1
|
Okonkwo CE, Olaniran AF, Esua OJ, Elijah AO, Erinle OC, Afolabi YT, Olajide OP, Iranloye YM, Zhou C. Synergistic effect of drying methods and ultrasonication on natural deep eutectic solvent extraction of phytochemicals from African spinach (Amaranthus hybridus) stem. J Food Sci 2024. [PMID: 39331045 DOI: 10.1111/1750-3841.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024]
Abstract
The study evaluated the combined effects of drying methods (air drying [AD], hot AD [HAD], microwave drying [MD], and freeze-drying [FD]) and ultrasonication parameters (sonication temperature [STemp]: 40, 50, and 60°C) and heating time (STime: 60 and 120 min) on natural deep eutectic solvent (NADES) extraction of phytochemicals from Amaranthus hybridus stem. Increasing the STemp increased the extraction yield (ECY) of the phytochemicals for all drying methods but increase in the heating time reduced the ECY slightly. MD combined with 60°C ST showed the highest ECY (53%), whereas HAD combined with 40°C ST had the lowest ECY (18%). At 60 min heating time, increasing the ST from 40 to 50°C increased the total phenolic content (TPC) in the extract for most drying methods except MD, and a sonication time of 120 min showed a slightly higher TPC, especially for MD samples. At 60 min sonication, total flavonoid content (TFC, 800 mgQE/g) was highest for AD plus 50°C ST and lowest for AD combined with 60°C (100 mgQE/g), whereas for 120 min sonication, MD and AD with 50°C showed the highest TFC (690 mgQE/g). FD retained better some of the vitamins (thiamine, riboflavin, niacin) but MD retained better vitamin C. The antioxidant capacity was not so much different among the drying methods except for FD, which showed lower values. These results provide a theoretical basis for the synergistic applications of drying and ultrasonication during NADES extraction of phytochemicals from Amaranthus hybridus.
Collapse
Affiliation(s)
- Clinton E Okonkwo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science, College of Food and Agriculture, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abiola F Olaniran
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, Faculty of Engineering, University of Uyo, Uyo, Nigeria
- Organization of African Academic Doctors (OAAD), Nairobi, Kenya
| | - Adeoye O Elijah
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Oluwakemi C Erinle
- Department of Agricultural and Biosystems Engineering, College of Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Yemisi Tokunbo Afolabi
- In, dustrial Chemistry Programme, Department of Physical Sciences, College of Pure and Applied Sciences, Landmark University, Omu Aran, Nigeria
| | | | - Yetunde Mary Iranloye
- Department of Food Science and Microbiology, College of Pure and Applied Science, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
2
|
Chaji S, Zenasni W, Ouaabou R, Ajal EA, Lahlali R, Fauconnier ML, Hanine H, Černe M, Pasković I, Merah O, Bajoub A. Nutrient and Bioactive Fraction Content of Olea europaea L. Leaves: Assessing the Impact of Drying Methods in a Comprehensive Study of Prominent Cultivars in Morocco. PLANTS (BASEL, SWITZERLAND) 2024; 13:1961. [PMID: 39065489 PMCID: PMC11281108 DOI: 10.3390/plants13141961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
This study explores the potential of olive leaves, long integral to Mediterranean traditional medicine, as a rich source of valuable compounds. The challenge lies in their considerable water content, hindering these compounds' full valorization. Four drying methods (air-drying, oven-drying, freeze-drying and solar-drying) were investigated for their impact on nutrient and bioactive compound content in the leaves of four olive varieties ("Arbequina", "Koroneiki", "Menara" and "Picholine Marocaine") cultivated in Morocco. In their fresh state, "Picholine Marocaine" exhibited the highest protein levels (6.11%), "Arbequina" had the highest phenolic content (20.18 mg gallic acid equivalents/g fresh weight (FW)), and "Koroneiki" and "Menara" were highest in flavonoids (3.28 mg quercetin equivalents/g FW). Specific drying methods proved optimal for different varieties. Oven-drying at 60 °C and 70 °C effectively preserved protein, while phenolic content varied with drying conditions. Air-drying and freeze-drying demonstrated effectiveness for flavonoids. In addition, an analytical approach using high-performance liquid chromatography and diode array detection (HPLC-DAD) was applied to investigate the effects of the different drying methods on the bioactive fraction of the analyzed samples. The results showed qualitative and quantitative differences depending on both the variety and the drying method used. A total of 11 phenolic compounds were tentatively identified, with oleuropein being the most abundant in all the samples analyzed. The freeze-dried samples showed the highest content of oleuropein in the varieties "Arbequina" and "Picholine Marocaine" compared to the other methods analyzed. In contrast, "Koroneiki" and "Menara" had higher oleuropein content when air dried. Overall, the obtained results highlight the importance of tailored drying techniques for the preservation of nutrients and bioactive compounds in olive leaves.
