1
|
Liñán-Atero R, Aghababaei F, García SR, Hasiri Z, Ziogkas D, Moreno A, Hadidi M. Clove Essential Oil: Chemical Profile, Biological Activities, Encapsulation Strategies, and Food Applications. Antioxidants (Basel) 2024; 13:488. [PMID: 38671935 PMCID: PMC11047511 DOI: 10.3390/antiox13040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Plants have proven to be important sources for discovering new compounds that are useful in the treatment of various diseases due to their phytoconstituents. Clove (Syzygium aromaticum L.), an aromatic plant widely cultivated around the world, has been traditionally used for food preservation and medicinal purposes. In particular, clove essential oil (CEO) has attracted attention for containing various bioactive compounds, such as phenolics (eugenol and eugenol acetate), terpenes (β-caryophyllene and α-humulene), and hydrocarbons. These constituents have found applications in cosmetics, food, and medicine industries due to their bioactivity. Pharmacologically, CEO has been tested against a variety of parasites and pathogenic microorganisms, demonstrating antibacterial and antifungal properties. Additionally, many studies have also demonstrated the analgesic, antioxidant, anticancer, antiseptic, and anti-inflammatory effects of this essential oil. However, CEO could degrade for different reasons, impacting its quality and bioactivity. To address this challenge, encapsulation is viewed as a promising strategy that could prolong the shelf life of CEO, improving its physicochemical stability and application in various areas. This review examines the phytochemical composition and biological activities of CEO and its constituents, as well as extraction methods to obtain it. Moreover, encapsulation strategies for CEO and numerous applications in different food fields are also highlighted.
Collapse
Affiliation(s)
- Rafael Liñán-Atero
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | | | - Samuel Rodríguez García
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Zahra Hasiri
- College of Veterinary Medicine, Islamic Azad University of Shahrekord, Shahrekord 88137-33395, Iran;
| | - Dimitrios Ziogkas
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Andres Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; (R.L.-A.); (S.R.G.); (D.Z.)
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2
|
Abd El-Hack ME, AboElMaati MF, Abusudah WF, Awlya OF, Almohmadi NH, Fouad W, Mohamed HS, Youssef IM, Al-Gabri NA, Othman SI, Allam AA, Taha AE, Tellez-Isaias G, Mansour AM. Consequences of dietary cinnamon and ginger oils supplementation on blood biochemical parameters, oxidative status, and tissue histomorphology of growing Japanese quails. Poult Sci 2024; 103:103314. [PMID: 38096669 PMCID: PMC10762477 DOI: 10.1016/j.psj.2023.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
The present study aimed to investigate the impact of various concentrations of ginger and cinnamon oils as antibiotic substitutes on some blood biochemical parameters, antioxidant capacity, and histopathological profile of the liver and gut of growing Japanese. A total of 900 Japanese quails were randomly allotted into 6 treatment groups. Each group had 5 replicates (30 chicks each). The first group received a basal diet and served as the control, while the second received a basal diet plus 0.5 g of colistin antibiotic/kg diet. The third and fourth groups were supplemented with 0.5 mL and 1.0 mL of ginger oil (GO)/kg diet, respectively. While the fifth and sixth groups received basal diet with 0.5 and 1.0 mL of cinnamon oil (CO)/kg diet, respectively. Results showed that adding herbal oils significantly (P < 0.05) decreased the aspartate aminotransferase (AST) and urea levels compared to control and colistin groups. Various levels of GO and CO significantly (P < 0.05) reduced cholesterol levels compared to control birds. Compared to the control and antibiotic groups, Japanese quails supplemented with various levels of herbal oils (GO and CO) had more extraordinarily significant (P < 0.05) values for total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase (GSR). Regarding histopathologic examination, the jejunum displayed a nearly empty lumen, a few fusions, and mild goblet cell metaplasia. On the other hand, the duodenum looked tall and had a few fusions of villi and remnants of removal in its lumina. It could be concluded that cinnamon and GO improved birds' blood biochemical parameters, electorate oxidative stress, and enhanced intestinal and hepatic histology of the treated quails. Also, the levels of 0.5 mL CO and 0.5 mL GO may be an acceptable substitute for antibiotics (colistin) in the diets of growing Japanese quail.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed F AboElMaati
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Wafaa F Abusudah
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ohaad F Awlya
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Walid Fouad
- Poultry Production Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
| | - Hanan S Mohamed
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza 12618, Egypt
| | - Islam M Youssef
- Agricultural Research Center, Animal Production Research Institute, Dokki, Giza 12618, Egypt
| | - Naif A Al-Gabri
- Department of Pathology, Faculty of Veterinary Medicine, Thamar University, Dhamar, Yemen
| | - Sarah I Othman
- Department of Biology, College of Science, Princess Nourah Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabi; Department of Zoology, Faculty of Science, Beni-suef University, Beni-suef 65211 Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Behira, Rasheed, 22758 Edfina, Egypt
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72701 USA
| | - Amira M Mansour
- Poultry Production Department, Agriculture College, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Irimia A, Grigoraș VC, Popescu CM. Active Cellulose-Based Food Packaging and Its Use on Foodstuff. Polymers (Basel) 2024; 16:389. [PMID: 38337278 DOI: 10.3390/polym16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
The essential role of active packaging is food quality improvement, which results in an extension of shelf life. Active packaging can also further enhance distribution from the origin point, and contributes to food waste reduction, offering greater sustainability. In this study, we introduced a new method for obtaining cellulose-based active packages, combining gamma irradiation as an eco-friendly activation process, and clove essential oil and cold-pressed rosehip seed oil as bioactive agents. Newly obtained bioactive materials were evaluated to assess their structural, hydrophobic, and morphological properties, thermal stability, and antioxidant and antimicrobial properties. The results showed that the plant oils induced their antimicrobial effects on paper, using both in vitro tests, against several bacterial strains (Gram-positive bacteria Listeria monocytogenes and Gram-negative bacteria Salmonella enteritidis and Escherichia coli), and in vivo tests, on fresh cheese curd and beef. Moreover, these oils can help control foodborne pathogens, which leads to extended shelf life.
