Lene Klubben Sortland
- Section for Freshwater Fisheries and Ecology, Technical University of Denmark, Silkeborg, Denmark
| | - Kim Aarestrup
- Section for Freshwater Fisheries and Ecology, Technical University of Denmark, Silkeborg, Denmark
| | - Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, Technical University of Denmark, Silkeborg, Denmark
| |
Collapse
|
6
|
Li Z, Zhou S, He J, Ying J, Xu K. Environmental enrichment improves behaviors rather than the growth and physiology of rock bream Oplegnathus fasciatus. JOURNAL OF FISH BIOLOGY 2024; 104:758-768. [PMID: 37950685 DOI: 10.1111/jfb.15604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Environmental enrichment has the potential to improve the welfare and post-release survival of hatchery fish stocked for conservation purposes. However, the effectiveness of environmental enrichment is partly dependent on the fish species, life stage, and specific enrichment structure used. To enhance the effectiveness of environmental enrichment, it is crucial to focus on characteristic differences in enrichment structures, such as type and level. This study investigated how differences in enrichment type and level affected physiological and behavioral aspects of the welfare of pre-release juvenile rock bream Oplegnathus fasciatus by evaluating growth performance, basal and stressed cortisol levels, antioxidant enzyme activities, and exploratory behaviors regarding anxiety and flexibility. Fish were reared for 4 weeks in different enrichment treatments: barren, low-level cover structure, high-level cover structure, low-level interference structure (LI), and high-level interference structure (HI). The results revealed that fish reared with the LI treatment showed less anxiety and greater flexibility with respect to exploratory behaviors, without oxidative damage being detected. Despite exhibiting less anxiety as well, fish reared in the HI treatment had oxidative damage, indicated by lower superoxide dismutase activity, compared to those in the barren treatment. In addition, none of these enrichment structures enhanced growth performance or mitigate chronic and acute stress responses. Overall, the low-level interference structure may be more favorable in promoting the behavioral welfare of the fish. Application of this type and level of enrichment may increase the survival of the hatchery fish after release, which is critical to stocking success.
Collapse
Affiliation(s)
- Zhe Li
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
- Scientific Observation and Experimental Station of Fishery Resources of Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhoushan, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, China
| | - Shanshan Zhou
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
- Scientific Observation and Experimental Station of Fishery Resources of Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhoushan, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, China
| | - Jingjing He
- Marine and Fisheries Institute, Zhejiang Ocean University, Zhoushan, China
| | - Jie Ying
- Yuanjie aquatic seeding farm, Zhoushan, China
| | - Kaida Xu
- Zhejiang Marine Fisheries Research Institute, Zhoushan, China
- Scientific Observation and Experimental Station of Fishery Resources of Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhoushan, China
- Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, China
| |
Collapse
|
7
|
Soh M, Tay YC, Lee CS, Low A, Orban L, Jaafar Z, Seedorf H. The intestinal digesta microbiota of tropical marine fish is largely uncultured and distinct from surrounding water microbiota. NPJ Biofilms Microbiomes 2024; 10:11. [PMID: 38374184 PMCID: PMC10876542 DOI: 10.1038/s41522-024-00484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Studying the gut microbes of marine fishes is an important part of conservation as many fish species are increasingly threatened by extinction. The gut microbiota of only a small fraction of the more than 32,000 known fish species has been investigated. In this study we analysed the intestinal digesta microbiota composition of more than 50 different wild fish species from tropical waters. Our results show that the fish harbour intestinal digesta microbiota that are distinct from that of the surrounding water and that location, domestication status, and host intrinsic factors are strongly associated with the microbiota composition. Furthermore, we show that the vast majority (~97%) of the fish-associated microorganisms do not have any cultured representative. Considering the impact of the microbiota on host health and physiology, these findings underpin the call to also preserve the microbiota of host species, especially those that may be exposed to habitat destruction.
Collapse
Affiliation(s)
- Melissa Soh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Ywee Chieh Tay
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Co Sin Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Adrian Low
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, MD6-Centre for Translational Medicine, 14 Medical Drive, Singapore, 117599, Singapore
| | - Laszlo Orban
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, Keszthely, 8360, Hungary
| | - Zeehan Jaafar
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Henning Seedorf
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
8
|
Tenger-Trolander A. Environmental and genetic effects of captivity - are there lessons for monarch butterfly conservation? CURRENT OPINION IN INSECT SCIENCE 2023; 59:101088. [PMID: 37500011 DOI: 10.1016/j.cois.2023.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Rearing monarch butterflies in captivity for later release is a popular but contentious activity due to concerns about its potential negative effects on the wild population. In this review, I discuss how captive rearing and breeding could impact monarch fitness in the wild, the current evidence for such impacts in monarchs and other captive-reared/released organisms, and how this should inform our efforts to conserve monarchs and other species.
Collapse
|
9
|
Shen F, Zhang Z, Guo H, Fu Y, Zhang D, Zhang X. Effects of Two Environmental Enrichment Methods on Cognitive Ability and Growth Performance of Juvenile Black Rockfish Sebastes schlegelii. Animals (Basel) 2023; 13:2131. [PMID: 37443928 DOI: 10.3390/ani13132131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
A widely used approach to restoring marine fishery resources is stock enhancement using hatchery-reared fish. However, artificial rearing environments, which are often lacking in enrichment, may negatively affect the cognition, welfare, and adaptive capacity to new environments of juvenile fish, thereby leading to low post-release survival rates. This study examined the effects of habitat and social enrichment on the growth performance and cognitive ability of Sebastes schlegelii. Following seven weeks of environmental enrichment, a T-maze experiment was conducted, and the telencephalon and visceral mass of the fish were sampled to measure the growth (growth hormone: GH; insulin-like growth factor-1: IGF-1; and somatostatin: SS) and cognitive abilities (brain-derived neurotrophic factor: BDNF; and nerve growth factor: NGF)-related indicator levels. The results indicated that, although the final body length, final body weight, and specific growth rate of both enrichment groups were lower than those of the control group, both methods of enrichment had a positive impact on growth-related factors (increased GH, increased IGF-1, and decreased SS). The enrichment groups demonstrated a stronger learning ability in the T-maze test, and the levels of BDNF and NGF in the telencephalon were significantly higher in the enrichment groups than those in the control group. Additionally, there was a significant interaction between the two enrichment methods on the NGF level. This study confirms that a more complex and enriching environment is beneficial for cultivating the cognitive abilities of cultured juvenile S. schlegelii, and the result can provide a reference for the improvement of the stock enhancement of this species.
Collapse
Affiliation(s)
- Fengyuan Shen
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Zonghang Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Haoyu Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yiqiu Fu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Dong Zhang
- East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, 300 Jungong Road, Shanghai 200090, China
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
10
|
Guo H, Näslund J, Thomassen ST, Larsen MH. Social isolation affects intra-specific interaction behaviour and reduces the size of the cerebellar brain region in juvenile Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2022; 101:711-721. [PMID: 35751413 PMCID: PMC9540882 DOI: 10.1111/jfb.15142] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The social environment can affect the development of behavioural phenotypes in fish, and it is important to understand such effects when rearing fish in artificial environments. Here, the authors test the effects of spatial isolation on social interaction propensity and brain development in hatchery-reared Atlantic salmon Salmo salar L. Salmon reared in isolation generally stayed further away from a conspecific in a standardized intruder test than conspecifics reared together in groups. Isolated salmon also tended to be more active in an intruder test, albeit non-significantly so, but this pattern was not detected in open-field tests without an intruding conspecific. The cerebellar brain region was relatively smaller in isolated salmon, suggesting that the brain was developing differently in these fish. Therefore, some features of the behavioural and neural phenotype are affected by rearing in isolation. These effects should be considered when rearing salmon, particularly for experimental purposes as it may affect results of laboratory studies on behavioural expression and brain size.