Collapse
Affiliation(s)
- Salah Chaji
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
- Laboratory of Bioprocess and Bio-Interfaces, Faculty of Science and Techniques, University Sultan Moulay Slimane, B.P. 523, M’Ghila, Beni Mellal 23000, Morocco
| | - Walid Zenasni
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
| | - Rachida Ouaabou
- Laboratory of Research and Development in Engineering Sciences, Faculty of Sciences and Techniques Al Hoceima, Abdelmalek Essaadi University, B.P. 34, Al-Hoceima 32003, Morocco
| | - El Amine Ajal
- UPR of Pharmacognosy, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, B.P. 6203, Rabat 10000, Morocco
| | - Rachid Lahlali
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro Biotech, University of Liege, 5030 Gembloux, Belgium;
| | - Hafida Hanine
- Laboratory of Bioprocess and Bio-Interfaces, Faculty of Science and Techniques, University Sultan Moulay Slimane, B.P. 523, M’Ghila, Beni Mellal 23000, Morocco
| | - Marko Černe
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.Č.); (I.P.)
| | - Igor Pasković
- Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia; (M.Č.); (I.P.)
| | - Othmane Merah
- Laboratoire de Chimie Agro-Industrielle (LCA), Institut National de Recherche Agronomique et Environnement (INRAE), Institut National Polytechnique de Toulouse (INPT), Université de Toulouse, 31030 Toulouse, France
- Département Génie Biologique, Institut Universitaire de Technologie Paul Sabatier, Université Paul Sabatier, 32000 Auch, France
| | - Aadil Bajoub
- Laboratory of Food and Food By-Products Chemistry and Processing Technology, National School of Agriculture in Meknès, km 10, Haj Kaddour Road, B.P. S/40, Meknès 50001, Morocco (R.L.)
- Department of Analytical Chemistry, Faculty of Science, University of Granada, Ave. Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Forgione G, De Cristofaro GA, Sateriale D, Pagliuca C, Colicchio R, Salvatore P, Paolucci M, Pagliarulo C. Pomegranate Peel and Olive Leaf Extracts to Optimize the Preservation of Fresh Meat: Natural Food Additives to Extend Shelf-Life. Microorganisms 2024; 12:1303. [PMID: 39065075 PMCID: PMC11278528 DOI: 10.3390/microorganisms12071303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Quality and safety are one of the main concerns of the European Union in food preservation. Using chemical additives extends the shelf-life of fresh foods but raises consumer's concerns about the potential long-term carcinogenic effects. Using natural substances derived from agro-industrial by-products, which have significant antimicrobial and antioxidant activities, could extend the shelf-life of fresh foods such as meat. Furthermore, they can provide nutritional improvements without modifying organoleptic properties. This study analyzes the antimicrobial activity of pomegranate peel extract (PPE) and the antioxidant activity of olive leaf extract (OLE), added at concentrations of 10 mg g-1 and 0.25 mg g-1, respectively, to minced poultry and rabbit meat. PPE exhibited in vitro antimicrobial activity against foodborne pathogens starting at 10 mg/well. PPE and OLE determined a reduction in colony count over a storage period of 6 days at 4 °C. Additionally, the combination of PPE and OLE showed antioxidant effects, preserving lipid oxidation and maintaining pH levels. The obtained results demonstrate that PPE and OLE can be recommended as food additives to preserve the quality and extend the shelf-life of meat products.
Collapse
Affiliation(s)
- Giuseppina Forgione
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Giuseppa Anna De Cristofaro
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Daniela Sateriale
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Chiara Pagliuca
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy; (C.P.); (R.C.); (P.S.)