Collapse
Affiliation(s)
- Anamaria Irimia
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Vasile Cristian Grigoraș
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
| | - Carmen-Mihaela Popescu
- Petru Poni Institute of Macromolecular Chemistry of the Romanian Academy, Grigore Ghica Voda Alley, 41A, 700487 Iasi, Romania
- Wood Science and Technology, School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Unit 1, Seven Hills Business Park, 37 Bankhead Crossway South, Sighthill, Edinburgh EH11 4EP, UK
| |
Collapse
|
4
|
Kong P, Thangunpai K, Zulfikar A, Masuo S, Abe JP, Enomae T. Preparation of Green Anti- Staphylococcus aureus Inclusion Complexes Containing Hinoki Essential Oil. Foods 2023; 12:3104. [PMID: 37628104 PMCID: PMC10453407 DOI: 10.3390/foods12163104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to prepare anti-Staphylococcus aureus inclusion complexes (ICs) of Hinoki essential oil (HEO) with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD). An ultrasound-assisted kneading method was applied for the complexation for the first time. The recovery yield, embedding fraction and loading capacity of the HEO/β-CD ICs were 92.5%, 78.0% and 11.9%, respectively, while the corresponding values were 80.8%, 73.7% and 12.9% for the HEO/2-HP-β-CD ICs. As well, a comparative study confirmed the efficiency of the ultrasound-assisted kneading method was higher than the traditional kneading method. The results of SEM, XRD, GC-MS and FT-IR suggested the successful formation of ICs. A significant anti-Staphylococcus aureus activity of the fabricated ICs was demonstrated using a colony counting method. Notably, when the dose in liquid culture medium was 20 g L-1, inhibitory rates of 99.8% for HEO/β-CD ICs and 100% for HEO/2-HP-β-CD ICs were achieved. Furthermore, the hydrophilic property of the ICs was proved by water contact angle measurements, implying they have the potential to act as anti-Staphylococcus aureus agents for blending with hydrophilic biodegradable materials for diverse food packaging utilizations.
Collapse
Affiliation(s)
- Peifu Kong
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (P.K.); (K.T.); (A.Z.)
| | - Kotchaporn Thangunpai
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (P.K.); (K.T.); (A.Z.)
| | - Ainun Zulfikar
- Degree Programs in Life and Earth Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (P.K.); (K.T.); (A.Z.)
- Materials and Metalurgical Engineering Department, Institut Teknologi Kalimantan, Balikpapan 76127, Indonesia
| | - Shunsuke Masuo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (S.M.); (J.P.A.)
| | - Junichi Peter Abe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (S.M.); (J.P.A.)
| | - Toshiharu Enomae
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan; (S.M.); (J.P.A.)
| |
Collapse
|
5
|
Mendes LA, Vasconcelos LC, Fontes MMP, Martins GS, Bergamin ADS, Silva MA, Silva RRA, de Oliveira TV, Souza VGL, Ferreira MFDS, Teixeira RR, Lopes RP. Herbicide and Cytogenotoxic Activity of Inclusion Complexes of Psidium gaudichaudianum Leaf Essential Oil and β-Caryophyllene on 2-Hydroxypropyl- β-cyclodextrin. Molecules 2023; 28:5909. [PMID: 37570879 PMCID: PMC10420928 DOI: 10.3390/molecules28155909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
The present investigation aimed to develop inclusion complexes (ICs) from Psidium gaudichaudianum (GAU) essential oil (EO) and its major compound β-caryophyllene (β-CAR), and to evaluate their herbicidal (against Lolium multiflorum and Bidens pilosa) and cytogenotoxic (on Lactuca sativa) activities. The ICs were obtained using 2-hydroxypropyl-β-cyclodextrin (HPβCD) and they were prepared to avoid or reduce the volatility and degradation of GAU EO and β-CAR. The ICs obtained showed a complexation efficiency of 91.5 and 83.9% for GAU EO and β-CAR, respectively. The IC of GAU EO at a concentration of 3000 µg mL-1 displayed a significant effect against weed species B. pilosa and L. multiflorum. However, the β-CAR IC at a concentration of 3000 µg mL-1 was effective only on L. multiflorum. In addition, the cytogenotoxic activity evaluation revealed that there was a reduction in the mitotic index and an increase in chromosomal abnormalities. The produced ICs were able to protect the EO and β-CAR from volatility and degradation, with a high thermal stability, and they also enabled the solubilization of the EO and β-CAR in water without the addition of an organic solvent. Therefore, it is possible to indicate the obtained products as potential candidates for commercial exploration since the ICs allow the complexed EO to exhibit a more stable chemical constitution than pure EO under storage conditions.
Collapse
Affiliation(s)
- Luiza Alves Mendes
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| | - Loren Cristina Vasconcelos
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Milene Miranda Praça Fontes
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Geisiele Silva Martins
- Department of Biology, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (L.C.V.); (M.M.P.F.); (G.S.M.)
| | - Aline dos Santos Bergamin
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Matheus Alves Silva
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Rafael Resende Assis Silva
- Departament of Food Materials Science and Engineering, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos 13565-905, SP, Brazil;
| | | | - Victor Gomes Lauriano Souza
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
- MEtRICs, CubicB, Departament of Chemistry, NOVA School of Science and Technology (FCT NOVA), University Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Marcia Flores da Silva Ferreira
- Department of Agronomy, Federal University of Espírito Santo (UFES), Alto Universitário, s/n, Guararema, Alegre 29500-000, ES, Brazil; (A.d.S.B.); (M.A.S.); (M.F.d.S.F.)