Collapse
Affiliation(s)
- Haoyu Guo
- Fisheries CollegeZhejiang Ocean UniversityZhoushanChina
| | - Joacim Näslund
- Department of Aquatic ResourcesInstitute of Freshwater Research, Swedish University of Agricultural SciencesDrottningholmSweden
| | | | - Martin H. Larsen
- Danish Centre for Wild SalmonRandersDenmark
- National Institute of Aquatic ResourcesSection for Freshwater Fisheries Ecology, Technical University of DenmarkSilkeborgDenmark
| |
Collapse
|
11
|
Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022; 97:1038-1056. [PMID: 34983085 PMCID: PMC9303617 DOI: 10.1111/brv.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Globally, millions of zebrafish (Danio rerio) are used for scientific laboratory experiments for which researchers have a duty of care, with legal obligations to consider their welfare. Considering the growing use of the zebrafish as a vertebrate model for addressing a diverse range of scientific questions, optimising their laboratory conditions is of major importance for both welfare and improving scientific research. However, most guidelines for the care and breeding of zebrafish for research are concerned primarily with maximising production and minimising costs and pay little attention to the effects on welfare of the environments in which the fish are maintained, or how those conditions affect their scientific research. Here we review the physical and social conditions in which laboratory zebrafish are kept, identifying and drawing attention to factors likely to affect their welfare and experimental science. We also identify a fundamental lack knowledge of how zebrafish interact with many biotic and abiotic features in their natural environment to support ways to optimise zebrafish health and well-being in the laboratory, and in turn the quality of scientific data produced. We advocate that the conditions under which zebrafish are maintained need to become a more integral part of research and that we understand more fully how they influence experimental outcome and in turn interpretations of the data generated.
Collapse
Affiliation(s)
- Carole J. Lee
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Gregory C. Paull
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Charles R. Tyler
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| |
Collapse
|
12
|
Bouchard R, Wellband K, Lecomte L, Bernatchez L, April J. Effects of stocking at the parr stage on the reproductive fitness and genetic diversity of a wild population of Atlantic salmon ( Salmo salar L.). Evol Appl 2022; 15:838-852. [PMID: 35603030 PMCID: PMC9108320 DOI: 10.1111/eva.13374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Captive-breeding programs are among the most adopted conservation practices to mitigate the loss of biodiversity, including genetic diversity. However, both genetic and nongenetic changes occurring in captivity can reduce the fitness of supplemented individuals, which complicate rehabilitation efforts. In the case of Atlantic salmon, the intensity of changes that occur in captivity and their impact on fitness will vary with the stocking practice adopted. In this study, we test whether salmon stocked at the parr stage have reduced reproductive success compared with their wild conspecifics and whether they contribute to increase genetic diversity in the targeted population. To do so, we use high-throughput microsatellite sequencing of 38 loci to accurately assign 2381 offspring to a comprehensive set of possible parents from a supplemented Atlantic salmon population in Québec, Canada. Captive-bred salmon stocked at the parr stage had fewer mates than their wild conspecifics, as well as a reduced relative reproductive success (RSS) compared with their wild counterparts. Nonetheless, in comparison with previous studies, stocking at the parr stage significantly improved RSS compared with salmon stocked as smolts and they displayed a reduction in reproductive success similar to salmon stocked as fry, which spend less time in captivity than parr. Moreover, supplementation of captive-bred salmon significantly contributed to increasing genetic diversity. These results should contribute to informing resource managers in determining the best stocking practice to enhance Atlantic salmon populations.
Collapse
Affiliation(s)
- Raphaël Bouchard
- Département de BiologieUniversité LavalQuébecQuebecCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Kyle Wellband
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Laurie Lecomte
- Département de BiologieUniversité LavalQuébecQuebecCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Louis Bernatchez
- Département de BiologieUniversité LavalQuébecQuebecCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQuebecCanada
| | - Julien April
- Direction de l’expertise sur la faune aquatiqueMinistère des Forêts, de la Faune et des Parcs du QuébecQuébecQuebecCanada
| |
Collapse
|
13
|
Among-individual variation of risk-taking behaviour in group and solitary context is uncorrelated but independently repeatable in a juvenile Arctic charr (Salvelinus alpinus) aquaculture strain. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Janhunen M, Piironen J, Vainikka A, Hyvärinen P. The effects of environmental enrichment on hatchery-performance, smolt migration and capture rates in landlocked Atlantic salmon. PLoS One 2021; 16:e0260944. [PMID: 34855922 PMCID: PMC8638868 DOI: 10.1371/journal.pone.0260944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022] Open
Abstract
Enrichment of rearing environment with natural elements has been suggested to improve the welfare and post-release survival of cultured fish. We studied the combined effects of shelter structures, periodical water flow and water level changes on pre- and post-release performance of critically endangered landlocked Atlantic salmon (Salmo salar m. sebago). Relative to standard (plain) rearing tanks, provision of enrichment improved fish condition factor and survival during the first year of rearing when most mortality was attributable to parasitic and bacterial infections. The consequent higher density in enriched tanks probably induced greater growth variation and more dorsal fin damages than found in fish of standard tanks. Possibly this was partly due to the applied changes in water level. Experimentally determined smolt migration tendency at age 3 did not differ, on average, between the rearing groups, but enriched-reared fish showed clearly less variation in total movement activity than standard-reared fish. Experimental angling in earthen ponds did not suggest divergent vulnerability between the differentially reared fish at age 3, but decreased condition during the preceding growth season increased vulnerability to fishing. Based on long-term post-stocking tag returns in large-lake fisheries, fish length at release but not rearing method affected the capture rates of fish released at age 2. When released at age 3 the fish grown in enriched environment had a higher risk to be captured with stationary gears and earlier by hook and line gears compared to standard-reared conspecifics. Earlier time of maximal smolt migration activity was associated with an increased risk of being captured. We suggest that environmental enrichment may modulate growth- and behavior-related qualities that indirectly increased the vulnerability to fishing in natural conditions but not in experimental setting. The favorable effects of enrichment on early survival encourages adopting enriched rearing practices in supportive breeding of landlocked salmon.
Collapse
Affiliation(s)
- Matti Janhunen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
- * E-mail:
| | - Jorma Piironen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Anssi Vainikka
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Pekka Hyvärinen
- Natural Resources Institute Finland (Luke), Paltamo, Finland
| |
Collapse
|
15
|
Bugg WS, Yoon GR, Brandt C, Earhart ML, Anderson WG, Jeffries KM. The effects of population and thermal acclimation on the growth, condition and cold responsive mRNA expression of age-0 lake sturgeon (Acipenser fulvescens). JOURNAL OF FISH BIOLOGY 2021; 99:1912-1927. [PMID: 34476812 DOI: 10.1111/jfb.14897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
In Manitoba, Canada, wild lake sturgeon (Acipenser fulvescens) populations exist along a latitudinal gradient and are reared in hatcheries to bolster threatened populations. We reared two populations of lake sturgeon, one from each of the northern and southern ends of Manitoba and examined the effects of typical hatchery temperatures (16°C) as well as 60-day acclimation to elevated rearing temperatures (20°C) on mortality, growth and condition throughout early development. Additionally, we examined the cold shock response, which may be induced during stocking, through the hepatic mRNA expression of genes involved in the response to cold stress and homeoviscous adaptation (HSP70, HSP90a, HSP90b, CIRP and SCD). Sturgeon were sampled after 1 day and 1 week following stocking into temperatures of 8, 6 and 4°C in a controlled laboratory environment. The southern population showed lower condition and higher mortality during early life than the northern population while increased rearing temperature impacted the growth and condition of developing northern sturgeon. During the cold shock, HSP70 and HSP90a mRNA expression increased in all sturgeon treatments as stocking temperature decreased, with higher expression observed in the southern population. Expression of HSP90b, CIRP and SCD increased as stocking temperature decreased in northern sturgeon with early acclimation to 20°C. Correlation analyses indicated the strongest molecular relationships were in the expression of HSP90b, CIRP and SCD, across all treatments, with a correlation between HSP90b and body condition in northern sturgeon with early acclimation to 20°C. Together, these observations highlight the importance of population and rearing environment throughout early development and on later cellular responses induced by cold stocking temperatures.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Catherine Brandt
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- North/South Consultants Inc., Winnipeg, Manitoba, Canada
| | - Madison L Earhart
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Zhou Y, Li J, Qi H, Yang H, Ban X, Yang J, Du H. Riverbed Substrate Requirements for Natural Reproduction of Gymnocypris przewalskii. Animals (Basel) 2021; 11:ani11113246. [PMID: 34827978 PMCID: PMC8614266 DOI: 10.3390/ani11113246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Gymnocypris przewalskii (i.e., Qinghai Lake naked carp) is a migratory fish species that lives in highland brackish water. It is important to understand the abiotic environment required by this fish to reproduce naturally so that its habitat can be protected and the wild population can be conserved. Here, artificial simulation and spawning ground substrate transformation experiments were conducted to examine the riverbed substrate requirements for G. przewalskii to naturally reproduce. Using various techniques (in vitro markers, videography, and Ethovision XT behavior tracking), this study systematically investigated the riverbed substrate preferences of G. przewalskii as well as the characteristics and effectiveness of natural reproduction induced by pebble riverbed substrate. The findings can be summarized as follows: (1) the habitat preferences of G. przewalskii differed significantly between various riverbed substrate, with pebble substrate being preferred during natural reproduction, and sand substrate being preferred pre- and post-spawning, and (2) the natural reproduction of G. przewalskii was heavily reliant on pebble riverbed substrate. Specifically, pebble substrate significantly improved spawn quantity and fertilization rate. These findings provide scientific evidence for the improvement and restoration of G. przewalskii spawning grounds, and insights regarding the artificial bionic reproduction of G. przewalskii.