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy; (C.P.); (R.C.); (P.S.)
| | - Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy; (C.P.); (R.C.); (P.S.)
- CEINGE-Biotecnologie Avanzate s.c.ar.l., via G. Salvatore 486, 80145 Naples, Italy
| | - Marina Paolucci
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| | - Caterina Pagliarulo
- Department of Science and Technology, University of Sannio, via F. De Sanctis Snc, 82100 Benevento, Italy; (G.F.); (G.A.D.C.); (D.S.); (M.P.)
| |
Collapse
|
4
|
Herrera T, Iriondo-DeHond M, Ramos Sanz A, Bautista AI, Miguel E. Effect of Wild Strawberry Tree and Hawthorn Extracts Fortification on Functional, Physicochemical, Microbiological, and Sensory Properties of Yogurt. Foods 2023; 12:3332. [PMID: 37761041 PMCID: PMC10528895 DOI: 10.3390/foods12183332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The composition analyses and health-promoting properties (antioxidant capacity, antidiabetic, and antihypertensive properties) of wild fruit extracts and the effect of the incorporation of strawberry tree (STE) and hawthorn (HTE) extracts on the physicochemical, instrumental textural, microbiological, and sensory parameters of yogurts were evaluated. The incorporation of wild fruit extracts in yogurt increased antioxidant and antidiabetic properties (inhibition of digestive α-amylase, α-glucosidase, and lipase enzymatic activities) compared to the control, without decreasing their sensory quality or acceptance by consumers. The hawthorn yogurt (YHTE) showed the highest total phenolic content (TPC) and antioxidant capacity (ABTS and ORAC methods). Yogurts containing wild fruit extracts and dietary fiber achieved high overall acceptance scores (6.16-7.04) and showed stable physicochemical, textural, and microbiological properties. Therefore, the use of wild fruit extracts and inulin-type fructans as ingredients in yogurt manufacture stands as a first step towards the development of non-added sugar dairy foods for sustainable health.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Miguel
- Área de Investigación Agroalimentaria, Instituto Madrileño de Investigación y Desarrollo Rural, Agrario y Alimentario (IMIDRA), 28805 Alcalá de Henares, Spain
| |
Collapse
|
5
|
Chen H, Ma J, Pan D, Diao J, Guo A, Li R, Xiong YL. Concentration-dependent effect of eugenol on porcine myofibrillar protein gel formation. Meat Sci 2023; 201:109187. [PMID: 37086702 DOI: 10.1016/j.meatsci.2023.109187] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
The effects of different concentrations of eugenol (EG = 0, 5, 10, 20, 50, and 100 mg/g protein) on the structural properties and gelling behavior of myofibrillar proteins (MPs) were investigated. The interaction of EG and MPs decreased free thiol and amine content, and reduced tryptophan fluorescence intensity and thermal stability, but enhanced surface hydrophobicity and aggregation of MPs. Compared with the control (EG free), the MPs' gels treated with 5 and 10 mg/g of EG had a higher storage modulus, compressive strength, and less cooking loss. A high microscopic density was observed in these EG-treated gels. However, EG at 100 mg/g was detrimental to the gelling properties of the MPs. The results indicate that an EG concentration of 20 mg/g is a turning point, i.e., below 20 mg/g, EG promoted MPs gelation, but above 20 mg/g, it impeded gelation by interfering with protein network formation. The EG modification of MPs could provide a novel ingredient strategy to improve the texture of comminuted meat products.
Collapse
Affiliation(s)
- Hongsheng Chen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China.
