1
|
Mustafa RA, Rather SA, Kousar R, Ashraf MV, Shah AA, Ahmad S, Khan MAH. Comprehensive review on parasitic infections reported in the common fish found in UT of Jammu and Kashmir, India. J Parasit Dis 2024; 48:736-761. [PMID: 39493488 PMCID: PMC11528093 DOI: 10.1007/s12639-024-01697-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/17/2024] [Indexed: 11/05/2024] Open
Abstract
The people of Jammu and Kashmir rely heavily on fish as a source of nutritional protein. Fishes also contribute significantly to the local economy of this area. However, several infectious disorders, some of which are brought on by helminth parasites, constitute a persistent threat to fish. The primary goal of the present review is to find out the parasites in common fishes found in Jammu and Kashmir as well as the impact of parasites on fishes and sickness on human health. Like other animals, fishes are susceptible to several diseases, many of which are external in origin while others are internal in origin. Fishes are known to be susceptible to parasites, fungi, bacteria, viruses, and other external agents that can cause disease, and they also commonly experience organic and degenerative problems internally. Fish parasites have significant impact on both fish and human health. These diverse organisms, including protozoa, helminths, and crustaceans, can infest various fish tissues, leading to detrimental effects. Infested fish often experience reduced growth, weakened immune system, behavioral changes, physical damage, and even mortality. Economically, fish parasites can diminish the value of fish in markets and increase production costs in fisheries and aquaculture. Moreover, fish parasites pose potential human health risks. Consumers who ingest raw or undercooked fish containing certain parasites, like Anisakis spp., may develop gastrointestinal discomfort or anisakiasis. Proper cooking and freezing can mitigate this risk. While fish parasites are primarily harmful, they also play ecological roles, contributing to biodiversity and ecosystem stability by controlling fish populations. Understanding the complex interactions between parasites, fish, and their environment is vital for effective fisheries management, aquaculture practices, and public health measures. Striking a balance between controlling parasite infestation and maintaining ecological integrity is crucial for sustaining both fish populations and human well-being.
Collapse
Affiliation(s)
- Rashaid Ali Mustafa
- Biochemical and Molecular Parasitology Lab, Department of Zoology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| | - Shabir Ahmad Rather
- Biochemical and Molecular Parasitology Lab, Department of Zoology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| | - Rukhsana Kousar
- Biochemical and Molecular Parasitology Lab, Department of Zoology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| | - Mohammad Vikas Ashraf
- Microbial Biotechnology Lab, Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| | - Ali Asghar Shah
- Nematode Biodiversity and Genomics Research Lab, Department of Zoology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| | - Shoeb Ahmad
- Microbial Biotechnology Lab, Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| | - M. A. Hannan Khan
- Biochemical and Molecular Parasitology Lab, Department of Zoology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir India
| |
Collapse
|
2
|
Li Z, Zhuang J, Wang H, Cao J, Han Q, Luo Z, Li H, Wang C, Wang B, Li A. Gill lesions are the main cause of death in yellowfin seabream (Acanthopagrus latus) following infection with Amyloodinium ocellatum. Microb Pathog 2024; 194:106845. [PMID: 39121981 DOI: 10.1016/j.micpath.2024.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Amyloodiniosis, caused by the ectoparasite Amyloodinium ocellatum, affects the healthy development of mariculture. This study used a local infection method to identify the pathogenic target organ responsible for the death of infected fish. Comparing the relationship between the abundance of trophonts in gills and skin with the mortality of infected fish using local infection showed that severe gill infections cause the mortality of infected fish. At the 40 % survival rate of infected fish, the parasite abundance in the gill was 14,167 ± 4371. The gill filaments of the infected fish were structurally disordered, with pronounced lesions associated with the presence of trophonts, such as epithelial cell degeneration and massive lymphocytic infiltration. However, the skin showed no obvious pathological changes. The TUNEL assay showed a significant presence of apoptotic cells concentrated in the area of A. ocellatum infection. The trophonts on the gills developed faster than those parasitising the skin and fins. Microbiome analysis revealed that at the phylum level, Proteobacteria, Bacteroidota, and Firmicutes are abundant in the skin, while Verrucomicrobiota, Bacteroidota, and Proteobacteria are abundant in the gills of A. latus. Furthermore, A. ocellatum infection significantly reduced (p < 0.05) the richness and diversity of the gill microbial community of A. latus. Infection by A. ocellatum increased the relative abundance of several putative pathogenic bacteria (Flavobacterium and Nocardia) in the gill and skin of A. latus, possibly increasing the likelihood of disease in the host. In conclusion, these results evidenced that severe gill infections by A. ocellatum cause mortality in infected fish, which clarifies the direction for exploring the pathogenesis of amyloodiniosis.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, PR China.