Collapse
Affiliation(s)
- Yanghao Zhou
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.Z.); (J.L.); (H.Y.)
- College of Fisheries, Huazhong Agricultural University, Wuhan 430037, China
| | - Junyi Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.Z.); (J.L.); (H.Y.)
| | - Hongfang Qi
- Qinghai Key Laboratory of Breeding and Protection of Naked Carp, Qinghai Lake Naked Carp Rescue Center, Xining 810016, China; (H.Q.); (J.Y.)
| | - Haile Yang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.Z.); (J.L.); (H.Y.)
| | - Xuan Ban
- Hubei Key Laboratory of Environmental and Disaster Monitoring and Assessment, Innovation Academy of Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China;
| | - Jianxin Yang
- Qinghai Key Laboratory of Breeding and Protection of Naked Carp, Qinghai Lake Naked Carp Rescue Center, Xining 810016, China; (H.Q.); (J.Y.)
| | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (Y.Z.); (J.L.); (H.Y.)
- Qinghai Key Laboratory of Breeding and Protection of Naked Carp, Qinghai Lake Naked Carp Rescue Center, Xining 810016, China; (H.Q.); (J.Y.)
- Correspondence:
| |
Collapse
|
17
|
Zhang Z, Fu Y, Shen F, Zhang Z, Guo H, Zhang X. Barren environment damages cognitive abilities in fish: Behavioral and transcriptome mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148805. [PMID: 34323774 DOI: 10.1016/j.scitotenv.2021.148805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The surrounding environments that animals inhabit shape their behavioral phenotypes, physiological status and molecular processes. As one of the driving forces for the adaptation and evolution of marine animals, environmental complexity has been shown to affect several behavioral characteristics in fish. However, little is known about the effects of environmental complexity on fish spatial cognition and about the relevant regulatory mechanisms. To address this theoretical gap, black rockfish Sebastes schlegelii, which is a typical rock fish species, were exposed to laboratory-based small-scale contrasting environments (i.e., spatially complex environment vs. spatially barren environment) for seven weeks. Subsequently, the spatial cognitive abilities and behavioral performance during captive period were determined, and transcriptome sequencing and analyses for fish telencephalon were conducted. In general, the fish from barren environment had significantly lower spatial learning and memory abilities compared with the fish from complex environment (i.e., the complex fish exited the maze faster). During the whole captive period, the frequency of aggressive behavior among barren fish was significantly higher than complex fish. And meanwhile, the group dispersion index of barren group was also significantly higher than complex group, which indicated that complex fish tended to distribute in a more homogeneous pattern than barren fish. Through transcriptomic analyses, a series of differentially expressed genes and pathways which may underpin the damaged effects of barren environment on fish spatial cognition were identified, and these genes mainly related to stress response, metabolism, organism systems and neural plasticity. However, no significant differences in growth performance, locomotor activity (indicated by swimming behavior and rotatory behavior) between treatments were detected. Based on these results, mechanisms in the levels of behavior and molecule were proposed to explain the environmental effects on fish cognition. This study may provide fundamental information for deeply understanding the environmental effects on marine animals.
Collapse
Affiliation(s)
- Zonghang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yiqiu Fu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fengyuan Shen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhen Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haoyu Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
18
|
Delaval A, Solås MR, Skoglund H, Salvanes AGV. Does Vaterite Otolith Deformation Affect Post-Release Survival and Predation Susceptibility of Hatchery-Reared Juvenile Atlantic Salmon? Front Vet Sci 2021; 8:709850. [PMID: 34646876 PMCID: PMC8503516 DOI: 10.3389/fvets.2021.709850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Sagittal otoliths are calcareous structures in the inner ear of fishes involved in hearing and balance. They are usually composed of aragonite; however, aragonite can be replaced by vaterite, a deformity which is more common in hatchery-reared than in wild fish. Vaterite growth may impair hearing and balance and affect important fitness-related behaviours such as predator avoidance. Captive rearing techniques that prevent hearing loss may have the potential to improve fish welfare and the success of restocking programmes. The aim of this study was to test the effect of structural tank enrichment on vaterite development in the otoliths of hatchery-reared juvenile Atlantic salmon Salmo salar, and to assess the effects of vaterite on immediate predation mortality and long-term survival after release into the wild. Fry were reared in a structurally enriched or in a conventional rearing environment and given otolith marks using alizarin during the egg stage to distinguish between the treatment groups. Otoliths were scrutinised for the presence and coverage of vaterite at 6, 13, and 16 weeks after start feeding, and the growth traits were measured for enriched and control fry when housed in tanks. In a subsequent field experiment, juveniles were released in the Rasdalen river (western Norway), and otoliths of enriched reared and control reared fry were scrutinised from samples collected immediately prior to release, from predator (trout Salmo trutta) stomachs 48 h after release and from recaptures from the river 2–3 months after release. Vaterite otoliths occurred as early as 6 weeks after start feeding in hatchery-reared S. salar. Vaterite occurrence and coverage increased with fish length. Enriched rearing had no direct effect on vaterite formation, but enriched reared fry grew slower than control fry. After release into the wild, fewer salmon fry with vaterite otoliths had been eaten by predators, and a higher proportion of fry with vaterite otoliths than those lacking vaterite were recaptured in the river 2–3 months after release. Contrary to expectations, this suggests that vaterite does not increase predation mortality nor reduce survival rates in the wild during the early life stages.
Collapse
Affiliation(s)
- Aurélien Delaval
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | | - Helge Skoglund
- Laboratory of Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | | |
Collapse
|
19
|
Jones NAR, Webster MM, Salvanes AGV. Physical enrichment research for captive fish: Time to focus on the DETAILS. JOURNAL OF FISH BIOLOGY 2021; 99:704-725. [PMID: 33942889 DOI: 10.1111/jfb.14773] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/22/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Growing research effort has shown that physical enrichment (PE) can improve fish welfare and research validity. However, the inclusion of PE does not always result in positive effects and conflicting findings have highlighted the many nuances involved. Effects are known to depend on species and life stage tested, but effects may also vary with differences in the specific items used as enrichment between and within studies. Reporting fine-scale characteristics of items used as enrichment in studies may help to reveal these factors. We conducted a survey of PE-focused studies published in the last 5 years to examine the current state of methodological reporting. The survey results suggest that some aspects of enrichment are not adequately detailed. For example, the amount and dimensions of objects used as enrichment were frequently omitted. Similarly, the ecological relevance, or other justification, for enrichment items was frequently not made explicit. Focusing on ecologically relevant aspects of PE and increasing the level of detail reported in studies may benefit future work and we propose a framework with the acronym DETAILS (Dimensions, Ecological rationale, Timing of enrichment, Amount, Inputs, Lighting and Social environment). We outline the potential importance of each of the elements of this framework with the hope it may aid in the level of reporting and standardization across studies, ultimately aiding the search for more beneficial types of PE and the development of our understanding and ability to improve the welfare of captive fish and promote more biologically relevant behaviour.
