1
|
Chang J, Zhang J, Chu L, Liu A, Hou X, Zhu X, Huang X, Xing Q, Hu J, Bao Z. AMPK-mediated regulation of cardiac energy metabolism: Implications for thermotolerance in Argopecten irradians irradians. Gene 2025; 933:148922. [PMID: 39244169 DOI: 10.1016/j.gene.2024.148922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/24/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
AMPK is a key regulator of metabolism in eukaryotes across various pathways related to energy regulation. Although extensive investigations of AMPK have been conducted in mammals and some model organisms, research on AMPK in scallops is comparatively limited. In this study, three AMPK family genes (AiAMPKα, AiAMPKβ and AiAMPKγ) in scallop Argopecten irradians irradians were identified through genome scanning. Structure prediction and phylogenetic analyses of AiAMPKs were performed to determine their structural features and evolutionary relationships. Spatiotemporal expression patterns of AiAMPKs at different developmental stages and in healthy adult tissues were analyzed to elucidate the function of AiAMPKs in bay scallops' growth and development. The spatiotemporally specific expression of AiAMPKs implied their important roles in growth and development of bay scallops. Heat stress experiment was performed to determine the regulations of AiAMPKs in four kinds of thermosensitive tissues. Expression profiles revealed distinct molecular mechanisms of AiAMPKs in different tissues in response to heat stress: significant down-regulations in mobile hemocytes, but dominant up-regulations occurring in stationary gills, mantles and hearts. Functional verification including knock-down of AiAMPKα and inhibition of AiAMPK was separately conducted in the thermotolerant tissue heart at the post-transcription and translation levels. The thermotolerant index Arrhenius break temperature (ABT) showed a significant decrease and the rate-amplitude product (RAP) peaked earlier in the individuals after RNAi targeting AiAMPKα, displaying an earlier transition to anaerobic metabolism under heat stress, indicating an impairing ability of aerobic metabolism. After AiAMPK inhibition, widespread down-regulations of genes in key energy metabolism pathways, RNA polymerase II-mediated transcription, and aminoacyl-tRNA synthesis pathways were obviously observed, revealing the post-translational inhibition of AiAMPK hindered cardiac energy metabolism, basal transcription and translation. Overall, our findings provide evidences for exploring the molecular mechanisms of energy regulation in thermotolerant traits in bay scallops under ongoing global warming.
Collapse
Affiliation(s)
- Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ancheng Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
2
|
Figuerola B, Ruiz-García D, Subías-Baratau A, Maceda-Veiga A, Sanchez-Vidal A, Barría C. Adapting to a pollution hotspot? Catsharks shift to plastic substrates for oviposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176998. [PMID: 39423884 DOI: 10.1016/j.scitotenv.2024.176998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/20/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Plastic pollution is widely recognized as one of the major threats to marine ecosystems. However, our knowledge on the ecological interactions between plastic and marine fauna is still limited. Here, we analyzed the substrate preferences for oviposition in the small-spotted catshark (Scyliorhinus canicula) and explored the influence of pollution, environmental conditions, and fishing pressure as potential drivers. For the first time, we report this catshark species using marine debris for oviposition, unraveling a behavioral shift in the oviposition substrate preferences towards plastics, particularly ghost fishing gear, when biological substrates are unavailable. Our results indicate that this behavioral change may be driven by the combined effects of plastic pollution and habitat degradation. Preferences also change with depth, with a larger preference for the hydrozoan Lytocarpia myriophyllum on the continental shelf, followed by sponges, as in this region mesophotic and deep benthic communities are still more abundant although impacted by human pressures. In contrast, on the continental slope, the preference shifts to tube-dwelling polychaetes and plastics, primarily ghost fishing gear, due to the limited availability of biological substrates in this region. We highlight that plastic-fish interactions may become increasingly recurrent as plastic substrates increase and habitat forming invertebrates decline due to trawl fishing and other anthropogenic activities, especially in the Mediterranean Sea. The implications of this behavior for catshark fitness are still largely unknown, which prompts further research concerning the potential impact on its survival and/or dispersal in the plastic age and highlights the urgency of preserving biogenic habitats.