| | - Róbson Ricardo Teixeira
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| | - Renata Pereira Lopes
- Departament of Chemistry, Federal University of Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa 36570-000, MG, Brazil;
| |
Collapse
|
6
|
Čulina P, Zorić Z, Garofulić IE, Repajić M, Dragović-Uzelac V, Pedisić S. Optimization of the Spray-Drying Encapsulation of Sea Buckthorn Berry Oil. Foods 2023; 12:2448. [PMID: 37444186 DOI: 10.3390/foods12132448] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/15/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this study was to evaluate the effect of spray-drying parameters on the physicochemical properties of encapsulated sea buckthorn berry oil. Different carriers (gum arabic, β-cyclodextrin, and their mixture (1:1, w/w)), inlet air temperatures (120, 150, and 180 °C), and carrier-to-oil ratios (2, 3, and 4, w/w) were evaluated. The obtained powders were characterized in terms of the product yield (36.79-64.60%), encapsulation efficiency (73.08-93.18%), moisture content (0.23-3.70%), hygroscopicity (1.5-7.06 g/100 g), solubility (19.55-74.70%), bulk density (0.25-0.44 g/L), total carotenoid content (mg/100 g dm), and antioxidant capacity (871.83-1454.39 μmol TE/100 g dm). All physicochemical properties were significantly affected by the carrier-to-oil ratio and inlet air temperature. Higher carrier-to-oil ratios increased the product yield, encapsulation efficiency, solubility, and bulk density and decreased the powder hygroscopicity. Elevating the drying temperatures during spray drying also increased the product yield, encapsulation efficiency, and solubility, while it decreased the powder moisture content, total carotenoid content, and antioxidant capacity. Based on the physicochemical properties, the use of β-cyclodextrin as a carrier, a drying temperature of 120 °C, and a carrier-to-oil ratio of 4 were selected as optimal conditions for the production of sea buckthorn berry oil powder. The obtained powder is a valuable material for a wide range of applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Patricija Čulina
- Faculty of Food Technology and Biotechnology, University of Zagreb, P. Kasandrića 3, 23000 Zadar, Croatia
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, P. Kasandrića 3, 23000 Zadar, Croatia
| | - Ivona Elez Garofulić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Maja Repajić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, P. Kasandrića 3, 23000 Zadar, Croatia
| |
Collapse
|
7
|
Xi X, Huang J, Zhang S, Lu Q, Fang Z, Li C, Zhang Q, Liu Y, Chen H, Liu A, Liu S, Wang C, Li S, Hu B. Preparation and characterization of inclusion complex of Myristica fragrans Houtt. (nutmeg) essential oil with 2-hydroxypropyl-β-cyclodextrin. Food Chem 2023; 423:136316. [PMID: 37207514 DOI: 10.1016/j.foodchem.2023.136316] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023]
Abstract
Nutmeg essential oil (NEO) is a natural condimentwith versatile biological activities. However, the application of NEO in food has several limitations due to its poor stability and low aqueous solubility. To overcome the shortcomings, this paper focused on the preparation of the inclusion complex (IC) of NEO with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) by the coprecipitation method. The optimal condition was inclusion temperature 36 ℃, time 247 min, stirring speed 520 r/min, and wall-core ratio 12:1, resulting in a recovery of 80.63%. The formation of IC was verified by various methods such as scanning electron microscopy, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The improvement of thermal stability, antioxidant, and nitrite scavenging activities of NEO after encapsulation was proven. Moreover, the controlled release of NEO from IC can be implemented by regulating the temperature and relative humidity. Overall, NEO/HP-β-CD IC has great application potential in food industries.
Collapse
Affiliation(s)
- Xiaohui Xi
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Jialing Huang
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Shengyang Zhang
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Qian Lu
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Zhengfeng Fang
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Cheng Li
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Qing Zhang
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Yuntao Liu
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Hong Chen
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Aiping Liu
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Shuxiang Liu
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Caixia Wang
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Shanshan Li
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China
| | - Bin Hu
- College of Food, Sichuan Agricultural University, Yaan 625014, Sichuan, China.
| |
Collapse
|
8
|
Demircan H, Oral RA. Parameters affecting calcium-alginate bead characteristics: Viscosity of hydrocolloids and water solubility of core material. Int J Biol Macromol 2023; 236:124011. [PMID: 36921828 DOI: 10.1016/j.ijbiomac.2023.124011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
In this study, calcium-alginate beads were produced and characterized by ionic gelation technique using three different copolymers (gum arabic (GA), κ-carrageenan (CG), guar gum (GG)), and seven different phenolic compounds (tannic acid, chlorogenic acid, gallic acid, p-coumaric acid, caffeic acid, naringin, and hesperidin). The effect of the viscosity of copolymer and water solubility of the phenolic compound on the size, shape, swelling, encapsulation efficiency (EE), loading capacity (LC), and production yield (PY) of the beads were investigated. In addition, the impact of the core material concentration in the calcium chloride solution on the EE was determined. The bead sizes increased by 6.8, 11.4, and 35.3 %, respectively, with the use of GA, CG, and GG. The EE of the beads ranged from 28.36 to 89.30 % and increased with increasing copolymer viscosity and decreasing water solubility of the phenolic compound. When the core material concentration difference between the alginate and calcium chloride solutions was reduced to zero, the EE of the gallic acid bead increased from 32.95 % to 89.05 %. The results of this study show that copolymer viscosity, the water solubility of core material, and the core material concentration difference between alginate and calcium solutions should be considered in ionic gelation applications.
Collapse
Affiliation(s)
- Huseyin Demircan
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey.
| | - Rasim Alper Oral
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Bursa, Turkey.
| |
Collapse
|
9
|
Effect of sustained-release tea tree essential oil solid preservative on fresh-cut pineapple storage quality in modified atmospheres packaging. Food Chem 2023; 417:135898. [PMID: 36934707 DOI: 10.1016/j.foodchem.2023.135898] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/12/2023] [Accepted: 03/05/2023] [Indexed: 03/15/2023]
Abstract
The quality and safety of fresh-cut pineapple deteriorate during handling and storage due to physicochemical and microbial changes, so its preservation has attracted extensive attention. This study prepared sustained-release tea tree essential oil (TTO) solid preservative (SP) with an encapsulation efficiency of 71.45% and applied it on fresh-cut pineapple in modified atmospheres packaging (MAP). Results showed that TTO adsorbed on nano silicon dioxide (SiO2) was embedded in the starch-carboxymethyl cellulose network structure by extrusion. The hydrogen bond and hydrophobic interaction resulted in compact structure and good sustained-release performance of SP. The SP improved sensory quality and reduced nutrient loss and microbial spoilage of fresh-cut pineapple, which extended its shelf-life to four days. In addition, antioxidant capacity was enhanced with increasing antioxidant enzyme activity, antioxidant content, and 2,2-diphenyl-1-picrylhydrazine scavenging capacity and decreasing MDA accumulation. Therefore, sustained-release TTO solid preservative has potential for the preservation of fresh-cut pineapple.