| |
Collapse
|
3
|
Li Z, Zhuang J, Chen J, Cao J, Han Q, Luo Z, Wang B, Wang H, Li A. Establishment of a gill cell line from yellowfin seabream (Acanthopagrus latus) for studying Amyloodinium ocellatum infection of fish. JOURNAL OF FISH DISEASES 2024; 47:e13923. [PMID: 38217345 DOI: 10.1111/jfd.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024]
Abstract
Amyloodinium ocellatum is among the most devastating protozoan parasites, causing huge economic losses in the mariculture industry. However, the pathogenesis of amyloodiniosis remains unknown, hindering the development of targeted anti-parasitic drugs. The A. ocellatum in vitro model is an indispensable tool for investigating the pathogenic mechanism of amyloodiniosis at the cellular and molecular levels. The present work developed a new cell line, ALG, from the gill of yellowfin seabream (Acanthopagrus latus). The cell line was routinely cultured at 28°C in Dulbecco's modified Eagle medium (DMEM) supplemented with 15% fetal bovine serum (FBS). ALG cells were adherent and exhibited an epithelioid morphology; the cells were stably passed over 30 generations and successfully cryopreserved. The cell line derived from A. latus was identified based on partial sequence amplification and sequencing of cytochrome B (Cyt b). The ALG was seeded onto transwell inserts and found to be a platform for in vitro infection of A. ocellatum, with a 37.23 ± 5.75% infection rate. Furthermore, scanning electron microscopy (SEM) revealed that A. ocellatum parasitizes cell monolayers via rhizoids. A. ocellatum infection increased the expression of apoptosis and inflammation-related genes, including caspase 3 (Casp 3), interleukin 1 (IL-1), interleukin 10 (IL-10), tumour necrosis factor-alpha (TNF-α), in vivo or in vitro. These results demonstrated that the in vitro gill cell monolayer successfully recapitulated in vivo A. latus host responses to A. ocellatum infection. The ALG cell line holds great promise as a valuable tool for investigating parasite-host interactions in vitro.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jingyu Zhuang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaming Chen
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing Han
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Luo
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Baotun Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hebing Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Wang G, Hu J, Zhang M, Zhang Y, Li Y, Jiang H, Wang X, Zhu J, Xu S, Wang Y, Yan X. Histopathology, immunoenzyme activity and transcriptome analysis of immune response in silver pomfret infected by cryptokaryon (Cryptorchidism irritant). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108731. [PMID: 37044188 DOI: 10.1016/j.fsi.2023.108731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Cryptorchidism irritant (CI) infection is a major problem in the culturing process of silver pomfret (Pampus argenteus), which can result in rapid and massive death. However, there is limited information available on the immune response of silver pomfret infected by CI. To address this gap, we sampled naturally infected fish and observed milky white translucent oval CI trophozoites on the gills, body surface, and fin rays. Histological analysis showed that CI infection led to vacuolation of epithelial cells and a decrease in blood cells in the gills. We also performed transcriptome profiling of the gill, kidney complex, and spleen, generating 399,616,194 clean reads that assembled into 101,228 unigenes, which were annotated based on public databases. We detected 14,369 differentially expressed genes, and selected several key immune-related genes for further validation using RT-qPCR. The Graft-versus-host pathway and Allograft rejection pathway were enriched in the gills, leading to inflammation and ulceration. CI infection activated the immune system, increasing levels of interleukin-1 beta and MHC class II antigen, and also activated innate and acquired immune genes in silver pomfret. Furthermore, we measured the activities of five immune-related enzymes (SOD, AKP, CAT, CSH and ACP), which all increased to varying degrees after CI infection. Our findings enhance our understanding of the immune response of fish to parasitic infection and may contribute to the development of strategies to prevent high mortality in CI-stimulated fish in aquaculture.