| | - Jinming Ma
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Deyin Pan
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Jingjing Diao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China; China-Canada Cooperation Agri-Food Research Center of Heilongjiang Province, Daqing, Heilongjiang 163319, China
| | - Anqi Guo
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | - Runnan Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|
6
|
Dash KK, Bhagya Raj GVS. Ultrasound assisted microwave vacuum drying of persimmon fruit: Modeling by artificial neural network and optimization by genetic algorithm. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Kshirod Kumar Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET) Malda India
| | - G. V. S. Bhagya Raj
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology (GKCIET) Malda India
| |
Collapse
|
7
|
The Use of D-Optimal Mixture Design in Optimizing Formulation of a Nutraceutical Hard Candy. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7510452. [PMID: 36968159 PMCID: PMC10033211 DOI: 10.1155/2023/7510452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/17/2023]
Abstract
The aim of this study was to optimize the formulation of hard candy with antiviral herbal extracts and flowered with Citrus limon peel essential oils. To substitute water fraction, the D-optimal mixture design was used. The optimized mixture fractions of the best hard candy formulation contain Curcuma longa extract (10%), Artemisia herba-alba Asso extract (3.33%), Glycyrrhiza glabra extract (1.66%), and Zingiber officinale extract (1.66%) and flowered by 20 μL/100 gram of Citrus limon essential oils. The effect of the addition had been investigated on the sensory, physicochemical, and phytochemical of the hard candy according to the optimal formulation. The main component of Citrus limon essential oil is limonene (52.47%), which has a pleasant lemon fragrance. The mixture of herbal extract added increased the total phenols, the flavonoid, and the ash content of the formulated hard candy (
mg GAE/g,
mg CE/g, and
, respectively). The measurement of the DPPH free radical activity reveals a good antioxidant activity (26.4%). Furthermore, the sensory analysis has shown a good appreciation. Thus, formulated hard candy is a sensorially and therapeutically interesting product.
Collapse
|
8
|
Dash KK, Boro S, Bhagya Raj GVS. Effect of ultrasound pretreatment and microwave vacuum drying in the production of dried poniol fruit. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- K. K. Dash
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Narayanpur, Malda West Bengal India
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
| | - Sibo Boro
- Department of Food Engineering and Technology Tezpur University Tezpur Assam India
| | - G. V. S. Bhagya Raj
- Department of Food Processing Technology Ghani Khan Choudhury Institute of Engineering and Technology Narayanpur, Malda West Bengal India
| |
Collapse
|
9
|
Pyrka I, Mantzouridou FT, Nenadis N. Optimization of olive leaves' thin layer, intermittent near-infrared-drying. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2022.103264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Souiy Z, Zakhama N, Cheraief I, Hammami M. Nutritional, physical, microbial, and sensory characteristics of gluten-and sugar-free cereal bar enriched with spirulina and flavored with neroli essential oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Guamán-Balcázar MDC, Montes A, Valor D, Coronel Y, De los Santos DM, Pereyra C, Martínez de la Ossa EJ. Inclusion of Natural Antioxidants of Mango Leaves in Porous Ceramic Matrices by Supercritical CO 2 Impregnation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5934. [PMID: 36079317 PMCID: PMC9457324 DOI: 10.3390/ma15175934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Mango is one of the most important, medicinal tropical plants in the world from an economic point of view due to the presence of effective bioactive substances as co-products in its leaves. The aim of this work was to enhance the impregnation of natural antioxidants from mango leaves into a porous ceramic matrix. The effects of pressure, temperature, impregnation time, concentration of the extract and different porous silica on impregnation of phenolic compounds and antioxidant activity were analyzed. The volume of the pressurized fluid extract and amount of porous ceramic matrix remained constant. The best impregnation conditions were obtained at 6 h, 300 bar, 60 mg/mL, 35 °C and with MSU-H porous silica. The results indicated that increasing the pressure, concentration of the extract and temperature during impregnation with phenolic compounds such as gallic acid and iriflophenone 3-C (2-O-p-hydroxybenzolyl)-β-D-glucoside increased the antioxidant activity and the amount of total phenols.