Collapse
|
10
|
Development and Evaluation of Cellulose Derivative and Pectin Based Swellable pH Responsive Hydrogel Network for Controlled Delivery of Cytarabine. Gels 2023; 9:gels9010060. [PMID: 36661826 PMCID: PMC9857802 DOI: 10.3390/gels9010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/13/2023] Open
Abstract
In the present study, pH-sensitive, biodegradable, and biocompatible Na-CMC/pectin poly(methacrylic acid) hydrogels were synthesized using an aqueous free radical polymerization technique and encapsulated by cytarabine (anti-cancer drug). The aim of the project was to sustain the plasma profile of cytarabine through oral administration. Sodium carboxymethyl cellulose (Na-CMC) and pectin were cross-linked chemically with methacrylic acid (MAA) as a monomer, using methylene bisacrylamide (MBA) as cross-linker and ammonium per sulfate (APS) as an initiator. Prepared hydrogel formulations were characterized for their texture, morphology, cytarabine loading efficiency, compositional and structural properties, thermal nature, stability, swelling response, drug release profile (pH 1.2 and pH 7.4), and in-vivo pharmacokinetic evaluation. Cytarabine-loaded hydrogels were also evaluated for their safety profile by carrying out toxicity studies in rabbits. Results demonstrated efficient encapsulation of cytarabine into the prepared network with loading ranging from 48.5-82.3%. The highest swelling ratio of 39.38 and maximum drug release of 83.29-85.27% were observed at pH 7.4, highlighting the pH responsiveness of the grafted system. Furthermore, cytarabine maximum release was noticed over 24 h, ensuring a sustained release response for all formulations. Histopathological studies and hemolytic profiles confirmed that the prepared hydrogel system was safe, biocompatible, and non-irritant, showing no symptoms of any toxicities and degeneration in organs. Moreover, pharmacokinetic estimation of the cytarabine-loaded hydrogel showed a remarkable increase in the plasma half-life from 4.44 h to 9.24 h and AUC from 22.06 μg/mL.h to 56.94 μg/mL.h. This study revealed that the prepared hydrogel carrier system has excellent abilities in delivering the therapeutic moieties in a controlled manner.
Collapse
|
11
|
Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). Meat Sci 2023; 195:108998. [DOI: 10.1016/j.meatsci.2022.108998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/09/2022]
|
12
|
Al-Ghamdi ES. Use of ginger and cinnamon oils mixture as a natural alternative to antibiotics in quail feed. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Hasheminya SM, Dehghannya J. Development and Characterization of Froriepia subpinnata (Ledeb.) Baill Essential Oil and Its Nanoemulsion Using Ultrasound. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|
15
|
Gürbüz M, İrem Omurtag Korkmaz B. The anti-campylobacter activity of eugenol and its potential for poultry meat safety: A review. Food Chem 2022; 394:133519. [PMID: 35749879 DOI: 10.1016/j.foodchem.2022.133519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/04/2022]
Abstract
Poultry is one of the fastest growing industries due to advantages in land use, rapid production and advances in feed technology. The rising trend in the consumption of poultry meat over the last 50 years has also increased concerns about food safety. Campylobacter jejuniis the leading bacterial cause of gastroenteritis, the foremost cause of foodborne deaths. Despite significant progress in food safety methology, the genusCampylobacter remains a common foodborne pathogen in poultry. Increasing consumer demands for natural products require the discovery of new antimicrobials to ensure the safety of poultry meat. Recent studies have revealed that eugenol acts with antimicrobial activity on a wide variety of foodborne microorganisms. Eugenol is generally recognized as safe and is a promising preservative for the food industry. However, specific applications of eugenol need to be identified and validated to clarify the role of the food preservative in poultry meat safety.
Collapse
Affiliation(s)
- Murat Gürbüz
- Trakya University, Department of Nutrition and Dietetics, Edirne, Turkey.
| | | |
Collapse
|
16
|
Ahmed J, Mulla MZ, Al-Attar H, Jacob H. Comparison of thermo-rheological, microstructural and antimicrobial properties of β- and γ-cyclodextrin inclusion complexes of cinnamon essential oil. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01404-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02797-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Liu Y, Sameen DE, Ahmed S, Wang Y, Lu R, Dai J, Li S, Qin W. Recent advances in cyclodextrin-based films for food packaging. Food Chem 2022; 370:131026. [PMID: 34509938 DOI: 10.1016/j.foodchem.2021.131026] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
Cyclodextrins are garnering increasing attention because they offer several benefits. For instance, cyclodextrins can form several complexes and supramolecular structures not only for food packaging but also for applications in other fields of science. In this review, we discussed the physical and chemical properties of cyclodextrins and the mechanism of their inclusion complex formation. The use of cyclodextrins in various types of food packaging is elaborated upon. We also explain the effects of cyclodextrins on the packaging of fruits, vegetables, meat, fish, and processed foods. Furthermore, some feasible suggestions for future applications are provided. In addition to the positive attributes of cyclodextrins, there are some limitations and drawbacks, which are discussed briefly in this review. In summary, this review can serve as a guide for researchers exploring cyclodextrins for the development of various packaging films.