Collapse
Affiliation(s)
- Nick A R Jones
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | | |
Collapse
|
20
|
Perry WB. Life in captivity: future research in physical enrichment for fish. JOURNAL OF FISH BIOLOGY 2021; 99:703. [PMID: 34542916 DOI: 10.1111/jfb.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
21
|
Závorka L, Crespel A, Dawson NJ, Papatheodoulou M, Killen SS, Kainz MJ. Climate change‐induced deprivation of dietary essential fatty acids can reduce growth and mitochondrial efficiency of wild juvenile salmon. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13860] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Libor Závorka
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem Research Lunz am See Austria
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Amelie Crespel
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Neal J. Dawson
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Magdalene Papatheodoulou
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Shaun S. Killen
- Institute of Biodiversity Animal Health & Comparative Medicine Graham Kerr Building College of Medical, Veterinary & Life Sciences University of Glasgow Glasgow UK
| | - Martin J. Kainz
- WasserCluster Lunz – Inter‐University Centre for Aquatic Ecosystem Research Lunz am See Austria
| |
Collapse
|
22
|
Zhang Z, Fu Y, Zhang Z, Zhang X, Chen S. A Comparative Study on Two Territorial Fishes: The Influence of Physical Enrichment on Aggressive Behavior. Animals (Basel) 2021; 11:ani11071868. [PMID: 34201637 PMCID: PMC8300207 DOI: 10.3390/ani11071868] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary This study aimed to evaluate the effect of physical enrichment levels (i.e., the intensity of physical enrichment) on the aggressive behavior of two territorial fishes, black rockfish (Sebastes schlegelii) and fat greenling (Hexagrammos otakii). The main results show that with the increase in the enrichment level, the frequency of aggressive behavior of black rockfish gradually decreased. In contrast, a non-monotonous effect of the enrichment level on aggression was observed for fat greenling, with low and intermediate levels leading to no or more aggression, while a high enrichment level reduced aggression. After three days, the high-level enrichment groups in both rockfish and greenling reached social stability (i.e., a relatively stable social structure indicated by low aggression), while aggression in the other groups continued to increase. These results verify the regulatory effect of enrichment levels on the aggressive behavior in both black rockfish and fat greenling. This study may provide useful information for reducing fish aggression and improving fish welfare in aquaculture. Abstract Intraspecific aggression is detrimental to body/fin damage, physiological stress, and other problems in aquaculture. Environmental enrichment has been proposed to have positive effects on fish aggressive behavior, physiological stress, and fish welfare, but there are mixed results. Here, we examine the impact of physical enrichment levels (i.e., the intensity of physical enrichment) on aggression in black rockfish (Sebastes schlegelii) and fat greenling (Hexagrammos otakii). Generally, with the increase in the enrichment level, the frequency of the aggressive behavior of black rockfish gradually decreased. In contrast, a non-monotonous effect of the enrichment level on aggression was observed for fat greenling, with low and intermediate levels leading to no or more aggression, while a high enrichment level reduced aggression. After three days, the high-level enrichment groups in both rockfish and greenling reached social stability (i.e., a relatively stable social structure indicated by lower aggression), while aggression in the other groups continued increased. These results show the significant regulatory effect of enrichment levels on the aggressive behavior in both black rockfish and fat greenling. This study may promote the development of environmental enrichment measures, and it provides useful information for reducing fish aggression and improving fish welfare in aquaculture.
Collapse
Affiliation(s)
- Zonghang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (Z.Z.); (Y.F.); (Z.Z.)
| | - Yiqiu Fu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (Z.Z.); (Y.F.); (Z.Z.)
| | - Zhen Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; (Z.Z.); (Y.F.); (Z.Z.)
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Correspondence: or
| | - Shengcan Chen
- National Fisheries Technology Extension Center, Beijing 100125, China;
| |
Collapse
|
23
|
Reiser S, Pohlmann DM, Blancke T, Koops U, Trautner J. Environmental enrichment during early rearing provokes epigenetic changes in the brain of a salmonid fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100838. [PMID: 33930773 DOI: 10.1016/j.cbd.2021.100838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
Environmental enrichment is used to increase structural complexity of captive rearing systems and has been shown to provoke a wide range of effects in the kept animals. Here we studied the effects of enrichment on DNA methylation patterns at the whole-genome level in the brain of rainbow trout reared in an aquaculture setting. We investigated the epigenetic effects between different types of enrichment (natural substrate vs. artificial substrate vs. barren) in three developmental stages (egg vs. alevin vs. fry) and as enrichment was discontinued at the fingerling stage by means of the Methylation-Sensitive Amplified Polymorphism (MSAP) technique. While enrichment did not affect growth in body size, we found enrichment to affected global DNA methylation in the brain at the egg and alevin stage, i.e., the period during development where the animals are in close physical contact with the substrate. At these stages, trout reared on the two substrates differed more from the control than the substrates differed from each other. Only minor differences between rearing environments were detected following emergence at the fry stage. When enrichment was discontinued during the rearing of fingerlings, no differences in DNA methylation patterns were observed between the rearing environments. Our results provide further evidence on the effects of enrichment in the captive rearing of fish and show that enrichment can even modulate epigenetic patterns. The effect on the epigenome may be causal for the previously reported effects of enrichment on gene expression, behaviour and brain development.
Collapse
Affiliation(s)
- Stefan Reiser
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany.
| | | | - Tina Blancke
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| | - Udo Koops
- Thünen Institute of Fisheries Ecology, Wulfsdorfer Weg 204, 22926 Ahrensburg, Germany
| | - Jochen Trautner
- Thünen Institute of Fisheries Ecology, Palmaille 9, 22767 Hamburg, Germany
| |
Collapse
|
24
|
Petitjean Q, Jacquin L, Riem L, Pitout M, Perrault A, Cousseau M, Laffaille P, Jean S. Intraspecific variability of responses to combined metal contamination and immune challenge among wild fish populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116042. [PMID: 33190983 DOI: 10.1016/j.envpol.2020.116042] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Wild organisms are increasingly exposed to multiple anthropogenic and natural stressors that can interact in complex ways and lead to unexpected effects. In aquatic ecosystems, contamination by trace metals has deleterious effects on fish health and commonly co-occurs with pathogens, which affect similar physiological and behavioral traits. However, the combined effects of metal contamination and parasitism are still poorly known. In addition, the sensitivity to multiple stressors could be highly variable among different fish populations depending on their evolutionary history, but this intraspecific variability is rarely taken into account in existing ecotoxicological studies. Here, we investigated i) the interactive effects of metal contamination (i.e., realistic mixture of Cd, Cu and Zn) and immune challenge mimicking a parasite attack on fish health across biological levels. In addition, we compared ii) the physiological and behavioral responses among five populations of gudgeon fish (Gobio occitaniae) having evolved along a gradient of metal contamination. Results show that single stressors exposure resulted in an increase of immune defenses and oxidative stress at the expense of body mass (contamination) or fish swimming activity (immune challenge). Multiple stressors had fewer interactive effects than expected, especially on physiological traits, but mainly resulted in antagonistic effects on fish swimming activity. Indeed, the immune challenge modified or inhibited the effects of contamination on fish behavior in most populations, suggesting that multiple stressors could reduce behavioral plasticity. Interestingly, the effects of stressors were highly variable among populations, with lower deleterious effects of metal contamination in populations from highly contaminated environments, although the underlying evolutionary mechanisms remain to be investigated. This study highlights the importance of considering multiple stressors effects and intraspecific variability of sensitivity to refine our ability to predict the effects of environmental contaminants on aquatic wildlife.