Collapse
Affiliation(s)
- Blanca Figuerola
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Spain.
| | - David Ruiz-García
- Unidad de Zoología Marina, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, 46100 Paterna, Spain
| | - Arnau Subías-Baratau
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), Pg. Marítim de la Barceloneta 37-49, Barcelona 08003, Spain
| | - Alberto Maceda-Veiga
- Departament de Biologia Animal, Ecologia i Ciències Ambientals, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Anna Sanchez-Vidal
- GRC Geociències Marines, Departament de Dinàmica de la Terra i de l'Oceà, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Claudio Barría
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain; Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain
| |
Collapse
|
3
|
Coulon N, Pilet S, Lizé A, Lacoue-Labarthe T, Sturbois A, Toussaint A, Feunteun E, Carpentier A. Shark critical life stage vulnerability to monthly temperature variations under climate change. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106531. [PMID: 38696933 DOI: 10.1016/j.marenvres.2024.106531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
In a 10-month experimental study, we assessed the combined impact of warming and acidification on critical life stages of small-spotted catshark (Scyliorhinus canicula). Using recently developed frameworks, we disentangled individual and group responses to two climate scenarios projected for 2100 (SSP2-4.5: Middle of the road and SSP5-8.5: Fossil-fueled Development). Seasonal temperature fluctuations revealed the acute vulnerability of embryos to summer temperatures, with hatching success ranging from 82% for the control and SSP2-4.5 treatments to only 11% for the SSP5-8.5 treatment. The death of embryos was preceded by distinct individual growth trajectories between the treatments, and also revealed inter-individual variations within treatments. Embryos with the lowest hatching success had lower yolk consumption rates, and growth rates associated with a lower energy assimilation, and almost all of them failed to transition to internal gills. Within 6 months after hatching, no additional mortality was observed due to cooler temperatures.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France.
| | - Stanislas Pilet
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France
| | - Anne Lizé
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Thomas Lacoue-Labarthe
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de La Rochelle, La Rochelle, France
| | - Anthony Sturbois
- VivArmor Nature, Réserve Naturelle Nationale de la Baie de Saint-Brieuc, Laboratoire des Sciences de l'environnement Marin (LEMAR), UMR 6539, France
| | - Aurèle Toussaint
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300 - UPS-CNRS-IRD-INP, Université Paul-Sabatier - Toulouse 3, Toulouse, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Station Marine de Dinard, Dinard, France; Centre de GéoEcologie Littorale (CGEL, EPHE-PSL), Dinard, France
| | - Alexandre Carpentier
- Université de Rennes, Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Rennes, France
| |
Collapse
|
4
|
Martinengo E, Micarelli P, Reinero FR, Bertelloni F, Fratini F. Antibacterial activity in egg samples from small-spotted catshark Scyliorhinus canicula and nursehound Scyliorhinus stellaris: A preliminary investigation. JOURNAL OF FISH BIOLOGY 2024; 104:1638-1644. [PMID: 38387880 DOI: 10.1111/jfb.15695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The study aims to identify antibacterial properties in unfertilized eggs of Scyliorhinus canicula and Scyliorhinus stellaris. Despite challenging marine conditions, these eggs retain their integrity for extended periods and remain unaffected by pathogens. The antibacterial activity was measured using minimum inhibitory and minimum bactericidal concentration analysis. The eggs of S. stellaris exhibited a slight inhibitory effect against Staphylococcus aureus and Listeria monocytogenes, whereas both species' eggs showed no activity against gram-negative microorganisms.