Collapse
Affiliation(s)
- Yaowen Liu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China; CaliforniaNano Systems Institute, University of California, Los Angeles, CA 90095, USA.
| | - Dur E Sameen
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Saeed Ahmed
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Yue Wang
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Rui Lu
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Jianwu Dai
- Collegeof Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Suqing Li
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Wen Qin
- Collegeof Food Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
19
|
Tiwari S, Upadhyay N, Singh BK, Singh VK, Dubey NK. Facile Fabrication of Nanoformulated Cinnamomum glaucescens Essential Oil as a Novel Green Strategy to Boost Potency Against Food Borne Fungi, Aflatoxin Synthesis, and Lipid Oxidation. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02739-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Yang T, Qin W, Zhang Q, Luo J, Lin D, Chen H. Essential-oil capsule preparation and its application in food preservation: A review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2021934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Tian Yang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Qing Zhang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Junyun Luo
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan, China
| |
Collapse
|
21
|
Tiwari S, Upadhyay N, Singh BK, Singh VK, Dubey NK. Chemically characterized nanoencapsulated Homalomena aromatica Schott. essential oil as green preservative against fungal and aflatoxin B 1 contamination of stored spices based on in vitro and in situ efficacy and favorable safety profile on mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3091-3106. [PMID: 34383211 DOI: 10.1007/s11356-021-15794-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Present study deals with the efficacy of nanoencapsulated Homalomena aromatica essential oil (HAEO) as a potent green preservative against toxigenic Aspergillus flavus strain (AF-LHP-NS 7), storage fungi, AFB1, and free radical-mediated deterioration of stored spices. GC-MS analysis revealed linalool (68.51%) as the major component of HAEO. HAEO was encapsulated into chitosan nanomatrix (CS-HAEO-Ne) and characterized through SEM, FTIR, and XRD. CS-HAEO-Ne completely inhibited A. flavus growth and AFB1 biosynthesis at 1.25 μL/mL and 1.0 μL/mL, respectively in comparison to unencapsulated HAEO (1.75 μL/mL and 1.25 μL/mL, respectively). CS-HAEO-Ne caused significant reduction in ergosterol content in treated A. flavus and provoked leakage of cellular ions (Ca+2, Mg+2, and K+) as well as 260 nm and 280 nm absorbing materials. Depletion of methylglyoxal level in treated A. flavus cells illustrated the novel antiaflatoxigenic efficacy of CS-HAEO-Ne. CS-HAEO-Ne exhibited superior antioxidant efficacy (IC50 (DPPH) = 4.5 μL/mL) over unencapsulated HAEO (IC50 (DPPH) = 15.9 μL/mL) and phenolic content. CS-HAEO-Ne depicted excellent in situ efficacy by inhibiting fungal infestation, AFB1 contamination, lipid peroxidation, and mineral loss with acceptable sensorial profile. Moreover, broad safety paradigm (LD50 value = 7150.11 mg/kg) of CS-HAEO-Ne also suggests its application as novel green preservative to enhance shelf life of stored spices.
Collapse
Affiliation(s)
- Shikha Tiwari
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bijendra Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Centre of Advanced study (CAS) in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
22
|
Abstract
The current consumer demands together with the international regulations have pushed the cosmetic industry to seek new active ingredients from natural renewable sources for manufacturing more eco-sustainability and safe products, with botanical extract being an almost unlimited source of these new actives. Essential oils (EOs) emerge as very common natural ingredients in cosmetics and toiletries as a result of both their odorous character for the design and manufacturing of fragrances and perfumes, and the many beneficial properties of their individual components (EOCs), e.g., anti-inflammatory, antimicrobial and antioxidant properties, and, nowadays, the cosmetic industry includes EOs or different mixtures of their individual components (EOCs), either as active ingredients or as preservatives, in various product ranges (e.g., moisturizers, lotions and cleanser in skin care cosmetics; conditioners, masks or antidandruff products in hair care products; lipsticks, or fragrances in perfumery). However, the unique chemical profile of each individual essential oil is associated with different benefits, and hence it is difficult to generalize their potential applications in cosmetics and toiletries, which often require the effort of formulators in seeking suitable mixtures of EOs or EOCs for obtaining specific benefits in the final products. This work presents an updated review of the available literature related to the most recent advances in the application of EOs and EOCs in the manufacturing of cosmetic products. Furthermore, some specific aspects related to the safety of EOs and EOCs in cosmetics will be discussed. It is expected that the information contained in this comprehensive review can be exploited by formulators in the design and optimization of cosmetic formulations containing botanical extracts.
Collapse
|
23
|
Preparation and characterization of tea tree oil/ hydroxypropyl-β-cyclodextrin inclusion complex and its application to control brown rot in peach fruit. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Mahdi AA, Al-Maqtari QA, Mohammed JK, Al-Ansi W, Cui H, Lin L. Enhancement of antioxidant activity, antifungal activity, and oxidation stability of Citrus reticulata essential oil nanocapsules by clove and cinnamon essential oils. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101226] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
Preparation and characterization of a sustained-release bio-preservative based on β-cyclodextrin encapsulated eugenol. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Cyclodextrin Monomers and Polymers for Drug Activity Enhancement. Polymers (Basel) 2021; 13:polym13111684. [PMID: 34064190 PMCID: PMC8196804 DOI: 10.3390/polym13111684] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cyclodextrins (CDs) and cyclodextrin (CD)-based polymers are well-known complexing agents. One of their distinctive features is to increase the quantity of a drug in a solution or improve its delivery. However, in certain instances, the activity of the solutions is increased not only due to the increase of the drug dose but also due to the drug complexation. Based on numerous studies reviewed, the drug appeared more active in a complex form. This review aims to summarize the performance of CDs and CD-based polymers as activity enhancers. Accordingly, the review is divided into two parts, i.e., the effect of CDs as active drugs and as enhancers in antimicrobials, antivirals, cardiovascular diseases, cancer, neuroprotective agents, and antioxidants.