Collapse
Affiliation(s)
- Quentin Petitjean
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; EDB, Laboratoire Évolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, CNRS, IRD, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France.
| | - Lisa Jacquin
- EDB, Laboratoire Évolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, CNRS, IRD, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
| | - Louna Riem
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; EDB, Laboratoire Évolution et Diversité Biologique, UMR5174 EDB, Université de Toulouse, CNRS, IRD, 118 Route de Narbonne, 31062, Toulouse, France
| | - Mathilde Pitout
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Annie Perrault
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Myriam Cousseau
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pascal Laffaille
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
| | - Séverine Jean
- Laboratoire Écologie Fonctionnelle et Environnement, UMR5245, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse, France; LTSER France, Zone Atelier PYGAR « Pyrénées-Garonne », Auzeville-Tolosane, France
| |
Collapse
|
25
|
Salena MG, Turko AJ, Singh A, Pathak A, Hughes E, Brown C, Balshine S. Understanding fish cognition: a review and appraisal of current practices. Anim Cogn 2021; 24:395-406. [PMID: 33595750 DOI: 10.1007/s10071-021-01488-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023]
Abstract
With over 30,000 recognized species, fishes exhibit an extraordinary variety of morphological, behavioural, and life-history traits. The field of fish cognition has grown markedly with numerous studies on fish spatial navigation, numeracy, learning, decision-making, and even theory of mind. However, most cognitive research on fishes takes place in a highly controlled laboratory environment and it can therefore be difficult to determine whether findings generalize to the ecology of wild fishes. Here, we summarize four prominent research areas in fish cognition, highlighting some of the recent advances and key findings. Next, we survey the literature, targeting these four areas, and quantify the nearly ubiquitous use of captive-bred individuals and a heavy reliance on lab-based research. We then discuss common practices that occur prior to experimentation and within experiments that could hinder our ability to make more general conclusions about fish cognition, and suggest possible solutions. By complementing ecologically relevant laboratory-based studies with in situ cognitive tests, we will gain further inroads toward unraveling how fishes learn and make decisions about food, mates, and territories.
Collapse
Affiliation(s)
- Matthew G Salena
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Andy J Turko
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Angad Singh
- Department of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Avani Pathak
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Emily Hughes
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
26
|
Nilsson E, Sadler-Riggleman I, Beck D, Skinner MK. Differential DNA methylation in somatic and sperm cells of hatchery vs wild (natural-origin) steelhead trout populations. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab002. [PMID: 34040807 PMCID: PMC8132314 DOI: 10.1093/eep/dvab002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/09/2021] [Accepted: 03/01/2021] [Indexed: 05/06/2023]
Abstract
Environmental factors such as nutrition, stress, and toxicants can influence epigenetic programming and phenotypes of a wide variety of species from plants to humans. The current study was designed to investigate the impacts of hatchery spawning and rearing on steelhead trout (Oncorhynchus mykiss) vs the wild fish on a molecular level. Additionally, epigenetic differences between feeding practices that allow slow growth (2 years) and fast growth (1 year) hatchery trout were investigated. The sperm and red blood cells (RBC) from adult male slow growth/maturation hatchery steelhead, fast growth/maturation hatchery steelhead, and wild (natural-origin) steelhead were collected for DNA preparation to investigate potential alterations in differential DNA methylation regions (DMRs) and genetic mutations, involving copy number variations (CNVs). The sperm and RBC DNA both had a large number of DMRs when comparing the hatchery vs wild steelhead trout populations. The DMRs were cell type specific with negligible overlap. Slow growth/maturation compared to fast growth/maturation steelhead also had a larger number of DMRs in the RBC samples. A number of the DMRs had associated genes that were correlated to various biological processes and pathologies. Observations demonstrate a major epigenetic programming difference between the hatchery and wild natural-origin fish populations, but negligible genetic differences. Therefore, hatchery conditions and growth/maturation rate can alter the epigenetic developmental programming of the steelhead trout. Interestingly, epigenetic alterations in the sperm allow for potential epigenetic transgenerational inheritance of phenotypic variation to future generations. The impacts of hatchery exposures are not only important to consider on the fish exposed, but also on future generations and evolutionary trajectory of fish in the river populations.
Collapse
Affiliation(s)
- Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
- Correspondence address. Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA. Tel: +1-509-335-1524; E-mail:
| |
Collapse
|
27
|
Effect of Tank Size on Zebrafish Behavior and Physiology. Animals (Basel) 2020; 10:ani10122353. [PMID: 33317187 PMCID: PMC7763847 DOI: 10.3390/ani10122353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 01/25/2023] Open
Abstract
Simple Summary Living space is an important aspect of animal welfare. Understanding the effects of welfare on experimental animals would help in drawing a precise conclusion. In this work, zebrafish in different tank sizes were studied through behavioral and physiology tests. Results showed that changes in the tank size affected zebrafish behavior; those that lived in small tanks behaved less boldly, had poor stamina, and spent much time on movement. Therefore, researchers should focus on zebrafish’s living space to generate valid data from laboratory studies. Abstract Environmental conditions strongly affect experimental animals. As a model organism, zebrafish has become important in life science studies. However, the potential effect of living environment on their behavior and physiology is often overlooked. This work aimed to determine whether tank size affects zebrafish behavior and physiology. Tests on shelter leaving, shelter seeking, shoaling, stamina, and pepsin and cortisol levels were conducted. Results showed that zebrafish behavior is easily affected by changes on the tank size. Fish that lived in small tanks behaved less boldly, had poor stamina, and spent much time on movement. Sex differences in behavior were only evident in the shelter seeking tests. Tank size had no effect on pepsin and cortisol, but cortisol concentrations in males were lower than those in females. This study suggests that zebrafish behavior is easily influenced by their living environment, and future related studies should consider their living space.
Collapse
|
28
|
Inside the Fish Brain: Cognition, Learning and Consciousness. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
|
30
|
M. Voorhees J, Huysman N, Krebs E, E. Barnes M. Influence of Water Velocity and Vertically-Suspended Structures on Rainbow Trout Rearing Performance. ACTA ACUST UNITED AC 2020. [DOI: 10.4236/ojas.2020.101008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Mes D, van Os R, Gorissen M, Ebbesson LOE, Finstad B, Mayer I, Vindas MA. Effects of environmental enrichment on forebrain neural plasticity and survival success of stocked Atlantic salmon. ACTA ACUST UNITED AC 2019; 222:jeb.212258. [PMID: 31712354 DOI: 10.1242/jeb.212258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
Fish reared for stocking programmes are severely stimulus deprived compared with their wild conspecifics raised under natural conditions. This leads to reduced behavioural plasticity and low post-release survival of stocked fish. Environmental enrichment can have positive effects on important life skills, such as predator avoidance and foraging behaviour, but the neural mechanisms underpinning these behavioural changes are still largely unknown. In this study, juvenile Atlantic salmon (Salmo salar) were reared in an enriched hatchery environment for 7 weeks, after which neurobiological characteristics and post-release survival were compared with those of fish reared under normal hatchery conditions. Using in situ hybridization and qPCR, we quantified the expression of brain-derived neurotrophic factor (bdnf) and the neural activity marker cfos in telencephalic subregions associated with relational memory, emotional learning and stress reactivity. Aside from lower expression of bdnf in the Dlv (a region associated with relational memory) of enriched salmon, we observed no other significant effects of enrichment in the studied regions. Exposure to an enriched environment increased post-release survival during a 5 month residence in a natural river by 51%. Thus, we demonstrate that environmental enrichment can improve stocking success of Atlantic salmon parr and that environmental enrichment is associated with changes in bdnf expression in the fish's hippocampus-equivalent structure.