Collapse
Affiliation(s)
- María del Cisne Guamán-Balcázar
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto sn, AP, Loja 1101608, Ecuador
| | - Antonio Montes
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Diego Valor
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Yorky Coronel
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto sn, AP, Loja 1101608, Ecuador
| | - Desireé M. De los Santos
- Department of Physical Chemistry, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Clara Pereyra
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| | - Enrique J. Martínez de la Ossa
- Department of Chemical Engineering and Food Technology, Faculty of Sciences, University of Cádiz, International Excellence Agrifood Campus (CeiA3), 11510 Puerto Real, Spain
| |
Collapse
|
12
|
Awad AM, Kumar P, Ismail‐Fitry MR, Jusoh S, Ab Aziz MF, Sazili AQ. Overview of plant extracts as natural preservatives in meat. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Pavan Kumar
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Livestock Products Technology College of Veterinary Science Guru Angad Dev Veterinary and Animal Sciences University Ludhiana India
| | - Mohammad Rashedi Ismail‐Fitry
- Department of Food Technology, Faculty of Food Science and Technology Universiti Putra Malaysia UPM Serdang Malaysia
| | - Shokri Jusoh
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Muhamad Faris Ab Aziz
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
| | - Awis Qurni Sazili
- Halal Products Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
- Department of Animal Science, Faculty of Agriculture Universiti Putra Malaysia UPM Serdang Malaysia
- Halal Product Research Institute Universiti Putra Malaysia UPM Serdang Malaysia
| |
Collapse
|
13
|
Qiao J, Lu G, Wu G, Liu H, Wang W, Zhang T, Xie G, Qin M. Influence of different pretreatments and drying methods on the chemical compositions and bioactivities of Smilacis Glabrae Rhizoma. Chin Med 2022; 17:54. [PMID: 35524264 PMCID: PMC9074193 DOI: 10.1186/s13020-022-00614-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background The processing of medicinal plant materials is one of the important factors influencing the components and biological activities of TCMs. Smilax glabra Roxb. is an herbal vine widely distributed in China, and its dried rhizome (Smilacis Glabrae Rhizoma, SGR) is often used in traditional medicines and functional foods. The processing methods of fresh cutting for SGR slices have been included in ancient Chinese herbal works, some local standards of TCMs, and the current Chinese Pharmacopoeia. Nevertheless, to date, the scientific basis for the processing of fresh medicinal materials for SGR slices has not been revealed. Methods To optimize the processing method for preparing SGR slices from the fresh rhizomes, the chemical compositions of the un-pretreated and pretreated (boiling, steaming) samples before and after drying (sun-drying, shade-drying, oven-drying), and the contents of astilbin isomers in dried SGR were analyzed by UHPLC-Q-TOF-MS/MS and UHPLC-DAD methods, respectively. Then, the antioxidant, anti-inflammatory, xanthine oxidase and α-glucosidase inhibitory activities of the prepared SGR slices were investigated by biological assays. Results A total of fifty-two compounds were identified from the un-pretreated and pretreated samples and a total of forty-nine compounds were identified from the subsequently dried samples. After pretreated by boiling and steaming, the contents of neoastilbin, neoisoastilbin, and isoastilbin in the prepared samples all increased. As a quality marker of SGR, the content of astilbin was unchanged or decreased slightly compared with that in the un-pretreated samples. During the drying process, the contents of the four astilbin stereoisomers in the un-pretreated samples increased significantly, while those in the pretreated samples had a slight increase or decrease. The effects of different processing methods were sorted according to the bioactivities of the prepared SGR. As a result, SGR slices prepared with no pretreatment followed by a sun-drying process have a higher astilbin content, better bioactivities and more energy savings, representing the optimum processing method for SGR slices. Conclusions This study reveals the scientific basis for the processing of fresh medicinal materials for SGR slices. The results provide scientific information for the quality control of SGR and its rational applications in herbal medicines and functional foods. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13020-022-00614-7.