Collapse
Affiliation(s)
- Elena Martinengo
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Primo Micarelli
- Sharks Studies Center-Scientific Institute, Massa Marittima, Italy
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | | | | | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Berio F, Charron R, Dagouret JM, De Gasperis F, Éon A, Meunier E, Simonet M, Verschraegen N, Hirel N. Husbandry conditions of spotted ratfish (Hydrolagus colliei, Chimaeriformes) in aquaria for successful embryonic development and long-term survival of juveniles. Zoo Biol 2024; 43:188-198. [PMID: 38152990 DOI: 10.1002/zoo.21813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/11/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
The spotted ratfish Hydrolagus colliei is the most common holocephalan species exhibited in aquaria worldwide for introducing deep-sea environments and raising awareness of their conservation. However, little is known about the biology of H. colliei. Current practices in aquaria allow long-term survival of sexually mature H. colliei specimens; however, this species struggles to complete a reproductive cycle in captivity mostly because embryos do not reach the hatchling stage. The aquarists of Planet Ocean Montpellier (POM, France) have bred H. colliei for 15 years and recorded parameters suitable for this species' successful embryonic and post-embryonic development. POM aquarists now regularly record egg-laying events of H. colliei and use four tanks to incubate eggs and raise neonates, late hatchlings, early and intermediate juveniles, subadults, and sexually mature specimens. In this work we provide the first long-term biometric data on H. colliei from the hatchling to the subadult stage. We also report the biotic and abiotic parameters sufficient to breed H. colliei in aquaria. We finally describe the methods used to facilitate individual monitoring of specimens along the ontogeny and several pathologies identified in this species, their putative causes, and the corresponding treatments. This work highlights the importance of ex situ research and points to the valuable outcomes of collaborative efforts between aquaria and academia in deciphering the biology of species whose study in the wild remains challenging.
Collapse
Affiliation(s)
- Fidji Berio
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | | | | | | | - Aurore Éon
- Planet Ocean Montpellier, Montpellier, France
| | | | | | | | | |
Collapse
|
6
|
Coulon N, Elliott S, Teichert N, Auber A, McLean M, Barreau T, Feunteun E, Carpentier A. Northeast Atlantic elasmobranch community on the move: Functional reorganization in response to climate change. GLOBAL CHANGE BIOLOGY 2024; 30:e17157. [PMID: 38273525 DOI: 10.1111/gcb.17157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/15/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
While spatial distribution shifts have been documented in many marine fishes under global change, the responses of elasmobranchs have rarely been studied, which may have led to an underestimation of their potential additional threats. Given their irreplaceable role in ecosystems and their high extinction risk, we used a 24-year time series (1997-2020) of scientific bottom trawl surveys to examine the effects of climate change on the spatial distribution of nine elasmobranch species within Northeast Atlantic waters. Using a hierarchical modeling of species communities, belonging to the joint species distribution models, we found that suitable habitats for four species increased on average by a factor of 1.6 and, for six species, shifted north-eastwards and/or to deeper waters over the past two decades. By integrating species traits, we showed changes in habitat suitability led to changes in the elasmobranchs trait composition. Moreover, communities shifted to deeper waters and their mean trophic level decreased. We also note an increase in the mean community size at maturity concurrent with a decrease in fecundity. Because skates and sharks are functionally unique and dangerously vulnerable to both climate change and fishing, we advocate for urgent considerations of species traits in management measures. Their use would make it better to identify species whose loss could have irreversible impacts in face of the myriad of anthropogenic threats.
Collapse
Affiliation(s)
- Noémie Coulon
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Sophie Elliott
- Salmon & Trout Research Centre, Game & Wildlife Conservation Trust, Wareham, UK
| | - Nils Teichert
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Arnaud Auber
- Unité Halieutique Manche Mer du Nord, Laboratoire Ressources Halieutiques, IFREMER, Boulogne-sur-Mer, France
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina, USA
| | - Thomas Barreau
- Service des Stations Marine, Station Marine de Dinard, Dinard, France
| | - Eric Feunteun
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Dinard, France
| | - Alexandre Carpentier
- Laboratoire de Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS, IRD, SU, UCN, UA, Campus de Beaulieu, Université de Rennes, Rennes, France
| |
Collapse
|
7
|
Zhao Y, Song M, Yu Z, Pang L, Zhang L, Karakassis I, Dimitriou PD, Yuan X. Transcriptomic Responses of a Lightly Calcified Echinoderm to Experimental Seawater Acidification and Warming during Early Development. BIOLOGY 2023; 12:1520. [PMID: 38132346 PMCID: PMC10740944 DOI: 10.3390/biology12121520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Ocean acidification (OA) and ocean warming (OW) are potential obstacles to the survival and growth of marine organisms, particularly those that rely on calcification. This study investigated the single and joint effects of OA and OW on sea cucumber Apostichopus japonicus larvae raised under combinations of two temperatures (19 °C or 22 °C) and two pCO2 levels (400 or 1000 μatm) that reflect the current and end-of-21st-century projected ocean scenarios. The investigation focused on assessing larval development and identifying differences in gene expression patterns at four crucial embryo-larval stages (blastula, gastrula, auricularia, and doliolaria) of sea cucumbers, using RNA-seq. Results showed the detrimental effect of OA on the early development and body growth of A. japonicus larvae and a reduction in the expression of genes associated with biomineralization, skeletogenesis, and ion homeostasis. This effect was particularly pronounced during the doliolaria stage, indicating the presence of bottlenecks in larval development at this transition phase between the larval and megalopa stages in response to OA. OW accelerated the larval development across four stages of A. japonicus, especially at the blastula and doliolaria stages, but resulted in a widespread upregulation of genes related to heat shock proteins, antioxidant defense, and immune response. Significantly, the negative effects of elevated pCO2 on the developmental process of larvae appeared to be mitigated when accompanied by increased temperatures at the expense of reduced immune resilience and increased system fragility. These findings suggest that alterations in gene expression within the larvae of A. japonicus provide a mechanism to adapt to stressors arising from a rapidly changing oceanic environment.