Collapse
Affiliation(s)
- Daan Mes
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Renske van Os
- Institute of Water and Wetland Research, Department of Animal Ecology and Physiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Marnix Gorissen
- Institute of Water and Wetland Research, Department of Animal Ecology and Physiology, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | | | - Bengt Finstad
- Norwegian Institute for Nature Research, 7485 Trondheim, Norway
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Marco A Vindas
- Uni Environment, Uni Research AS, 5008 Bergen, Norway .,Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, 0454 Oslo, Norway.,Institute of Neuroscience and Physiology, University of Gothenburg, 413 90 Gothenburg, Sweden
| |
Collapse
|
32
|
Yoon GR, Deslauriers D, Anderson WG. Influence of a dynamic rearing environment on development of metabolic phenotypes in age-0 Lake Sturgeon, Acipenser fulvescens. CONSERVATION PHYSIOLOGY 2019; 7:coz055. [PMID: 31620291 PMCID: PMC6788496 DOI: 10.1093/conphys/coz055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 05/31/2023]
Abstract
Environment-phenotype interactions are the most pronounced during early life stages and can strongly influence metabolism and ultimately ecological fitness. In the present study, we examined the effect of temperature [ambient river temperature (ART) vs ART+2°C], dissolved oxygen (DO; 100% vs 80%) and substrate (presence vs absence) on standard metabolic rate, forced maximum metabolic rate and metabolic scope with Fulton's condition factor (K), energy density (ED) and critical thermal maximum (CTmax) in age-0 Lake Sturgeon, Acipenser fulvescens, before and after a simulated overwintering event. We found that all the environmental variables strongly influenced survival, K, ED and CTmax. Fish reared in elevated temperature showed higher mortality and reduced K pre-winter at 127 days post-hatch (dph). Interestingly, we did not find any significant difference in terms of metabolic rate between treatments at both sampling points of pre- and post-winter. Long-term exposure to 80% DO reduced ED in Lake Sturgeon post-winter at 272 dph. Our data suggest that substrate should be removed at the onset of exogenous feeding to enhance the survival rate of age-0 Lake Sturgeon in the first year of life. Effects of early rearing environment during larval development on survival over winter are discussed with respect to successful recruitment of stock enhanced Lake Sturgeon, a species that is at risk throughout its natural range.
Collapse
Affiliation(s)
- Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - David Deslauriers
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
33
|
Effects of different levels of environmental enrichment on the sheltering behaviors, brain development and cortisol levels of black rockfish Sebastes schlegelii. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Cogliati KM, Unrein JR, Schreck CB, Noakes DLG. Rearing environment affects spatial learning in juvenile Chinook salmon Oncorhynchus tshawytscha. JOURNAL OF FISH BIOLOGY 2019; 95:870-880. [PMID: 31254401 DOI: 10.1111/jfb.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
We tested the prediction that a complex physical rearing environment would enhance short-term spatial memory as assessed by learning ability in a spatial navigation task in juvenile Chinook salmon Oncorhynchus tshawytscha. We reared fish in two low-density treatments, where fish were either in bare fiberglass tanks (bare) or in tanks with physical structure (complex). We also tested conventionally reared high-density hatchery fish to compare with these other experimental treatments. Our reason for including this third hatchery treatment is that the two low-density treatments, aside from the manipulation of structure, followed a rearing programme that is designed to produce fish with more wild-like characteristics. We tested individually marked fish for seven consecutive days and recorded movement and time to exit a testing maze. Stimulus conspecific fish outside the exit of the maze provided positive reinforcement for test fish. Fish from the bare treatment were less likely to exit the start box compared with fish in the complex and hatchery treatments. However, fish in the hatchery treatment were significantly more likely to exit the maze on their own compared with both the bare and complex treatments. Hatchery fish effectively learned the task as shown by a decrease in the number of mistakes over time, but the number of mistakes was significantly greater on the first day of trials. Increasing habitat complexity with structure may not necessarily promote spatial learning ability, but differences between hatchery and experimental treatments in rearing density and motivation to be near conspecifics likely led to observed behavioural differences.
Collapse
Affiliation(s)
- Karen M Cogliati
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - Julia R Unrein
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - Carl B Schreck
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
| | - David L G Noakes
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, USA
- Oregon Hatchery Research Center, Alsea, Oregon, USA
| |
Collapse
|
35
|
Derry AM, Fraser DJ, Brady SP, Astorg L, Lawrence ER, Martin GK, Matte J, Negrín Dastis JO, Paccard A, Barrett RDH, Chapman LJ, Lane JE, Ballas CG, Close M, Crispo E. Conservation through the lens of (mal)adaptation: Concepts and meta-analysis. Evol Appl 2019; 12:1287-1304. [PMID: 31417615 PMCID: PMC6691223 DOI: 10.1111/eva.12791] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/24/2019] [Accepted: 03/07/2019] [Indexed: 12/25/2022] Open
Abstract
Evolutionary approaches are gaining popularity in conservation science, with diverse strategies applied in efforts to support adaptive population outcomes. Yet conservation strategies differ in the type of adaptive outcomes they promote as conservation goals. For instance, strategies based on genetic or demographic rescue implicitly target adaptive population states whereas strategies utilizing transgenerational plasticity or evolutionary rescue implicitly target adaptive processes. These two goals are somewhat polar: adaptive state strategies optimize current population fitness, which should reduce phenotypic and/or genetic variance, reducing adaptability in changing or uncertain environments; adaptive process strategies increase genetic variance, causing maladaptation in the short term, but increase adaptability over the long term. Maladaptation refers to suboptimal population fitness, adaptation refers to optimal population fitness, and (mal)adaptation refers to the continuum of fitness variation from maladaptation to adaptation. Here, we present a conceptual classification for conservation that implicitly considers (mal)adaptation in the short-term and long-term outcomes of conservation strategies. We describe cases of how (mal)adaptation is implicated in traditional conservation strategies, as well as strategies that have potential as a conservation tool but are relatively underutilized. We use a meta-analysis of a small number of available studies to evaluate whether the different conservation strategies employed are better suited toward increasing population fitness across multiple generations. We found weakly increasing adaptation over time for transgenerational plasticity, genetic rescue, and evolutionary rescue. Demographic rescue was generally maladaptive, both immediately after conservation intervention and after several generations. Interspecific hybridization was adaptive only in the F1 generation, but then rapidly leads to maladaptation. Management decisions that are made to support the process of adaptation must adequately account for (mal)adaptation as a potential outcome and even as a tool to bolster adaptive capacity to changing conditions.
Collapse
Affiliation(s)
- Alison Margaret Derry
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
| | - Dylan J. Fraser
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Biology DepartmentConcordia UniversityMontrealQuebecCanada
| | - Steven P. Brady
- Biology DepartmentSouthern Connecticut State UniversityNew HavenConnecticut
| | - Louis Astorg
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | - Gillian K. Martin
- Département des sciences biologiquesUniversité du Québec à MontréalMontrealQuebecCanada
| | | | | | - Antoine Paccard
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Rowan D. H. Barrett
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Lauren J. Chapman
- Quebec Center for Biodiversity ScienceMontrealQuebecCanada
- Redpath Museum and Department of BiologyMcGill UniversityMontrealQuebecCanada
| | - Jeffrey E. Lane
- Department of BiologyUniversity of SaskatchewanSaskatoonSaskatchewanCanada
| | | | - Marissa Close
- Department of BiologyPace UniversityNew YorkNew York
| | - Erika Crispo
- Department of BiologyPace UniversityNew YorkNew York
| |
Collapse
|
36
|
Abstract
Environmental enrichment, or the enhancement of an animal’s surroundings when in captivity to maximise its wellbeing, has been increasingly applied to fish species, particularly those used commercially. Laboratory species could also benefit from enrichment, but it is not always clear what constitutes an enriched environment. The zebrafish, Danio rerio, is used widely in research and is one of the most commonly-used laboratory animals. We investigated whether changing the structural complexity of housing tanks altered the behaviour of one strain of zebrafish. Fish were kept in three treatments: (1) very enhanced (VE); (2) mildly enhanced (ME); and (3) control (CT). Level of aggression, fertilisation success, and growth were measured at regular intervals in a subset of fish in each treatment group. The VE fish were more aggressive over time than either ME or CT fish, both in the number of attacks they made against a mirror image and in their tendency to stay close to their reflection rather than avoid it. Furthermore, VE fish were shorter than CT fish by the end of the experiment, though mass was not significantly affected. There was no significant effect of treatment on fertilisation success. These findings suggest that the way in which fish are housed in the laboratory can significantly affect their behaviour, and potentially, their growth. The zebrafish is a shoaling species with a dominance hierarchy, and so may become territorial over objects placed in the tank. The enrichment of laboratory tanks should consider aspects of the species’ behaviour.