Collapse
Affiliation(s)
- Guanlin Wang
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiabao Hu
- School of Marine Sciences, Ningbo University, Ningbo, China; School of Civil & Environmental Engineering and Geography Science, Ningbo University, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Man Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Youyi Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yaya Li
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Huang Jiang
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xiangbing Wang
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Jiajie Zhu
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Shanliang Xu
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yajun Wang
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, China; Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education, Ningbo, China; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
6
|
Dhayanithi NB, Sudhagar A, Kumar TTA, Lal KK. Study on amyloodiniosis outbreak in captive-bred percula clownfish ( Amphiprion percula) and improved control regimens. J Parasit Dis 2022; 46:1103-1109. [PMID: 36457777 PMCID: PMC9606147 DOI: 10.1007/s12639-022-01530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
The amyloodiniosis outbreak was documented with high mortality of percula clownfish (Amphiprion percula) and subsequently, various therapeutics were evaluated to control the infection. The affected fish exhibited symptoms such as discoloration of the skin and jerky movement with severe respiratory stress. Microscopic examination of the gill and body surface of the infested moribund fish showed the presence of brown coloured spherical shaped trophonts with the size range of 150-300 µM. Copper sulphate (10 ppm) and hydroxychloroquine phosphate (10 ppm) treatment with 14 days of continuous bath showed 76 ± 5.3 and 66 ± 4.3% survival rates. However, formalin (10 ppm) and malachite green (10 ppm) treated groups showed a survival of 41 ± 1.7 and 32.7 ± 1.2% respectively. The present results suggest that, use of copper sulphate to treat amyloodiniosis in clownfish will relatively more effective than other treatment options. The findings will be helpful to mitigate amyloodiniosis in marine finfish aquaculture, particularly marine ornamentals.
Collapse
Affiliation(s)
| | - Arun Sudhagar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002 India
| | | | - Kuldeep Kumar Lal
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002 India
| |
Collapse
|
7
|
Li Z, Jiang B, Zhong Z, Cao J, Li H, Wang C, Li A. Skin transcriptomic analysis and immune-related gene expression of golden pompano (Trachinotus ovatus) after Amyloodinium ocellatum infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:188-195. [PMID: 35870749 DOI: 10.1016/j.fsi.2022.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Amyloodiniosis is a severe disease of marine and brackish water fish caused by Amyloodinium ocellatum. Golden pompano (Trachinotus ovatus) is often repeatedly infected by A. ocellatum, leading to extensive mortality. However, little is known about the immune response mechanisms of the T. ovatus following reinfection with A. ocellatum. In this study, an extensive analysis at the transcriptome level of T. ovatus skin was carried out at 24 h post-infection by A. ocellatum. During the transcriptomic analysis, 1367 differentially expressed genes (DEGs) in the skin of T. ovatus under A. ocellatum infection and control conditions were obtained. In Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotated analyses, the DEGs were significantly enriched in the immune-related pathways. To better understand the immune-related gene expression dynamics, a quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was used to assess the primary and secondary infection groups of T. ovatus at different stages (3 h, 12 h, 24 h, 48 h and, 72 h post-infection) of infection with A.ocellatum. The results showed that innate immunity-related genes [interleukin (IL-8), chemokine ligand 3 (CCL3), toll-like receptor 7 (TLR7), and G-type lysosome (LZM g)] and adaptive immunity-related gene [major histocompatibility complex (MHC) alpha antigen I and MHC alpha antigen II] expression levels in the primary and secondary infection groups were significantly increased compared to the control group. The expression of MHC I and MHC II was more rapidly upregulated in the secondary infection group compared with the primary infection group after A.ocellatum infection. However, no significant differences of A.ocellatum load were observed in primary and secondary infection groups. In addition, the serum of the primary infection group had significantly higher concentrations of triglyceride (TG), higher alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) activities than the control group. This study contributes to understanding the defense mechanisms in fish skin against ectoparasite infection.
Collapse
Affiliation(s)
- Zhicheng Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Biao Jiang
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510222, Guangdong, China
| | - Zhihong Zhong
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Jizhen Cao
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Han Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Chenxi Wang
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
| | - Anxing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and Institute of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China.