Collapse
Affiliation(s)
- Juanjuan Qiao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gengyu Lu
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Gang Wu
- The Teaching Experiments Center of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Liu
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Wanli Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Tianmao Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Guoyong Xie
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
14
|
Raj GVSB, Dash KK. Effect of intermittent microwave convective drying on physicochemical properties of dragon fruit. Food Sci Biotechnol 2022; 31:549-560. [PMID: 35529687 PMCID: PMC9033928 DOI: 10.1007/s10068-022-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 01/15/2022] [Accepted: 02/21/2022] [Indexed: 11/04/2022] Open
Abstract
The study was carried out to investigate the effect of Intermittent microwave convective drying (IMCD) on the overall quality of dried dragon fruit in terms of total phenolic content, color change, and rehydration ratio. Three levels of microwave power (200-600 W) and a temperature of 60 °C for hot air were applied alternately throughout the process with three levels of pulse ratio such as 1:10, 1:20, and 1:40, respectively. The total phenolic content of the dragon fruit slice obtained by IMCD was ranged between 5.750 and 6.575 mg GAE/g dry weight. Within the experimental range of process variables under IMCD conditions, the drying efficiency, color change, and rehydration ratio of the dried dragon fruit slices were 15.287-51.930%, 18.643-24.847, and 1.908-3.239, respectively. The Weibull model scale (α) parameter was found to vary between 27.512 - 498.174 , while the shape (β) parameter was found to vary between 0.769 - 0.851 . The Weibull model parameters were shown to decrease with increasing microwave power at constant pulse ratio. The IMCD method produced a dried dragon fruit slices with reduced color changes and higher total phenolic content and rehydration ratio values. This investigation would contribute to the development of effective drying techniques for increased food quality and product consistency in the drying of diverse fruits and vegetables.
Collapse
Affiliation(s)
- G. V. S. Bhagya Raj
- grid.45982.320000 0000 9058 9832Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
| | - Kshirod K. Dash
- grid.45982.320000 0000 9058 9832Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam 784028 India
- Department of Food Processing Technology, GKCIET, Malda, West Bengal 732141 India
| |
Collapse
|
15
|
Malekjani N, Jafari SM. Valorization of olive processing by-products via drying technologies: a case study on the recovery of bioactive phenolic compounds from olive leaves, pomace, and wastewater. Crit Rev Food Sci Nutr 2022; 63:9797-9815. [PMID: 35475951 DOI: 10.1080/10408398.2022.2068123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Olive by-products are rich sources of phenolic compounds and their valorization is a favorable approach in line with sustainable development goals of the United Nations (UN) organization to promote well-being and production of healthier products; also, to deal with the environmental and economic subjects resulting in more profitability in the olive oil industry. The production of value-added ingredients from these by-products is not extensively exploited on the industrial scale. Drying is a critical pretreatment before extraction that can have a direct impact on the recovery and yield of the available bioactive compounds in olive by-products. In order to produce more stable and high quality phenolic products, encapsulation using spray and freeze drying is used. In this study, the effect of the drying process before and after extraction of bioactive compounds from olive by-products as a valuable source of phenolic compounds is reviewed. In addition, fortification using these ingredients and their incorporation in food formulations is also investigated.
Collapse
Affiliation(s)
- Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| |
Collapse
|
16
|
Cör Andrejč D, Butinar B, Knez Ž, Tomažič K, Knez Marevci M. The Effect of Drying Methods and Extraction Techniques on Oleuropein Content in Olive Leaves. PLANTS (BASEL, SWITZERLAND) 2022; 11:865. [PMID: 35406845 PMCID: PMC9003305 DOI: 10.3390/plants11070865] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Increased demand for olive oil has caused higher quantities of byproducts in olive processing, such as olive leaves, olive skins, and vegetation water. It is well known that olive leaves contain several phenolic compounds, including secoiridoids. Oleuropein is the major secoiridoid in olive leaves. Oleuropein has been found to exhibit antioxidative, antimicrobial, antiviral, and antiatherogenic activities. We studied the effect of extraction techniques and drying methods on oleuropein content in olive leaves of Istrska belica and Lecino cultivar. Three different procedures of drying were used: at room temperature, at 105 °C, and freeze drying. Ethanol-modified supercritical extraction with carbon dioxide, conventional methanol extraction, and ultrasonic extraction with deep eutectic solvent were performed. Antioxidant activity was determined, as well as methanolic and supercritical extracts. The presence of olive polyphenols was confirmed by the HPLC method.
Collapse
Affiliation(s)
- Darija Cör Andrejč
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
| | - Bojan Butinar
- Institute for Oliveculture, Science and Research Centre Koper, SI-6000 Koper, Slovenia;
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| | - Kaja Tomažič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
| | - Maša Knez Marevci
- Faculty of Chemistry and Chemical Engineering, University of Maribor, SI-2000 Maribor, Slovenia; (D.C.A.); (Ž.K.); (K.T.)
- Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia
| |
Collapse
|
17
|
Elnjikkal Jerome R, Dwivedi M. Microwave vacuum drying of pomegranate peel: Evaluation of specific energy consumption and quality attributes by response surface methodology and artificial neural network. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rifna Elnjikkal Jerome
- Department of Food Process Engineering National Institute of Technology Rourkela Rourkela India
| | - Madhuresh Dwivedi
- Department of Food Process Engineering National Institute of Technology Rourkela Rourkela India
| |
Collapse
|
18
|
Innovative Extraction Technologies for Development of Functional Ingredients Based on Polyphenols from Olive Leaves. Foods 2021; 11:foods11010103. [PMID: 35010227 PMCID: PMC8750173 DOI: 10.3390/foods11010103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Olive tree (Olea europea L.) leaves represent around 10% of the total weight of olives arriving at any given mill, which are generally discarded, causing economic and environmental issues. However, these are rich sources of natural bioactive compounds (i.e., polyphenols), which have health-promoting potential. Thus, the valorization of olive leaves by recovering and reusing their components should be a must for food sustainability and circular economy. This review provides an insight into the principal polyphenols present in olive leaves, together with agronomic variables influencing their content. It also summarizes the recent advances in the application of novel extraction technologies that have shown promising extraction efficacy, reducing the volume of extraction solvent and saving time and cost. Moreover, potential industrial uses and international patents filed in the pharmaceutic, food, and cosmetic sectors are discussed.
Collapse
|
19
|
Ru Q, Geng S, Chen C, Liang G, Liu B. Preparation and characterization of β‐carotene nanoemulsions stabilized by complexes of tartary buckwheat bran protein and rutin. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Qianwen Ru
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education Bioengineering CollegeChongqing University Chongqing China
| | - Sheng Geng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education Bioengineering CollegeChongqing University Chongqing China
| | - Chungang Chen
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education Bioengineering CollegeChongqing University Chongqing China
| | - Benguo Liu
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
20
|
Aktepe N, Keskin C, Baran A, Atalar MN, Baran MF, Akmeşe Ş. Biochemical components, enzyme inhibitory, antioxidant and antimicrobial activities in endemic plant
Scilla mesopotamica speta. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Necmettin Aktepe
- Department of Nursing Faculty of Health Sciences University of Mardin Artuklu Mardin Turkey
| | - Cumali Keskin
- Department of Medical Services and Techniques University of Mardin Artuklu Mardin Turkey
| | - Ayşe Baran
- Department of Biology Institute of Science Mardin Artuklu University Mardin Turkey
| | - Mehmet Nuri Atalar
- Department of Biochemistry Faculty of Arts and Science Iğdır University Iğdır Turkey
| | - Mehmet Fırat Baran
- Department of Medical Services and Techniques University of Mardin Artuklu Mardin Turkey
| | - Şükrü Akmeşe
- Program of Pharmacy Services Vocational School of Health ServicesHarran University Şanlıurfa Turkey
| |
Collapse
|
21
|
Huertas-Alonso AJ, Gavahian M, González-Serrano DJ, Hadidi M, Salgado-Ramos M, Sánchez-Verdú MP, Simirgiotis MJ, Barba FJ, Franco D, Lorenzo JM, Moreno A. Valorization of Wastewater from Table Olives: NMR Identification of Antioxidant Phenolic Fraction and Microwave Single-Phase Reaction of Sugary Fraction. Antioxidants (Basel) 2021; 10:antiox10111652. [PMID: 34829523 PMCID: PMC8615242 DOI: 10.3390/antiox10111652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The table olive industry is producing a huge amount of wastewater, which is a post-processing cost and an environmental concern. The present study aims to valorize this processing by-product to obtain a value-added product, thereby enhancing resource efficiency and contributing to achieving sustainable development goals (SDGs). In this sense, a chemical reaction-based platform was developed to obtain valuable components, such as levulinic acid (LA) and 5-hydromethylfurfural (HMF). The products were then analyzed using NMR identification of the antioxidant phenolic fraction and microwave single-phase reaction of the sugary fraction. According to the results, the highest concentration of phenolic compounds does not correspond to the sample directly obtained from NaOH treatment (S1), indicating that water washing steps (S2–S5) are fundamental to recover phenolic substances. Moreover, glucose was presented in the sugary fraction that can be transformed into levulinic acid by a single-phase reaction under microwave irradiation. The information provided in this manuscript suggests that the wastewater from the olive processing industry can be valorized to obtain valuable products.
