1
|
Gao Y, Li H, Que Y, Chen W, Huang SY, Liu W, Ye X. Lycium barbarum polysaccharides (LBP) suppresses hypoxia/reoxygenation (H/R)-induced rat H9C2 cardiomyocytes pyroptosis via Nrf2/HO-1 signaling pathway. Int J Biol Macromol 2024; 280:135924. [PMID: 39322131 DOI: 10.1016/j.ijbiomac.2024.135924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
This study aimed to explore the mechanism that Lycium barbarum polysaccharides (LBP) suppress hypoxia/reoxygenation (H/R)-caused pyroptosis in cardiomyocytes (H9C2) via the Nrf2/HO-1 pathway. Initially, we established the cell model of H/R (6 h hypoxia plus with 24 h reoxygenation), and found that 90 μg/mL LBP was the optimal concentration. Subsequently, we confirmed that LBP reduced the apoptosis rate of cells after H/R, the activity of LDH, the inflammatory factors IL-1β and IL-18, and the levels of pyroptosis-specific markers ASC, NLRP3, and Caspase-1 (mRNAs and proteins). It increased the cell survival rate and the mRNA levels of the Nrf2/HO-1 pathway markers Nrf2 and HO-1, and allowed cytoplasmic Nrf2 protein to enter the nucleus to activate HO-1 protein. The Nrf2 siRNA2 caused the following events in H/R model: (1) the increases of the apoptosis rate, LDH activity, the levels of inflammatory factors (IL-1β and IL-18), the levels of ACS, NLRP3, and Caspase-1 (mRNAs and proteins); and (2) the decreases of the cell survival rate, the mRNA levels of Nrf2 and HO-1, and the protein levels of cytoplasm-Nrf2, nucleus-Nrf2, and HO-1. Therefore we concluded that 90 μg/mL LBP suppressed H/R-induced H9C2 cardiomyocyte pyroptosis via the Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Yi Gao
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Huangen Li
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Yongkang Que
- Department of General Medicine, Xiamen Changgeng Hospital Affiliated to Huaqiao University, Xiamen 361000, China
| | - Weiwen Chen
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Shi-Ying Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China.
| | - Wenjie Liu
- Department of General Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China.
| | - Xiaotong Ye
- School of Medicine, Huaqiao University, Quanzhou 362000, China.
| |
Collapse
|
2
|
Zhou L, Yang J, Liu H, Rang Y, Xu L, Wang X, Li Y, Liu C. Lycium barbarum polysaccharides attenuate oxidative stress and mitochondrial toxicity induced by mixed plasticizers in HepG2 cells through activation of Nrf2. Life Sci 2024; 336:122346. [PMID: 38072188 DOI: 10.1016/j.lfs.2023.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
AIMS In daily life, it is common for humans to be exposed to multiple phthalate esters (PAEs). However, there is limited research on the mechanisms and intervention of combined PAEs toxicity. This study aims to explore the cytotoxicity of combined PAEs and evaluate the potential of Lycium barbarum polysaccharides (LBP) in mitigating the aforementioned toxicity. MAIN METHODS LBP (62.5, 125 and 250 μg/mL) were applied to intervene HepG2 cells treated with DEHP and DBP mixtures (50, 100, 200, 400 and 800 μg/mL). Western Blot and different kits were mainly performed in our study. KEY FINDINGS DEHP and DBP mixtures suppressed the expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1) and activated MAPK pathway by increasing ROS. Combined DEHP and DBP exposure reduced ATP content and inhibited the mitochondrial biogenesis pathway in HepG2 cells through oxidative stress, which in turn caused cytotoxicity. LBP reduced oxidative stress and cell death induced by mixed plasticizers, upregulated Nrf2 levels and mitochondrial biogenesis pathway levels and inhibited MAPK pathway activation. Notably, after treating HepG2 cells with Nrf2-specific inhibitor (ML385, 0.5 μM), we found that the activation of Nrf2 played a crucial role on LBP intervention of DEHP and DBP induced HepG2 cytotoxicity. SIGNIFICANCE This study not only enhances our understanding of the toxicological effects caused by combined PAEs exposure, but also has significant implications in devising strategies to mitigate the toxicological consequences of combined exposure to exogenous chemicals through the investigation of the role of LBP.
Collapse
Affiliation(s)
- Lizi Zhou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Jiao Yang
- College of Bioengineering, Jingchu University of Technology, Jingmen 448000, China
| | - Huan Liu
- College of Life Sciences, Hubei Normal University, Huangshi 435000, China
| | - Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Linjing Xu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Xukai Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Yinhuan Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
3
|
Li J, Guo H, Dong Y, Yuan S, Wei X, Zhang Y, Dong L, Wang F, Bai T, Yang Y. Polysaccharides from Chinese herbal medicine: a review on the hepatoprotective and molecular mechanism. Chin J Nat Med 2024; 22:4-14. [PMID: 38278558 DOI: 10.1016/s1875-5364(24)60558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 01/28/2024]
Abstract
Polysaccharides, predominantly extracted from traditional Chinese medicinal herbs such as Lycium barbarum, Angelica sinensis, Astragalus membranaceus, Dendrobium officinale, Ganoderma lucidum, and Poria cocos, represent principal bioactive constituents extensively utilized in Chinese medicine. These compounds have demonstrated significant anti-inflammatory capabilities, especially anti-liver injury activities, while exhibiting minimal adverse effects. This review summarized recent studies to elucidate the hepatoprotective efficacy and underlying molecular mechanisms of these herbal polysaccharides. It underscored the role of these polysaccharides in regulating hepatic function, enhancing immunological responses, and improving antioxidant capacities, thus contributing to the attenuation of hepatocyte apoptosis and liver protection. Analyses of molecular pathways in these studies revealed the intricate and indispensable functions of traditional Chinese herbal polysaccharides in liver injury management. Therefore, this review provides a thorough examination of the hepatoprotective attributes and molecular mechanisms of these medicinal polysaccharides, thereby offering valuable insights for the advancement of polysaccharide-based therapeutic research and their potential clinical applications in liver disease treatment.