| |
Collapse
|
8
|
Moreira M, Soliño L, Marques CL, Laizé V, Pousão-Ferreira P, Costa PR, Soares F. Cytotoxic and Hemolytic Activities of Extracts of the Fish Parasite Dinoflagellate Amyloodinium ocellatum. Toxins (Basel) 2022; 14:toxins14070467. [PMID: 35878205 PMCID: PMC9316444 DOI: 10.3390/toxins14070467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 12/04/2022] Open
Abstract
The dinoflagellate Amyloodinium ocellatum is the etiological agent of a parasitic disease named amyloodiniosis. Mortalities of diseased fish are usually attributed to anoxia, osmoregulatory impairment, or opportunistic bacterial infections. Nevertheless, the phylogenetic proximity of A. ocellatum to a group of toxin-producing dinoflagellates from Pfiesteria, Parvodinium and Paulsenella genera suggests that it may produce toxin-like compounds, adding a new dimension to the possible cause of mortalities in A. ocellatum outbreaks. To address this question, extracts prepared from different life stages of the parasite were tested in vitro for cytotoxic effects using two cell lines derived from branchial arches (ABSa15) and the caudal fin (CFSa1) of the gilthead seabream (Sparus aurata), and for hemolytic effects using erythrocytes purified from the blood of gilthead seabream juveniles. Cytotoxicity and a strong hemolytic effect, similar to those observed for Karlodinium toxins, were observed for the less polar extracts of the parasitic stage (trophont). A similar trend was observed for the less polar extracts of the infective stage (dinospores), although cell viability was only affected in the ABSa15 line. These results suggest that A. ocellatum produces tissue-specific toxic compounds that may have a role in the attachment of the dinospores’ and trophonts’ feeding process.
Collapse
Affiliation(s)
- Márcio Moreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Lucía Soliño
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Cátia L. Marques
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Vincent Laizé
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Pedro Pousão-Ferreira
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Pedro Reis Costa
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- IPMA—Portuguese Institute for the Ocean and Atmosphere, Av. Alfredo Magalhães Ramalho, n° 6, 1495-165 Algés, Portugal
| | - Florbela Soares
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal; (M.M.); (C.L.M.); (V.L.); (P.P.-F.); (P.R.C.)
- IPMA—Portuguese Institute for the Ocean and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
- Correspondence:
| |
Collapse
|
9
|
Zhang Y, Hu J, Li Y, Zhang M, Jacques KJ, Gu W, Sun Y, Sun J, Yang Y, Xu S, Wang Y, Yan X. Immune response of silver pomfret (Pampus argenteus) to Amyloodinium ocellatum infection. JOURNAL OF FISH DISEASES 2021; 44:2111-2123. [PMID: 34585397 DOI: 10.1111/jfd.13524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Amyloodinium ocellatum (AO) infection in silver pomfret (Pampus argenteus) causes extensive mortality. Insufficient information exists on the molecular immune response of silver pomfret to AO infestation, so herein we simulated the process of silver pomfret being infected by AO. Translucent trophosomes were observed on the gills of AO-infected fish. Transcriptome profiling was performed to investigate the effects of AO infection on the gill, kidney complex and spleen. Overall, 404,412,298 clean reads were obtained, assembling into 96,341 unigenes, which were annotated against public databases. In total, 2730 differentially expressed genes were detected, and few energy- and immune-related genes were further assessed using RT-qPCR. Moreover, activities of three immune-related (SOD, AKP and ACP) and three energy-related (PKM, LDH and GCK) enzymes were determined. AO infection activated the immune system and increased interleukin-1 beta and immunoglobulin M heavy chain levels. Besides, the PPAR signalling pathway was highly enriched, which played a role in improving immunity and maintaining homeostasis. AO infection also caused dyspnoea, leading to extensive lactic acid accumulation, potentially contributing towards a strong immune response in the host. Our data improved our understanding regarding the immune response mechanisms through which fish coped with parasitic infections and may help prevent high fish mortality in aquaculture.
Collapse
Affiliation(s)
- Youyi Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiabao Hu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yaya Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Man Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Kimran Jean Jacques
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Weiwei Gu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yibo Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Jiachu Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yang Yang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Shanliang Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Yajun Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| | - Xiaojun Yan
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China
- College of marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021; 10:1205. [PMID: 34578236 PMCID: PMC8466566 DOI: 10.3390/pathogens10091205] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Orestis Stavrakidis-Zachou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Ivona Mladineo
- Biology Center of Czech Academy of Sciences, Laboratory of Functional Helminthology, Institute of Parasitology, 370 05 Ceske Budejovice, Czech Republic;
| | - Kim D. Thompson
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| |
Collapse
|
11
|
Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals (Basel) 2021; 11:E125. [PMID: 33430015 PMCID: PMC7827161 DOI: 10.3390/ani11010125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the main constraints in aquaculture production is farmed fish vulnerability to diseases due to husbandry practices or external factors like pollution, climate changes, or even the alterations in the dynamic of product transactions in this industry. It is though important to better understand and characterize the intervenients in the process of a disease outbreak as these lead to huge economical losses in aquaculture industries. High-throughput technologies like proteomics can be an important characterization tool especially in pathogen identification and the virulence mechanisms related to host-pathogen interactions on disease research and diagnostics that will help to control, prevent, and treat diseases in farmed fish. Proteomics important role is also maximized by its holistic approach to understanding pathogenesis processes and fish responses to external factors like stress or temperature making it one of the most promising tools for fish pathology research.