Collapse
Affiliation(s)
- Ye Zhao
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Ocean School, Yantai University, Yantai 264005, China
| | - Mingshan Song
- Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| | - Zhenglin Yu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Lei Pang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Libin Zhang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ioannis Karakassis
- Marine Ecology Laboratory, Department of Biology, University of Crete, GR 70013 Heraklion, Greece
| | - Panagiotis D. Dimitriou
- Marine Ecology Laboratory, Department of Biology, University of Crete, GR 70013 Heraklion, Greece
| | - Xiutang Yuan
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Ministry of Ecology and Environment, National Marine Environmental Monitoring Center, Dalian 116023, China
| |
Collapse
|
8
|
Kiyatake I, Johnson TL, Cottrant E, Kitadani Y, Onda K, Murata M, Drobniewska NJ, Paulet TG, Nishida K. A comparison of the growth and development of pyjama sharks (Poroderma africanum) in wild and captive populations. JOURNAL OF FISH BIOLOGY 2023; 103:1515-1525. [PMID: 37670591 DOI: 10.1111/jfb.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/14/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
The pyjama shark (Poroderma africanum) is a Scyliorhinid species endemic to South Africa. Even though it is kept in captivity in many aquaria, there is a lack of research on its growth and development. In this study, we investigated the fertilization rate of eggs and the age at female sexual maturation in captive sharks and compared their growth to that of wild individuals. This is the first study to compare the growth of captive and wild catsharks as well as the first study to compare growth in male and female pyjama sharks and benefits from a much larger sample size than has previously been collected. The mean incubation rate (±standard error of the mean [SE]) was 239.46 ± 4.97 days, the mean Lt of hatchlings (±SE) was 14.65 ± 0.24 cm, and the mean Wt (±SE) was 17.19 ± 0.75 g. The observed ratio of male to female offspring (1:3.5) was also significantly different from 1:1. One female laid fertilized eggs 6.6 years after hatching and was considered sexually mature. Both in captivity and in the wild, males showed negative allometric growth and females showed isometric growth. The growth performance (Φ') was also greater in captive sharks compared to wild sharks regardless of sex. However, there was significant variation in growth between individuals of the same sex. The similar growth patterns (i.e., allometry and isometry) found in wild and captive populations are a very useful tool for informing future conservation management if the population of this shark species were to decline in the future and also prove that captive studies for this species are transferable to wild populations with regard to sexual differences. This study also provides a benchmark for further captive studies in other lesser-studied catshark species and raises interesting questions concerning sexual differences in growth for other shark species.