Collapse
Affiliation(s)
- Jifeng Li
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Haolin Guo
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ying Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Xiaotong Wei
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Yuxin Zhang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Lu Dong
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Fei Wang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China
| | - Ting Bai
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| | - Yong Yang
- Dalian Key Laboratory of Chronic Disease Research Center, Dalian University, Dalian 116622, China.
| |
Collapse
|
4
|
Zhang Y, Yao L, Liu Y, Chen B, Wang C, Gong K, Wang F, Qiao Y. Acidic polysaccharide from corn silk: Structural & conformational properties and hepatoprotective activity. Int J Biol Macromol 2023; 236:123851. [PMID: 36863670 DOI: 10.1016/j.ijbiomac.2023.123851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
This study aimed to investigate the structural characterization, conformational properties, and hepatoprotective activity of corn silk acidic polysaccharide (CSP-50E). CSP-50E with molecular weights of 1.93 × 105 g/mol was composed of Gal, Glc, Rha, Ara, Xyl, Man and uronic acid with a weight ratio of 12:25:1:2:2:5:21. Structural analysis with methylation indicated that CSP-50E mainly contained T-Manp, 4-substituted-D-Galp/GalpA, and 4-substituted-D-Glcp. CSP-50E presented random coils conformation in an aqueous solution based on the analysis of HPSEC. In vitro experiments showed that CSP-50E exhibited significant hepatoprotective effects, CSP-50E reduce IL-6, TNF-α content, and AST, ALT activity to protect ethanol-induced damage liver cells (HL-7702), while the polysaccharide functioned mainly through the caspase cascade and mediate the mitochondrial apoptosis pathway. In this study, we describe a novel acidic polysaccharide from corn silk with hepatoprotective activity that facilitates the development and utilization of corn silk resources.
Collapse
Affiliation(s)
- Yi Zhang
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Lianmou Yao
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Yanfang Liu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Bingjie Chen
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Chunfang Wang
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Kuijie Gong
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Shandong 250100, PR China
| | - Feng Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yongjin Qiao
- Research Center for Agricultural Products Preservation and Processing, Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China.
| |
Collapse
|
5
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Guo T, Zhu L, Zhou Y, Han S, Cao Y, Hu Z, Luo Y, Bao L, Wu X, Qin D, Lin Q, Luo F. Laminarin ameliorates alcohol-induced liver damage and its molecular mechanism in mice. J Food Biochem 2022; 46:e14500. [PMID: 36515171 DOI: 10.1111/jfbc.14500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022]
Abstract
Alcoholic liver disease (ALD) has become a health issue globally. Laminarin, a low molecular weight marine-derived β-glucan, has been identified with multiple biological activities. In this study, the ameliorative effect on ALD of laminarin isolated from brown algae was investigated. Phenotypic, pathological alterations and biochemical characteristics indicated that laminarin administration (100 mg/kg/day) significantly alleviated liver injury and improved liver function in the alcohol-induced mice. Gene chip results indicated that laminarin treatment caused 52 up-regulated and 13 down-regulated genes in the hepatic tissues of alcohol-induced damage mice, and most of these genes are associated with regulation of oxidative stress (such as CYP450/glutathione-dependent antioxidation), Wnt signaling pathway, retinol metabolism, and cAMP pathway based on GO and KEGG analysis. PPI network analysis indicated that the downstream target genes lied in the hub of the net. Our experiments also confirmed the changed expressions of some target genes. Taken together, these results suggest that laminarin can ameliorate alcohol-induced damage in mice and its molecular mechanism lies in modulating anti-oxidation pathway, WNT pathway, and cAMP pathway, which regulate the expressions of downstream target genes and alleviate alcohol-induced damage. Our study provides new clue to prevent alcohol-induced damage and will be benefit to develop functional foods. PRACTICAL APPLICATIONS: This study verified the positive effect on alcoholic liver disease (ALD) of laminarin, a water-soluble brown algae-derived β-glucan, linked by β-(1,3) glycosidic bonds with β-(1,6) branches. Laminarin significantly alleviated liver injury and improved liver function of ALD mice. Moreover, transcriptomics and bioinformatics analysis further revealed the gene expression patterns, hub targets, and signalings including CYP450/glutathione, Wnt, retinol metabolism, cAMP pathways regulated by laminarin. This research is the first evidence for hepatoprotective effect of laminarin against ALD and its molecular mechanism, which will be advantage to develop functional foods or adjuvant therapy of ALD.
Collapse
Affiliation(s)
- Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Lingfeng Zhu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China.,Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Zuomin Hu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, China
| | - Liyuan Bao
- Department of logistics, Changsha University, Changsha, China
| | - Xiuxiu Wu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Dandan Qin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
7
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|