Collapse
|
27
|
Combination Therapy Involving Lavandula angustifolia and Its Derivatives in Exhibiting Antimicrobial Properties and Combatting Antimicrobial Resistance: Current Challenges and Future Prospects. Processes (Basel) 2021. [DOI: 10.3390/pr9040609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial resistance (AMR) has been identified as one of the biggest health threats in the world. Current therapeutic options for common infections are markedly limited due to the emergence of multidrug resistant pathogens in the community and the hospitals. The role of different essential oils (EOs) and their derivatives in exhibiting antimicrobial properties has been widely elucidated with their respective mechanisms of action. Recently, there has been a heightened emphasis on lavender essential oil (LEO)’s antimicrobial properties and wound healing effects. However, to date, there has been no review published examining the antimicrobial benefits of lavender essential oil, specifically. Previous literature has shown that LEO and its constituents act synergistically with different antimicrobial agents to potentiate the antimicrobial activity. For the past decade, encapsulation of EOs with nanoparticles has been widely practiced due to increased antimicrobial effects and greater bioavailability as compared to non-encapsulated oils. Therefore, this review intends to provide an insight into the different aspects of antimicrobial activity exhibited by LEO and its constituents, discuss the synergistic effects displayed by combinatory therapy involving LEO, as well as to explore the significance of nano-encapsulation in boosting the antimicrobial effects of LEO; it is aimed that from the integration of these knowledge areas, combating AMR will be more than just a possibility.
Collapse
|
28
|
Clercq S, Temelli F, Badens E. In-Depth Study of Cyclodextrin Complexation with Carotenoids toward the Formation of Enhanced Delivery Systems. Mol Pharm 2021; 18:1720-1729. [PMID: 33656347 DOI: 10.1021/acs.molpharmaceut.0c01227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of this study was molecular modeling of cyclodextrin (CD) and carotenoid complex formation. Distinction was made between complexes resulting from interactions between carotenoids and either molecularly dispersed CDs or solid crystalline CDs, considering that both cases can occur depending on the complex formation process pathways. First, the formation of complexes from dispersed CD molecules was investigated considering five different CDs (αCD, βCD, methyl-βCD, hydroxypropyl-βCD, and γCD) and lutein, as a model carotenoid molecule. The interactions involved and the stability of the different complexes formed were evaluated according to the CD size and steric hindrance. Second, the formation of complexes between four different crystalline CDs (βCD with three different water contents and methyl-βCD) and three carotenoid molecules (lutein, lycopene, and β-carotene) was studied. The docking/adsorption of the carotenoid molecules was modeled on the different faces of the CD crystals. The findings highlight that all the CD faces, and thus their growth rates, were equally impacted by the adsorption of the carotenoids. This is due to the fact that all the CD faces are exhibiting similar chemical compositions, the three studied carotenoid molecules are rather chemically similar, and last, the water-carotenoid interactions appear to be weak compared to the CD-carotenoid interactions.
Collapse
Affiliation(s)
- Sébastien Clercq
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France.,Cristolab, 15 rue de la poutre, 13800 Istres, France
| | - Feral Temelli
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5
| | - Elisabeth Badens
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2 UMR 7340, 13451 Marseille, France
| |
Collapse
|
29
|
Eugenol-Containing Essential Oils Loaded onto Chitosan/Polyvinyl Alcohol Blended Films and Their Ability to Eradicate Staphylococcus aureus or Pseudomonas aeruginosa from Infected Microenvironments. Pharmaceutics 2021; 13:pharmaceutics13020195. [PMID: 33540524 PMCID: PMC7912801 DOI: 10.3390/pharmaceutics13020195] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic wounds (CW) create numerous entryways for pathogen invasion and prosperity, further damaging host tissue and hindering its remodeling and repair. Essential oils (EOs) exert quick and efficient antimicrobial (AM) action, unlikely to induce bacterial resistance. Cinnamon leaf and clove oils (CLO and CO) display strong AM activity, namely against Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan (CS) is a natural and biodegradable cationic polysaccharide, also widely known for its AM features. CS and poly (vinyl alcohol) (PVA) films were prepared (ratio 30/70 w/w; 9 wt%) by the solvent casting and phase inversion method. The film's thermal stability and chemical composition data reinforced polymer blending and EO entrapment. Films were supplemented with 1 and 10 wt% of EO in relation to total polymeric mass. The film thickness and degree of swelling (DS) tended to increase with EO content, particularly with 10 wt % CLO (* p < 0.05). UV-visible absorbance scans in the 250-320 cm-1 region confirmed the successful uptake of CLO and CO into CS/PVA films, particularly with films loaded with 10 wt% EO that contained 5.30/5.32 times more CLO/CO than films supplemented with 1 wt% EO. AM testing revealed that CS films alone were effective against both bacteria and capable of eradicating all P. aeruginosa within the hour (*** p < 0.001). Still, loaded CS/PVA films showed significantly improved AM traits in relation to unloaded films within 2 h of contact. This study is a first proof of concept that CLO and CO can be dispersed into CS/PVA films and show bactericidal effects, particularly against S. aureus, this way paving the way for efficient CW therapeutics.
Collapse
|
30
|
Campelo MDS, Melo EO, Arrais SP, Nascimento FBSAD, Gramosa NV, Soares SDA, Ribeiro MENP, Silva CRD, Júnior HVN, Ricardo NMPS. Clove essential oil encapsulated on nanocarrier based on polysaccharide: A strategy for the treatment of vaginal candidiasis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
|
32
|
Main Applications of Cyclodextrins in the Food Industry as the Compounds of Choice to Form Host-Guest Complexes. Int J Mol Sci 2021; 22:ijms22031339. [PMID: 33572788 PMCID: PMC7866268 DOI: 10.3390/ijms22031339] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/23/2021] [Indexed: 11/16/2022] Open
Abstract
Cyclodextrins (CDs) are cyclic oligomers broadly used in food manufacturing as food additives for different purposes, e.g., to improve sensorial qualities, shelf life, and sequestration of components. In this review, the latest advancements of their applications along with the characteristics of the uses of the different CDs (α, β, γ and their derivatives) were reviewed. Their beneficial effects can be achieved by mixing small amounts of CDs with the target material to be stabilized. Essentially, they have the capacity to form stable inclusion complexes with sensitive lipophilic nutrients and constituents of flavor and taste. Their toxicity has been also studied, showing that CDs are innocuous in oral administration. A review of the current legislation was also carried out, showing a general trend towards a wider acceptance of CDs as food additives. Suitable and cost-effective procedures for the manufacture of CDs have progressed, and nowadays it is possible to obtain realistic prices and used them in foods. Therefore, CDs have a promising future due to consumer demand for healthy and functional products.