Collapse
Affiliation(s)
| | | | - Emy Cottrant
- South African Shark Conservancy, Hermanus, South Africa
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | | | | | | | | | - Timothy G Paulet
- South African Shark Conservancy, Hermanus, South Africa
- Department of Ichthyology and Fisheries Science, Rhodes University, Makhanda, South Africa
| | | |
Collapse
|
9
|
Varela J, Martins S, Court M, Santos CP, Paula JR, Ferreira IJ, Diniz M, Repolho T, Rosa R. Impacts of Deoxygenation and Hypoxia on Shark Embryos Anti-Predator Behavior and Oxidative Stress. BIOLOGY 2023; 12:biology12040577. [PMID: 37106777 PMCID: PMC10136306 DOI: 10.3390/biology12040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Climate change is leading to the loss of oxygen content in the oceans and endangering the survival of many marine species. Due to sea surface temperature warming and changing circulation, the ocean has become more stratified and is consequently losing its oxygen content. Oviparous elasmobranchs are particularly vulnerable as they lay their eggs in coastal and shallow areas, where they experience significant oscillations in oxygen levels. Here, we investigated the effects of deoxygenation (93% air saturation) and hypoxia (26% air saturation) during a short-term period (six days) on the anti-predator avoidance behavior and physiology (oxidative stress) of small-spotted catshark (Scyliorhinus canicula) embryos. Their survival rate decreased to 88% and 56% under deoxygenation and hypoxia, respectively. The tail beat rates were significantly enhanced in the embryos under hypoxia compared to those exposed to deoxygenation and control conditions, and the freeze response duration showed a significant opposite trend. Yet, at the physiological level, through the analyses of key biomarkers (SOD, CAT, GPx, and GST activities as well as HSP70, Ubiquitin, and MDA levels), we found no evidence of increased oxidative stress and cell damage under hypoxia. Thus, the present findings show that the projected end-of-the-century deoxygenation levels elicit neglectable biological effects on shark embryos. On the other hand, hypoxia causes a high embryo mortality rate. Additionally, hypoxia makes embryos more vulnerable to predators, because the increased tail beat frequency will enhance the release of chemical and physical cues that can be detected by predators. The shortening of the shark freeze response under hypoxia also makes the embryos more prone to predation.
Collapse
Affiliation(s)
- Jaquelino Varela
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
| | - Sandra Martins
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Melanie Court
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Catarina Pereira Santos
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
- Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, 2775-405 Carcavelos, Portugal
| | - José Ricardo Paula
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Inês João Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- LAQV-Associated Laboratory for Green Chemistry-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Tiago Repolho
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Rui Rosa
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| |
Collapse
|
10
|
Matupang DM, Zulkifli HI, Arnold J, Lazim AM, Ghaffar MA, Musa SM. Tropical sharks feasting on and swimming through microplastics: First evidence from Malaysia. MARINE POLLUTION BULLETIN 2023; 189:114762. [PMID: 36870137 DOI: 10.1016/j.marpolbul.2023.114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Plastic can be degraded into microplastic (<5 mm) and has been polluting worldwide marine environment and negatively impact human health. Microplastics in marine organisms are still understudied in Malaysia, let alone from a subclass Elasmobranchii. Five tropical shark species (Carcharhinus dussumieri, Carcharhinus sorrah, Chiloscyllium hasseltii, Chiloscyllium punctatum, and Scoliodon laticaudus) were examined for the presence of microplastics. 74 sharks were sampled from the local wet market and 100 % of samples contained microplastics. A total of 2211 plastic particles were found in gastrointestinal tracts (GIT) and gills, where 29.88 ± 2.34 particles per shark (mean ± SEM). Black (40.07 %) and fiber (84.44 %) microplastics were the most dominant. Extracted microplastic sizes ranged from 0.007 mm to 4.992 mm. This study suggests that microplastic uptake is gender-related for some shark species. A subsample of microplastics (10 %) was used for polymer type identification, where polyester was recorded the highest (43.95 %).
Collapse
Affiliation(s)
- Daniel M Matupang
- Marine Science Programme, Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Haziq I Zulkifli
- Marine Science Programme, Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Jonathan Arnold
- Marine Science Programme, Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Azwan Mat Lazim
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mazlan Abd Ghaffar
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia; Climate Change Adaptation Laboratory, Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Syafiq M Musa
- Marine Science Programme, Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia.
| |
Collapse
|
11
|
Galli GLJ, Lock MC, Smith KLM, Giussani DA, Crossley DA. Effects of Developmental Hypoxia on the Vertebrate Cardiovascular System. Physiology (Bethesda) 2023; 38:0. [PMID: 36317939 DOI: 10.1152/physiol.00022.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 01/04/2023] Open
Abstract
Developmental hypoxia has profound and persistent effects on the vertebrate cardiovascular system, but the nature, magnitude, and long-term outcome of the hypoxic consequences are species specific. Here we aim to identify common and novel cardiovascular responses among vertebrates that encounter developmental hypoxia, and we discuss the possible medical and ecological implications.