Collapse
Affiliation(s)
- Márcio Moreira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Denise Schrama
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Paula Farinha
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
| | - Cláudia Raposo de Magalhães
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Liu W. Complement proteins detected through iTRAQ-based proteomics analysis of serum from black carp Mylopharyngodon piceus in response to experimentally induced Aeromonas hydrophila infection. DISEASES OF AQUATIC ORGANISMS 2020; 140:187-201. [PMID: 32815527 DOI: 10.3354/dao03497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The black carp Mylopharyngodon piceus is one of the culturally important '4 famous domestic fishes' in China. Recently, infectious diseases caused by Aeromonas hydrophila have drastically altered the operation of the black carp farming industry. In the present study, isobaric tags for relative and absolute quantitation (iTRAQ) were combined with mass spectrometry analysis to screen for differentially abundant black carp serum proteins in response to experimentally induced A. hydrophila infection. A total of 86 differentially abundant proteins were quantified at 24 h post-infection, including 78 down-regulated proteins and 8 up-regulated proteins. The down-regulated proteins included complement C1q subcomponent subunit C, complement factor B/C2A, complement factor B/C2B, complement C3-Q1, complement C3, and complement C4-2. Bioinformatic analysis indicated that the differentially abundant proteins were mainly associated with complement and coagulation cascades (27.9%). Moreover, real-time PCR (qPCR) analysis revealed changes in the gene expression of both C3 and B/C2A in blood cells, liver, kidney, gills, and intestines of the black carp infected with A. hydrophila. However, mRNA expression levels did not consistently correlate with the corresponding protein levels. A polyclonal antibody was prepared using a synthetic C3 peptide. Immunofluorescence analysis showed that the expression of C3 in the kidney was increased with A. hydrophila infection. This work provides a useful characterization of the impact of A. hydrophila infection on the complement system of the black carp.
Collapse
Affiliation(s)
- Wen Liu
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, School of Life Science, Huzhou University, Huzhou 313000, PR China
| |
Collapse
|
13
|
Methodology for assessing the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen ponds. MethodsX 2019; 6:2570-2576. [PMID: 31763188 PMCID: PMC6861580 DOI: 10.1016/j.mex.2019.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/15/2019] [Indexed: 01/26/2023] Open
Abstract
Production costs in extensive and semi-intensive fish culture in earthen ponds are often too high to offer sustainable economic activity due to the low productivity of these systems. The right combination of commercial finfish species with inorganic (primary producers) and organic extractive (bivalves) species in Integrated MultiTrophic Aquaculture (IMTA) create a balanced system with higher profitability and risk reduction. To achieve this, it is crucial to understand the role of each functional groups within the system what we did by comparing three different IMTA production three different IMTA production treatments with distinct combinations of trophic levels: fish, filter feeders, phytoplankton and macroalgae, fish, filter feeders and phytoplankton fish, phytoplankton and macroalgae
Each treatment was carried out in two similar ponds under semi-intensive conditions and flow through system, in a total of 6 earthen ponds of 500 m2 surface and depth of 1.5 m. Results showed that the presence of oysters in the ponds enhanced water quality by decreasing turbidity and by controlling phytoplankton which led to regulation of dissolved oxygen levels. The enhanced water quality in these systems lead to improved fish performance and higher biomass production contributing to greater profitability. The combination of fish, oyster, phytoplankton and macroalgae was particularly good providing much more fish supply compared with the other two treatments. Oysters enhanced water quality in the ponds by decreasing turbidity and controlling phytoplankton which regulated the dissolved oxygen levels. The enhanced water quality in systems with oysters improve fish performance resulting in higher biomass production and greater profitability. The combination of fish, oyster, phytoplankton and macroalgae was particularly good providing much more fish supply compared with the other two treatments.