Collapse
|
33
|
Hu J, Du P, Liu S, Liu Q, Deng W. Comparative study on the effect of two drying methods on the guest encapsulation behavior of osmanthus flavor‐2‐hydroxypropyl‐β‐cyclodextrin inclusion complex. FLAVOUR FRAG J 2020. [DOI: 10.1002/ffj.3619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Hu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai P. R. China
- Department of Chemical Engineering Parkville Victoria Australia
| | - Peiting Du
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai P. R. China
| | - Shanshan Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai P. R. China
| | - Qinghe Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai P. R. China
| | - Weijun Deng
- School of Chemical and Environmental Engineering Shanghai Institute of Technology Shanghai P. R. China
| |
Collapse
|
34
|
Sedaghat Doost A, Nikbakht Nasrabadi M, Kassozi V, Nakisozi H, Van der Meeren P. Recent advances in food colloidal delivery systems for essential oils and their main components. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.037] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Essential Oils-Loaded Electrospun Biopolymers: A Future Perspective for Active Food Packaging. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/9040535] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The growth of global food demand combined with the increased appeal to access different foods from every corner of the globe is forcing the food industry to look for alternative technologies to increase the shelf life. Essential oils (EOs) as naturally occurring functional ingredients have shown great prospects in active food packaging. EOs can inhibit the growth of superficial food pathogens, modify nutritious values without affecting the sensory qualities of food, and prolong the shelf life when used in food packaging as an active ingredient. Since 2016, various reports have demonstrated that combinations of electrospun fibers and encapsulated EOs could offer promising results when used as food packaging. Such electrospun platforms have encapsulated either pure EOs or their complexation with other antibacterial agents to prolong the shelf life of food products through sustained release of active ingredients. This paper presents a comprehensive review of the essential oil-loaded electrospun fibers that have been applied as active food packaging material.
Collapse
|
36
|
Water-soluble complexes of orange pigments from Monascus sp. with HP-β-CD: Preparation, inclusion mechanism, and improved stability. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Khatun B, Baishya P, Ramteke A, Maji TK. Study of the complexation of structurally modified curcumin with hydroxypropyl beta cyclodextrin and its effect on anticancer activity. NEW J CHEM 2020. [DOI: 10.1039/c9nj04408f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study aims at modifying curcumin to curcumin pyrazole and complexing it with HPβCD employing a simple protocol to improve curcumin's chemical–physical properties and biological activities.
Collapse
Affiliation(s)
- Bably Khatun
- Department of Chemical Sciences
- Tezpur University
- Napaam
- Tezpur
- India
| | - Pitambar Baishya
- Department of Molecular Biology & Biotechnology
- Tezpur University
- Napaam
- Tezpur
- India
| | - Anand Ramteke
- Department of Molecular Biology & Biotechnology
- Tezpur University
- Napaam
- Tezpur
- India
| | - T. K. Maji
- Department of Chemical Sciences
- Tezpur University
- Napaam
- Tezpur
- India
| |
Collapse
|
38
|
Buendía−Moreno L, Sánchez−Martínez MJ, Antolinos V, Ros−Chumillas M, Navarro−Segura L, Soto−Jover S, Martínez−Hernández GB, López−Gómez A. Active cardboard box with a coating including essential oils entrapped within cyclodextrins and/or halloysite nanotubes. A case study for fresh tomato storage. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106763] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Yang W, Wang L, Ban Z, Yan J, Lu H, Zhang X, Wu Q, Aghdam MS, Luo Z, Li L. Efficient microencapsulation of Syringa essential oil; the valuable potential on quality maintenance and storage behavior of peach. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Su Z, Qin Y, Zhang K, Bi Y, Kong F. Inclusion Complex of Exocarpium Citri Grandis Essential Oil with β-Cyclodextrin: Characterization, Stability, and Antioxidant Activity. J Food Sci 2019; 84:1592-1599. [PMID: 31162880 DOI: 10.1111/1750-3841.14623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/17/2019] [Accepted: 03/26/2019] [Indexed: 11/30/2022]
Abstract
The purpose of this study was to produce and characterize an inclusion complex between β-cyclodextrin (β-CD) and Exocarpium Citri Grandis essential oil (EEO), and to evaluate its antioxidant properties. The volatile compounds of EEO were characterized by gas chromatography-mass spectrometer. A comparison of the β-CD, EEO, and the physical mixture with the inclusion complex revealed differences in their thermal stabilities and morphologies, which confirmed the formation of the β-CD-EEO inclusion complex. Complexed with β-CD, the β-CD-EEO inclusion complex showed a higher stability and antioxidant activity when compared with physical mixture and EEO. Therefore, β-CD can be used to form inclusion complexes with EEO to expand its potential applications in the food and drug industries. PRACTICAL APPLICATION: Exocarpium Citri Grandis is rich in essential oil and other ingredients. The optimized extraction, constituent composition, and encapsulation of EEO in β-CD were investigated in this study. The results showed that the encapsulation process increased the antioxidant activity and stability of EEO, which provides both fundamental and practical knowledge for the application of EEO in the food and drug industries.