Collapse
Affiliation(s)
- Gina L J Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Mitchell C Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kerri L M Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
12
|
Pre-Hatching Ontogenetic Changes of Morphological Characters of Small-Spotted Catshark (Scyliorhinus canicula). FISHES 2022. [DOI: 10.3390/fishes7030100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The small-spotted catshark, Scyliorhinus canicula, provides an optimal model organism to include chondrichthyans in studies comparing morphology or physiology through vertebrate evolution. In particular, for investigations with ontogenetic aspects, there are only a limited number of alternative taxa. Therefore, a detailed staging system is a prerequisite to allowing comparison between different studies. This study supplements information on the latest stages of the established system by Ballard and colleagues in 1993 and complements the respective staging system by including the latest pre-hatching stages. During this phase, some significant ontogenetic shifts happen, e.g., reduction of external gill filament length and complete flattening of rostral angle until Size Class 6, change in the ratio of pre- to post-vent length, and establishment of body pigmentation in Size Classes 7 and 8. All these shifts finally transform the embryo into a hatchling prepared for living outside the eggshell. This study provides a framework allowing comparison of investigations on pre-hatchings of the small-spotted catshark.
Collapse
|
13
|
López-Romero FA, Berio F, Abed-Navandi D, Kriwet J. Early shape divergence of developmental trajectories in the jaw of galeomorph sharks. Front Zool 2022; 19:7. [PMID: 35123488 PMCID: PMC8818243 DOI: 10.1186/s12983-022-00452-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The onset of morphological differences between related groups can be tracked at early stages during embryological development. This is expressed in functional traits that start with minor variations, but eventually diverge to defined specific morphologies. Several processes during this period, like proliferation, remodelling, and apoptosis for instance, can account for the variability observed between related groups. Morphological divergence through development is often associated with the hourglass model, in which early stages display higher variability and reach a conserved point with reduced variability from which divergence occurs again to the final phenotype.
Results
Here we explored the patterns of developmental shape changes in the lower jaw of two shark species, the bamboo shark (Chiloscyllium punctatum) and the catshark (Scyliorhinus canicula). These two species present marked differences in their foraging behaviour, which is reflected in their adult jaw morphology. By tracing the developmental sequence of the cartilage condensation, we identified the onset of cartilage for both species at around stage 31. Other structures that developed later without a noticeable anlage were the labial cartilages, which appear at around stage 33. We observed that the lower jaw displays striking differences in shape from the earliest moments, without any overlap in shape through the compared stages.
Conclusions
The differences observed are also reflected in the functional variation in feeding mechanism between both species. Likewise, the trajectory analysis shows that the main differences are in the magnitude of the shape change through time. Both species follow a unique trajectory, which is explained by the timing between stages.
Collapse
|
14
|
Wang M, Liao S, Fu Z, Zang X, Yin S, Wang T. iTRAQ-based quantitative proteomic analysis of Pelteobagrus vachelli liver in response to hypoxia. J Proteomics 2022; 251:104425. [PMID: 34785373 DOI: 10.1016/j.jprot.2021.104425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022]
Abstract
Dissolved oxygen is one of the determinants in the healthy farming of Pelteobagrus vachelli. This study, we conducted quantitative proteomics on the juvenile P. vachelli livers using iTRAQ. P. vachelli were treated by 3.75 ± 0.25 mg O2/L (hypoxia group) and 7.25 ± 0.25 mg O2/L (control group) for 90 days. The results revealed that under hypoxic conditions, P. vachelli grew slower than control group. Proteomic profiling enabled us to identify 2618 proteins, of which 176 were significantly differentially abundant proteins (DAPs). Verification of protein regulation based on qRT-PCR indicated that the proteomics data were reliable. The top 20 significantly DAPs (10 up-regulated, 10 down-regulated) were primarily involved in energy metabolism, apoptosis inhibition, and heavy metal detoxification. KEGG pathway enrichment analysis revealed significant enrichment of 'protein digestion and absorption', 'glycolysis/gluconeogenesis', and 'phagosome'. Combining the proteomics results of short-term hypoxia (treated with 0.70 ± 0.10 mg O2 /L for 4 h), we screened 36 common DAPs. The analysis of the 36 common DAPs indicated that P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis, and disturbing defensive system. Our results lay a theoretical foundation for the cultivation of hypoxia-tolerant species and eco-breeding of P. vachelli. SIGNIFICANCE OF THE STUDY: The hypoxia tolerance of Pelteobagrus vachelli is poor, which will seriously lead to its death in high-density culture. This study analysed the liver proteome of P. vachelli under long-term hypoxia stress (treated for 90 days at 3.75 ± 0.25 mg O2/L), and then combined the proteome results of short-term hypoxia stress (treated for 4 h at 0.70 ± 0.10 mg O2/L). The results showed P. vachelli responded to the hypoxia by regulating energy supply, inhibiting apoptosis and disturbing defensive system. The study contributes to the breeding of new hypoxia-tolerant species of P. vachelli and lays the theoretical foundation for eco-breeding.