Collapse
|
37
|
Lee CJ, Paull GC, Tyler CR. Effects of environmental enrichment on survivorship, growth, sex ratio and behaviour in laboratory maintained zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2019; 94:86-95. [PMID: 30443966 DOI: 10.1111/jfb.13865] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
Environmental enrichment involves increasing the complexity of a fish's environment in order to improve welfare. Researchers are legally obliged to consider the welfare of laboratory animals and poor welfare may result in less robust data in experimental science. Laboratory zebrafish Danio rerio are usually kept in bare aquaria for ease of husbandry and, despite being a well-studied species, little is known about how laboratory housing affects their welfare. This study shows that environmental enrichment, in the form of the addition of gravel substratum and plants into the tank, affects survivorship, growth and behaviour in laboratory-maintained D. rerio. Larvae reared in enriched tanks had significantly higher survivorship compared with larvae reared in bare tanks. Effects of the tank conditions on growth were more variable. Females from enriched tanks had a higher body condition than females maintained in bare tanks, but intriguingly this was not the case for males, where the only difference was a more variable body condition in males maintained in bare tanks. Sex ratio in the rearing tanks did not differ between treatments. Resource monopolisation was higher for fish in enriched tanks than for those in bare tanks. Fish from enriched tanks displayed lower levels of behaviours associated with anxiety compared with fish from bare tanks when placed into a novel environment. Thus, this study demonstrates differences in welfare for D. rerio maintained under different environmental conditions with enhancements in welfare more commonly associated with tank enrichment.
Collapse
Affiliation(s)
- Carole J Lee
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Gregory C Paull
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
38
|
Sanhueza N, Donoso A, Aguilar A, Farlora R, Carnicero B, Míguez JM, Tort L, Valdes JA, Boltana S. Thermal Modulation of Monoamine Levels Influence Fish Stress and Welfare. Front Endocrinol (Lausanne) 2018; 9:717. [PMID: 30559717 PMCID: PMC6287116 DOI: 10.3389/fendo.2018.00717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/13/2018] [Indexed: 11/13/2022] Open
Abstract
Fish are ectotherm organisms that move through different thermal zones according to their physiological requirements and environmental availability, a behavior known as thermoregulation. Thermoregulation in ectothermic animals is influenced by their ability to effectively respond to thermal variations. While it is known that ectotherms are affected by thermal changes, it remains unknown how physiological and/or metabolic traits are impacted by modifications in the thermal environment. In captivity (land-based infrastructures or nets located in the open sea), fish are often restricted to spatially constant temperature conditions within the containment unit and cannot choose among different thermal conditions for thermoregulation. In order to understand how spatial variation of temperature may affect fish welfare and stress, we designed an experiment using either restricted or wide thermal ranges, looking for changes at hormonal and molecular levels. Also, thermal variability impact on fish behavior was measured. Our results showed that in Atlantic salmon (Salmo salar), a wide thermal range (ΔT 6.8°C) was associated with significant increases in monoamines hormone levels and in the expression of clock genes. Aggressive and territoriality behavior decreased, positively affecting parameters linked to welfare, such as growth and fin damage. In contrast, a restricted thermal range (ΔT 1.4°C) showed the opposite pattern in all the analyzed parameters, therefore, having detrimental effects on welfare. In conclusion, our results highlight the key role of thermal range amplitude on fish behavior and on interactions with major metabolism-regulating processes, such as hormone performance and molecular regulatory mechanisms that have positive effects on the welfare.
Collapse
Affiliation(s)
- Nataly Sanhueza
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Donoso
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Andrea Aguilar
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Rodolfo Farlora
- Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Beatriz Carnicero
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| | - Jesús Manuel Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Lluis Tort
- Departamento de Biología Celular, Inmunología i Fisiologia Animal, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Juan Antonio Valdes
- Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Sebastian Boltana
- Department of Oceanography, Interdisciplinary Center for Aquaculture Research, Biotechnology Center, University of Concepción, Concepción, Chile
| |
Collapse
|
39
|
Mes D, von Krogh K, Gorissen M, Mayer I, Vindas MA. Neurobiology of Wild and Hatchery-Reared Atlantic Salmon: How Nurture Drives Neuroplasticity. Front Behav Neurosci 2018; 12:210. [PMID: 30254575 PMCID: PMC6141658 DOI: 10.3389/fnbeh.2018.00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/21/2018] [Indexed: 12/03/2022] Open
Abstract
Life experiences in the rearing environment shape the neural and behavioral plasticity of animals. In fish stocking practices, the hatchery environment is relatively stimulus-deprived and does not optimally prepare fish for release into the wild. While the behavioral differences between wild and hatchery-reared fish have been examined to some extent, few studies have compared neurobiological characteristics between wild and hatchery-reared individuals. Here, we compare the expression of immediate early gene cfos and neuroplasticity marker brain-derived neurotrophic factor (bdnf) in telencephalic subregions associated with processing of stimuli in wild and hatchery-reared Atlantic salmon at basal and 30 min post (acute) stress conditions. Using in situ hybridization, we found that the expression level of these markers is highly specific per neuronal region and affected by both the origin of the fish, and exposure to acute stress. Expression of cfos was increased by stress in all brain regions and cfos was more highly expressed in the Dlv (functional equivalent to the mammalian hippocampus) of hatchery-reared compared to wild fish. Expression of bdnf was higher overall in hatchery fish, while acute stress upregulated bdnf in the Dm (functional equivalent to the mammalian amygdala) of wild, but not hatchery individuals. Our findings demonstrate that the hatchery environment affects neuroplasticity and neural activation in brain regions that are important for learning processes and stress reactivity, providing a neuronal foundation for the behavioral differences observed between wild and hatchery-reared fish.
Collapse
Affiliation(s)
- Daan Mes
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Marco A Vindas
- Uni Environment, Uni Research AS, Bergen, Norway.,Department of Neurobiology and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
40
|
Yang K, Li S, Liu X, Gan W, Deng L, Tang Y, Song Z. Mass marking of juvenile Schizothorax wangchiachii (Fang) with alizarin red S and evaluation of stock enhancement in the Jinping area of the Yalong River. PeerJ 2017; 5:e4142. [PMID: 29230371 PMCID: PMC5723138 DOI: 10.7717/peerj.4142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/15/2017] [Indexed: 11/20/2022] Open
Abstract
Schizothorax wangchiachii is a key fish species in the stock enhancement program of the Yalong River hydropower project, China. Alizarin red S (ARS) was used to mark large numbers of juvenile S. wangchiachii in the Jinping Hatchery and later used to evaluate stock enhancement in the Jinping area of the Yalong River. In a small-scale pilot study, 7,000 juveniles of the 2014 cohort were successfully marked by immersion in ARS solution, and no mortality was recorded during the marking process. The ARS mark in the fish otoliths remained visible 20 months later. In the large-scale marking study, approximately 600,000 juveniles of the 2015 cohort were successfully marked. Mortalities of both marked and unmarked juveniles were very low and did not differ significantly. Total length, wet mass and condition factor did not differ significantly between unmarked and marked individuals after three months. On 24 July 2015, about 840,000 Jinping Hatchery-produced young S. wangchiachii, including 400,000 marked individuals, were released at two sites in the Jinping area. Recapture surveys showed that (1) marked and unmarked S. wangchiachii did not differ significantly in total length, wet mass and condition factor; (2) stocked individuals became an important part of recruitment of the 2015 cohort; (3) instantaneous growth rate of marked individuals tended to slightly increase; and (4) most stocked individuals were distributed along a 10–15 km stretch near the release sites. These results suggest that the ARS method is a cost-efficient way to mass mark juvenile S. wangchiachii and that releasing juveniles is an effective means of stock recruitment.