Collapse
Affiliation(s)
- Zhipeng Su
- School of Pharmacy, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Yaru Qin
- School of Pharmacy, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Kai Zhang
- School of Pharmacy, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Yongguang Bi
- School of Pharmacy, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China
| | - Fansheng Kong
- School of Pharmacy, Guangdong Pharmaceutical Univ., Guangzhou, 510006, China.,School of Food Science and Engineering, South China Univ. of Technology, Guangzhou, 560640, China
| |
Collapse
|
41
|
Mokhtar MS, Suliman FO, Elbashir AA. Investigation of inclusion complexes of ametryne and atrazine with cucurbit[n]urils (n = 6–8) using experimental and theoretical techniques. J INCL PHENOM MACRO 2019. [DOI: 10.1007/s10847-019-00884-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Radünz M, da Trindade MLM, Camargo TM, Radünz AL, Borges CD, Gandra EA, Helbig E. Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem 2019; 276:180-186. [DOI: 10.1016/j.foodchem.2018.09.173] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 09/30/2018] [Indexed: 11/15/2022]
|
43
|
de Medeiros JAS, Blick AP, Galindo MV, Alvim ID, Yamashita F, Ueno CT, Shirai MA, Grosso CRF, Corradini E, Sakanaka LS. Incorporation of Oregano Essential Oil Microcapsules in Starch-Poly (Butylene Adipate Co-Terephthalate) (PBAT) Films. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/masy.201800052] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Ana Paula Blick
- Londrina State University − Department of Food Science and Technology Londrina; Parana Brazil
| | - Marcella V. Galindo
- Federal University of Technology of Paraná − Department of Food Technology; Londrina Parana Brazil
| | - Izabela D. Alvim
- Institute of Food Technology − Bakery and Confectionary Technology Center; Londrina Parana Brazil
| | - Fabio Yamashita
- Londrina State University − Department of Food Science and Technology Londrina; Parana Brazil
| | - Cláudio Takeo Ueno
- Federal University of Technology of Paraná − Department of Food Technology; Londrina Parana Brazil
| | - Marianne Ayumi Shirai
- Federal University of Technology of Paraná − Postgraduate Program in Food Technology; Londrina Parana Brazil
| | | | - Elisângela Corradini
- Federal University of Technology of Paraná − Postgraduate Program in Materials Science and Engineering; Londrina Parana Brazil
| | - Lyssa Setsuko Sakanaka
- Federal University of Technology of Paraná − Postgraduate Program in Food Technology; Londrina Parana Brazil
| |
Collapse
|
44
|
Benyacoub A, Skender A, Boutemak K, Hadj-Ziane-Zafour A. Inclusion complexes of Melia azedarach L. seed oil/β-cyclodextrin polymer: preparation and characterization. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0600-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
45
|
Environmentally friendly platforms for encapsulation of an essential oil: Fabrication, characterization and application in pests control. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Preparation and Properties of Ginger Essential Oil β-Cyclodextrin/Chitosan Inclusion Complexes. COATINGS 2018. [DOI: 10.3390/coatings8090305] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The ginger essential oil/β-cyclodextrin (GEO/β-CD) composite, ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) particles and ginger essential oil/β-cyclodextrin/chitosan (GEO/β-CD/CTS) microsphere were prepared with the methods of inclusion, ionic gelation and spray drying. Their properties were studied by using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermo-gravimetry analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The results showed that the particle size of GEO/β-CD composite was smaller than that of β-CD and GEO/β-CD/CTS particles were loose and porous, while the microsphere obtained by spray drying had certain cohesiveness and small particle size. Besides, results also indicated that β-CD/CTS could modify properties and improve the thermal stability of GEO, which would improve its application value in food and medical industries.
Collapse
|
47
|
Ma S, Zhao Z, Liu P. Optimization of preparation process of β-cyclodextrin inclusion compound of clove essential oil and evaluation of heat stability and antioxidant activities in vitro. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2018. [DOI: 10.1007/s11694-018-9820-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Celebioglu A, Yildiz ZI, Uyar T. Fabrication of Electrospun Eugenol/Cyclodextrin Inclusion Complex Nanofibrous Webs for Enhanced Antioxidant Property, Water Solubility, and High Temperature Stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:457-466. [PMID: 29251511 DOI: 10.1021/acs.jafc.7b04312] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this study, inclusion complexes (IC) of three cyclodextrin derivatives (HP-β-CD, HP-γ-CD, and M-β-CD) with eugenol (essential oil compound) were formed in highly concentrated aqueous solutions and then transformed into self-standing functional nanofibrous webs by electrospinning. The improved aqueous solubility of eugenol was confirmed by phase solubility diagrams, in addition, the phase solubility tests also revealed 1:1 molar ratio complexation between host:guest molecules; CD:eugenol. Even though eugenol has a volatile nature, a large amount of eugenol (∼70-95%) was preserved in eugenol/cyclodextrin inclusion complex nanofibrous webs (eugenol/CD/IC-NW). Moreover, enhanced thermal stability of eugenol was recorded for eugenol/CD/IC-NW (up to ∼310 °C) when compared to pure form of eugenol (up to ∼200 °C). The eugenol/CD/IC-NW exhibited fast dissolving behavior in water, contrary to poorly water-soluble eugenol. It was observed that the complexation between M-β-CD and eugenol was the strongest when compared to other two host CD molecules (HP-β-CD and HP-γ-CD) for eugenol/CD/IC-NW samples. The electrospun eugenol/CD/IC-NW samples have shown enhanced antioxidant activity compared to pure form of eugenol. In summary, cyclodextrin inclusion complexes of essential oil compounds, such as eugenol, in the form of self-standing nanofibrous webs may have potentials for food and oral-care applications due to their particularly large surface area along with fast-dissolving character, improved water solubility, high temperature stability, and enhanced antioxidant activity.
Collapse
Affiliation(s)
- Asli Celebioglu
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Zehra Irem Yildiz
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| | - Tamer Uyar
- Institute of Materials Science & Nanotechnology, UNAM-National Nanotechnology Research Center, Bilkent University , Ankara 06800, Turkey
| |
Collapse
|
49
|
Vinceković M, Viskić M, Jurić S, Giacometti J, Bursać Kovačević D, Putnik P, Donsì F, Barba FJ, Režek Jambrak A. Innovative technologies for encapsulation of Mediterranean plants extracts. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|