Collapse
Affiliation(s)
- Min Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shujia Liao
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Zhineng Fu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xuechun Zang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Tao Wang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
15
|
Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark ( Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured. Animals (Basel) 2021; 11:ani11102884. [PMID: 34679905 PMCID: PMC8532847 DOI: 10.3390/ani11102884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Comprehensive knowledge of chondrichthyan reproductive biology is crucial for the development of reproductive technologies. For that reason, a male reproductive evaluation was performed on the basis of a comparison of samples collected from wild-captured and aquarium-housed small-spotted catshark (Scyliorhinus canicula). Semen quality, sperm morphometry, and reproductive hormones were assessed. The results demonstrate good in vitro semen quality in aquarium-housed sharks, although there was lower plasma testosterone. Abstract Several chondrichthyan species are threatened, and we must increase our knowledge of their reproductive biology in order to establish assisted reproductive protocols for ex situ or in situ endangered species. The small-spotted catshark (Scyliorhinus canicula) is one of the most abundant shark species of the Mediterranean coast and is easy to maintain in aquaria; therefore, it is considered an ideal reproductive model. This study aimed to compare S. canicula male reproductive function in aquarium-housed (n = 7) and wild-captured animals, recently dead (n = 17). Aquarium-housed animals had lower semen volume (p = 0.005) and total sperm number (p = 0.006) than wild-captured animals, but similar sperm concentrations. In terms of sperm parameters, aquarium-housed sharks showed higher total sperm motility (p = 0.004), but no differences were observed regarding sperm viability, mitochondrial membrane potential, or membrane integrity. A morphometric study pointed to a significantly longer head (p = 0.005) and acrosome (p = 0.001) in wild-captured animals. The results of the spermatozoa morphological study of S. canicula were consistent with previous results obtained in other chondrichthyan species. With regard to sex hormones, testosterone levels were significantly lower in aquarium-housed animals (p ≤ 0.001), while similar levels of 17β-estradiol and progesterone were found. In short, the present study provides evidence of good in vitro semen quality in S. canicula housed in an aquarium, underlining their excellent potential for application in reproductive technologies for this and other chondrichthyan species.
Collapse
|
16
|
Biological and Ecological Aspects of the Blackmouth Catshark (Galeus melastomus Rafinesque, 1810) in the Southern Tyrrhenian Sea. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9090967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Data on the biology and ecology of Galeus melastomus are old/absent for the Southern Tyrrhenian Sea, despite there being numerous studies in the wider area. A total of 127 specimens of G. melastomus from the southern Tyrrhenian Sea, collected in 2018–2019 using trawling nets, were analyzed to investigate size at sexual maturity, sex ratio, length–weight relationships, and feeding habits. To our best knowledge, this is the first time in which all these features were investigated in the Southern Tyrrhenian Sea for G. melastomus. The stomach content analysis showed that G. melastomus had intermediate feeding habits, preying on a great variety of species, especially Cephalopoda, Osteichthyes, and Crustacea. The Levin’s index value (Bi) was 0.53. Sex ratio was 0.92:1, with females slightly more abundant and bigger than males. The results also showed a decrease (33.7 cm for females, 31.1 cm for males) in length at 50% maturity (L50). This could be a result of anthropogenic stressors, such as overfishing and/or and environmental changes, which can induce physiological responses in several species. Our results highlighted the differences related to sexual maturity, growth, and feeding habits of the blackmouth catshark in the studied area, providing reference data to allow comparison with future studies on this species adaptations to this and other deep-sea areas in the Mediterranean Sea.