Collapse
Affiliation(s)
- Kun Yang
- College of Life Sciences, Sichuan University, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu, Sichuan Province, People's Republic of China
| | - Shu Li
- College of Life Sciences, Sichuan University, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoshuai Liu
- Yalong River Hydropower Development Company, Ltd., Chengdu, Sichuan Province, People's Republic of China
| | - Weixiong Gan
- Yalong River Hydropower Development Company, Ltd., Chengdu, Sichuan Province, People's Republic of China
| | - Longjun Deng
- Yalong River Hydropower Development Company, Ltd., Chengdu, Sichuan Province, People's Republic of China
| | - Yezhong Tang
- Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, Sichuan Province, People's Republic of China
| | - Zhaobin Song
- College of Life Sciences, Sichuan University, Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, Chengdu, Sichuan Province, People's Republic of China.,College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, Chengdu, Sichuan Province, People's Republic of China
| |
Collapse
|
41
|
Courtney Jones SK, Byrne PG. What role does heritability play in transgenerational phenotypic responses to captivity? Implications for managing captive populations. Zoo Biol 2017; 36:397-406. [DOI: 10.1002/zoo.21389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 10/26/2017] [Accepted: 10/27/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Stephanie K. Courtney Jones
- Centre for Sustainable Ecosystem Solutions; School of Biological Sciences; University of Wollongong; Wollongong Australia
| | - Phillip G. Byrne
- Centre for Sustainable Ecosystem Solutions; School of Biological Sciences; University of Wollongong; Wollongong Australia
| |
Collapse
|
42
|
Carrera-García E, Rochard E, Acolas ML. Effects of rearing practice on post-release young-of-the-year behavior: Acipenser sturio early life in freshwater. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
43
|
High risk no gain-metabolic performance of hatchery reared Atlantic salmon smolts, effects of nest emergence time, hypoxia avoidance behaviour and size. Physiol Behav 2017; 175:104-112. [PMID: 28342770 DOI: 10.1016/j.physbeh.2017.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/15/2017] [Accepted: 03/21/2017] [Indexed: 01/23/2023]
Abstract
When animals are reared for conservational releases it is paramount to avoid reducing genetic and phenotypic variation over time. This requires an understanding of how diverging behavioural and physiological traits affect performance both in captivity and after release. In Atlantic salmon, emergence time from the spawning gravel has been linked to certain behavioural and physiological characteristics and to the concept of stress coping styles. Early emerging fry has for example been shown to be bolder and more aggressive and to have higher standard metabolic rates compared to late emerging fry. The first aim was therefore to examine if emergence latency affect the behavioural stress coping response also beyond the fry and parr stage. This was done using a hypoxia avoidance test, where an active behavioural avoidance response can be related to higher risk taking. No behavioural differences were found between the two emergence fractions either at the parr or pre-smolt stage, instead smaller individuals were more prone to express an "active" hypoxia avoidance response. Further, an individual expressing a "passive" response as parr were also more prone to express this behaviour at the pre-smolt stage. While there are some previous studies showing that early emerging individuals with a bolder personality may be favored within a hatchery setting it is not known to what extent these early differences persist to affect performance after release. The second aim was therefore to compare the physiological performance at the time of release as smolts using the two subgroups; 1) early emerging fish showing active hypoxia avoidance (Early+Bold) and 2) late emerging fish showing a passive hypoxia response (Late+Shy). The Early+Bold group showed a higher red blood cell swelling, suggesting a higher adrenergic output during stress, whereas there was no difference in post-stress plasma cortisol or physiological smolt status. While there was no difference in standard metabolic rate between the groups, the Early+Bold group exhibited a lower maximum metabolic rate and aerobic scope following strenuous swimming. In captivity this may have no clear negative effects, but in the wild, a more risk prone behavioural profile linked to a lower aerobic capacity to escape from e.g. a predator attack, could clearly be disadvantageous.
Collapse
|
44
|
Ahlbeck Bergendahl I, Miller S, Depasquale C, Giralico L, Braithwaite VA. Becoming a better swimmer: structural complexity enhances agility in a captive-reared fish. JOURNAL OF FISH BIOLOGY 2017; 90:1112-1117. [PMID: 27943344 DOI: 10.1111/jfb.13232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023]
Abstract
To test whether swimming skills can be improved by exposure to structurally complex environments, juvenile rainbow trout Oncorhynchus mykiss were reared in either physically enriched or plain tanks for 2 months and were then screened to test their ability to swim along a channel while avoiding obstructions. The results show that even a relatively short exposure period to enrichment improves O. mykiss swimming agility.
Collapse
Affiliation(s)
- I Ahlbeck Bergendahl
- Center for Brain, Behavior & Cognition, Departments of Ecosystem Science and Management, and Biology, Penn State University, University Park, PA, 16802, U.S.A
| | - S Miller
- Center for Brain, Behavior & Cognition, Departments of Ecosystem Science and Management, and Biology, Penn State University, University Park, PA, 16802, U.S.A
| | - C Depasquale
- Center for Brain, Behavior & Cognition, Departments of Ecosystem Science and Management, and Biology, Penn State University, University Park, PA, 16802, U.S.A
- Department of Biology, Pennsylvania State University-Altoona, Altoona, PA, 16601, U.S.A
| | - L Giralico
- Center for Brain, Behavior & Cognition, Departments of Ecosystem Science and Management, and Biology, Penn State University, University Park, PA, 16802, U.S.A
| | - V A Braithwaite
- Center for Brain, Behavior & Cognition, Departments of Ecosystem Science and Management, and Biology, Penn State University, University Park, PA, 16802, U.S.A
| |
Collapse
|
45
|
Thanatosis in the Brazilian seahorse Hippocampus reidi Ginsburg, 1933 (Teleostei: Syngnathidae). Acta Ethol 2016. [DOI: 10.1007/s10211-016-0247-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Näslund J, Larsen MH, Thomassen ST, Aarestrup K, Johnsson JI. Environment‐dependent plasticity and ontogenetic changes in the brain of hatchery‐reared Atlantic salmon. J Zool (1987) 2016. [DOI: 10.1111/jzo.12392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. Näslund
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| | - M. H. Larsen
- National Institute of Aquatic Resources Section for Freshwater Fisheries and Ecology Technical University of Denmark Silkeborg Denmark
- Danish Centre for Wild Salmon Randers Denmark
| | | | - K. Aarestrup
- National Institute of Aquatic Resources Section for Freshwater Fisheries and Ecology Technical University of Denmark Silkeborg Denmark
| | - J. I. Johnsson
- Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
| |
Collapse
|
47
|
|
48
|
Clarke CN, Fraser DJ, Purchase CF. Lifelong and carry-over effects of early captive exposure in a recovery program for Atlantic salmon (Salmo salar). Anim Conserv 2016. [DOI: 10.1111/acv.12251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- C. N. Clarke
- Fish Evolutionary Ecology Research Group; Environmental Science Graduate Program; Memorial University; St. John's NL Canada
| | - D. J. Fraser
- Department of Biology; Concordia University; Montreal QC Canada
| | - C. F. Purchase
- Department of Biology; Fish Evolutionary Ecology Research Group; Memorial University; St. John's NL Canada
| |
Collapse
|