Collapse
|
14
|
Abstract
Amyloodiniosis is a disease that represents a major bottleneck for semi-intensive aquaculture, especially in Southern Europe. The inefficacy of many of the treatments for this disease on marine fish produced in semi-intensive aquaculture has led to a new welfare approach to amyloodiniosis. There is already some knowledge of several welfare issues that lead to amyloodiniosis as well as the stress, physiological, and immunological responses to the parasite by the host, but no work is available about the influence of fish age on the progression of amyloodiniosis. The objective of this work was to determine if stress, hematological, and histopathological responses are age dependent. For that purpose, we determined the mortality rate, histopathological lesions, hematological indexes, and stress responses (cortisol, glucose, lactate, and total protein) in “Small” (total weight: 50 ± 5.1 g, age: 273 days after eclosion (DAE)) and “Big” (total weight: 101.3 ± 10.4 g, age: 571 DAE) white seabream (Diplodus sargus) subjected to an Amyloodinium ocellatum infestation (8000 dinospores mL−1) during a 24-h period. The results demonstrated a strong stress response to A. ocellatum, with marked differences in histopathological alterations, glucose levels, and some hematological indexes between the fish of the two treatments. This work elucidates the need to take in account the size and age of the fish in the development and establishment of adequate mitigating measures and treatment protocols for amyloodiniosis.
Collapse
|
15
|
Byadgi O, Beraldo P, Volpatti D, Massimo M, Bulfon C, Galeotti M. Expression of infection-related immune response in European sea bass (Dicentrarchus labrax) during a natural outbreak from a unique dinoflagellate Amyloodinium ocellatum. FISH & SHELLFISH IMMUNOLOGY 2019; 84:62-72. [PMID: 30266602 DOI: 10.1016/j.fsi.2018.09.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/06/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
In the Mediterranean area, amyloodiniosis represents a major hindrance for marine aquaculture, causing high mortalities in lagoon-type based rearing sites during warm seasons. Amyloodinium ocellatum (AO) is the most common and important dinoflagellate parasitizing fish, and is one of the few fish parasites that can infest several fish species living within its ecological range. In the present study, A. ocellatum was recorded and collected from infected European sea bass (Dicentrarchus labrax) during a summer 2017 outbreak in north east Italy. Histological observation of infected ESB gill samples emphasized the presence of round or pear-shaped trophonts anchored to the oro-pharingeal cavity. Molecular analysis for small subunit (SSU) rDNA of A. ocellatum from gill genomic DNA amplified consistently and yielded 248 bp specific amplicon of A. ocellatum, that was also confirmed using sequencing and NCBI Blast analysis. Histological sections of ESB gill samples were addressed to immunohistochemical procedure for the labelling of ESB igm, inos, tlr2, tlr4, pcna and cytokeratin. Infected gills resulted positive for igm, inos, pcna and cytokeratin but negative to tlr-2 and tlr-4. Furthermore, ESB immune related gene response (innate immunity, adaptive immunity, and stress) in the course of A. ocellatum infection using quantitative polymerase chain reaction (qpcr) for infected gills and head kidney was analysed. Among the twenty three immune related gene molecules tested, cc1, il-8, il-10, hep, cox-2, cla, cat, casp9, and igt were significantly expressed in diseased fish. Altogether, these data on parasite identification and expression of host immune-related genes will allow for a better understanding of immune response in European sea bass against A. ocellatum and could promote the development of effective control measures.
Collapse
Affiliation(s)
- Omkar Byadgi
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy.