Collapse
|
17
|
Ocean warming and hypoxia affect embryonic growth, fitness and survival of small-spotted catsharks, Scyliorhinus canicula. JOURNAL OF FISH BIOLOGY 2021; 98:1557. [PMID: 34312854 DOI: 10.1111/jfb.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
|
18
|
McKenzie DJ, Geffroy B, Farrell AP. Effects of global warming on fishes and fisheries. JOURNAL OF FISH BIOLOGY 2021; 98:1489-1492. [PMID: 34312853 DOI: 10.1111/jfb.14762] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- David J McKenzie
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Dai YW, Lu XJ, Jiang R, Lu JF, Yang GJ, Chen J. Hypoxia-inducible factor-1α involved in macrophage regulation in ayu (Plecoglossus altivelis) under hypoxia. Comp Biochem Physiol B Biochem Mol Biol 2021; 254:110575. [PMID: 33609806 DOI: 10.1016/j.cbpb.2021.110575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/17/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) plays a critical role in immune and inflammatory responses and is important in controlling a variety of processes in monocytes and macrophages. However, the role of HIF-1α in the teleost immune system remains less known. In this study, we cloned the cDNA sequence of HIF-1α from the ayu (Plecoglossus altivelis, PaHIF-1α). Sequence and phylogenetic tree analysis showed that PaHIF-1α clustered within the fish HIF-1α tree and was closely related to that of Northern pike (Esox lucius). PaHIF-1α was expressed in all tested tissues and expression increased in liver, head kidney, and body kidney upon Vibrio anguillarum infection. PaHIF-1α was found to regulate the expression of cytokines in ayu monocytes/macrophages (MO/MФ). PaHIF-1α mediated hypoxia-induced enhancement of MO/MФ phagocytic and bactericidal activities to enhance host defenses. Compared with the control, intermittent hypoxia further increased the expression of PaHIF-1α mRNA, improved the survival rate, and reduced the bacterial load of V. anguillarum-infected ayu. Therefore, PaHIF-1α may play a predominant role in the modulation of ayu MO/MФ function.
Collapse
Affiliation(s)
- You-Wu Dai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| | - Rui Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
20
|
Ripley DM, De Giorgio S, Gaffney K, Thomas L, Shiels HA. Ocean warming impairs the predator avoidance behaviour of elasmobranch embryos. CONSERVATION PHYSIOLOGY 2021; 9:coab045. [PMID: 34150212 PMCID: PMC8210470 DOI: 10.1093/conphys/coab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 05/13/2023]
Abstract
Embryogenesis is a vulnerable stage in elasmobranch development due in part to high predation mortality. Embryonic elasmobranchs respond to potential predators by displaying a freezing behaviour, characterized by the cessation of pharyngeal respiration followed immediately by coiling of the tail around the body. We hypothesized that the duration of this freeze response is limited by the embryo's requirement for oxygen. Here, Scyliorhinus canicula embryos were incubated at either 15°C or 20°C during embryogenesis and tested for the duration of, and metabolic consequence of, the freeze response at their respective incubation temperature. Freeze response duration was negatively impacted by routine metabolic rate; embryos at 20°C had 7-fold shorter freeze duration than those at 15°C, potentially increasing their susceptibility to predation. These data demonstrate the capacity for climate change stressors to affect animal behaviour and suggest that this may occur by eliciting changes in the organism's metabolism. We suggest altered predator avoidance behaviour is a new factor to consider when assessing the impact of climate change on the conservation and management of oviparous elasmobranch species.
Collapse
Affiliation(s)
- Daniel M Ripley
- Corresponding authors: Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester, UK. ;
| | - Sara De Giorgio
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Kirstin Gaffney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Lowri Thomas
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
- Corresponding authors: Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester, UK. ;
| |
Collapse
|