| | - Paola Beraldo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Donatella Volpatti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Michela Massimo
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Chiara Bulfon
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| | - Marco Galeotti
- Section of Animal and Veterinary Sciences, Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, 33100, Udine, Italy
| |
Collapse
|
16
|
Schrama D, Cerqueira M, Raposo CS, Rosa da Costa AM, Wulff T, Gonçalves A, Camacho C, Colen R, Fonseca F, Rodrigues PM. Dietary Creatine Supplementation in Gilthead Seabream ( Sparus aurata): Comparative Proteomics Analysis on Fish Allergens, Muscle Quality, and Liver. Front Physiol 2018; 9:1844. [PMID: 30622481 PMCID: PMC6308192 DOI: 10.3389/fphys.2018.01844] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
The quality of fish flesh depends on the skeletal muscle's energetic state and delaying energy depletion through diets supplementation could contribute to the preservation of muscle's quality traits and modulation of fish allergens. Food allergies represent a serious public health problem worldwide with fish being one of the top eight more allergenic foods. Parvalbumins, have been identified as the main fish allergen. In this study, we attempted to produce a low allergenic farmed fish with improved muscle quality in controlled artificial conditions by supplementing a commercial fish diet with different creatine percentages. The supplementation of fish diets with specific nutrients, aimed at reducing the expression of parvalbumin, can be considered of higher interest and beneficial in terms of food safety and human health. The effects of these supplemented diets on fish growth, physiological stress, fish muscle status, and parvalbumin modulation were investigated. Data from zootechnical parameters were used to evaluate fish growth, food conversion ratios and hepatosomatic index. Physiological stress responses were assessed by measuring cortisol releases and muscle quality analyzed by rigor mortis and pH. Parvalbumin, creatine, and glycogen concentrations in muscle were also determined. Comparative proteomics was used to look into changes in muscle and liver tissues at protein level. Our results suggest that the supplementation of commercial fish diets with creatine does not affect farmed fish productivity parameters, or either muscle quality. Additionally, the effect of higher concentrations of creatine supplementation revealed a minor influence in fish physiological welfare. Differences at the proteome level were detected among fish fed with different diets. Differential muscle proteins expression was identified as tropomyosins, beta enolase, and creatine kinase among others, whether in liver several proteins involved in the immune system, cellular processes, stress, and inflammation response were modulated. Regarding parvalbumin modulation, the tested creatine percentages added to the commercial diet had also no effect in the expression of this protein. The use of proteomics tools showed to be sensitive to infer about changes of the underlying molecular mechanisms regarding fish responses to external stimulus, providing a holistic and unbiased view on fish allergens and muscle quality.
Collapse
Affiliation(s)
- Denise Schrama
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Marco Cerqueira
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | | | - Ana M. Rosa da Costa
- Centro de Investigação de Química do Algarve, Universidade do Algarve, Faro, Portugal
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Amparo Gonçalves
- Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, Lisbon, Portugal
| | - Carolina Camacho
- Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, Lisbon, Portugal
| | - Rita Colen
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Flávio Fonseca
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Manaus, Brazil
| | | |
Collapse
|
17
|
Bloecher N, Powell M, Hytterød S, Gjessing M, Wiik-Nielsen J, Mohammad SN, Johansen J, Hansen H, Floerl O, Gjevre AG. Effects of cnidarian biofouling on salmon gill health and development of amoebic gill disease. PLoS One 2018; 13:e0199842. [PMID: 29979703 PMCID: PMC6034824 DOI: 10.1371/journal.pone.0199842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/14/2018] [Indexed: 01/22/2023] Open
Abstract
This study examines the potential implications of biofouling management on the development of an infectious disease in Norwegian farmed salmon. The hydroid Ectopleura larynx frequently colonises cage nets at high densities (thousands of colonies per m2) and is released into the water during regular in-situ net cleaning. Contact with the hydroids’ nematocysts has the potential to cause irritation and pathological damage to salmon gills. Amoebic gill disease (AGD), caused by the amoeba Paramoeba perurans, is an increasingly international health challenge in Atlantic salmon farming. AGD often occurs concomitantly with other agents of gill disease. This study used laboratory challenge trials to: (1) characterise the gill pathology resulting from the exposure of salmon to hydroids, and (2) investigate if such exposure can predispose the fish to secondary infections–using P. perurans as an example. Salmon in tanks were exposed either to freshly ‘shredded’ hydroids resembling waste material from net cleaning, or to authentic concentrations of free-living P. perurans, or first to ‘shredded’ hydroids and then to P. perurans. Gill health (AGD gill scores, non-specific gill scores, lamellar thrombi, epithelial hyperplasia) was monitored over 5 weeks and compared to an untreated control group. Nematocysts of E. larynx contained in cleaning waste remained active following high-pressure cleaning, resulting in higher non-specific gill scores in salmon up to 1 day after exposure to hydroids. Higher average numbers of gill lamellar thrombi occurred in fish up to 7 days after exposure to hydroids. However, gill lesions caused by hydroids did not affect the infection rates of P. perurans or the disease progression of AGD. This study discusses the negative impacts hydroids and current net cleaning practices can have on gill health and welfare of farmed salmon, highlights existing knowledge gaps and reiterates the need for alternative approaches to net cleaning.
Collapse
Affiliation(s)
| | - Mark Powell
- Norwegian Institute for Water Research, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|