Collapse
Affiliation(s)
- Alberto J. Huertas-Alonso
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies (San Alberto Magno Building), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; (A.J.H.-A.); (D.J.G.-S.); (M.H.); (M.S.-R.); (M.P.S.-V.)
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan;
| | - Diego J. González-Serrano
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies (San Alberto Magno Building), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; (A.J.H.-A.); (D.J.G.-S.); (M.H.); (M.S.-R.); (M.P.S.-V.)
| | - Milad Hadidi
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies (San Alberto Magno Building), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; (A.J.H.-A.); (D.J.G.-S.); (M.H.); (M.S.-R.); (M.P.S.-V.)
| | - Manuel Salgado-Ramos
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies (San Alberto Magno Building), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; (A.J.H.-A.); (D.J.G.-S.); (M.H.); (M.S.-R.); (M.P.S.-V.)
| | - M. Prado Sánchez-Verdú
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies (San Alberto Magno Building), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; (A.J.H.-A.); (D.J.G.-S.); (M.H.); (M.S.-R.); (M.P.S.-V.)
| | - Mario J. Simirgiotis
- Institute of Pharmacy, Faculty of Sciences, Campus Isla Teja, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain;
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Av. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Correspondence: (D.F.); (A.M.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Av. Galicia No. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Andrés Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies (San Alberto Magno Building), University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain; (A.J.H.-A.); (D.J.G.-S.); (M.H.); (M.S.-R.); (M.P.S.-V.)
- Correspondence: (D.F.); (A.M.)
| |
Collapse
|
22
|
Martiny TR, Dotto GL, Raghavan V, de Moraes CC, da Rosa GS. Freezing effect on the oleuropein content of olive leaves extracts obtained from microwave-assisted extraction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2021; 19:10375-10380. [PMID: 34691198 PMCID: PMC8520335 DOI: 10.1007/s13762-021-03732-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 08/12/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
This work aimed to investigate the effect of freezing on the oleuropein content obtained from olive leaves extracts. The extracts were obtained by microwave-assisted extraction using different solvents, pH, temperatures and microwave irradiation time. Afterward, HPLC was used to identify and quantify the amount of oleuropein in the extracts. A part of the extracts was immediately analyzed, and another was frozen for a week. The experimental results highlighted that the storage condition has a significant (p < 0.05) effect on the oleuropein content. Regardless of the extraction condition, the frozen storage was responsible for a decrease in the oleuropein content, ranging from 5.38 to 70.09%. These results indicate that it is important to consider the degradation of oleuropein in frozen olive leaf extracts so that subsequent applications are suitable.
Collapse
Affiliation(s)
- T. Renata Martiny
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Rio Grande Do Sul 97105-900 Brazil
| | - G. Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Rio Grande Do Sul 97105-900 Brazil
| | - V. Raghavan
- Department of Bioresource Engineering, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9 Canada
| | - C. Costa de Moraes
- Department of Food Engineering, Federal University of Pampa, Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul 1650 Brazil
| | - G. Silveira da Rosa
- Department of Chemical Engineering, Federal University of Pampa, Unipampa, 1650, Maria Anunciação Gomes de Godoy Avenue, Bagé, Rio Grande do Sul Brazil
| |
Collapse
|
23
|
Espeso J, Isaza A, Lee JY, Sörensen PM, Jurado P, Avena-Bustillos RDJ, Olaizola M, Arboleya JC. Olive Leaf Waste Management. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.660582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Olive trees are the oldest known cultivated trees in the world and present-day cultivation is widespread, with an estimated magnitude of 9 million hectares worldwide. As the olive oil industry has continued to grow, so has the environmental impact of olive oil production, such as the energy and water consumption, gas emissions and waste generation. The largest contributor to waste generation are the olive leaves, an abundant and unavoidable byproduct of olive-oil production due to the necessity of tree-pruning. It is estimated that an annual 1.25 million tons of olive leaf waste are generated in Spain alone, around 50% of the total world production. The leaves are currently used for biomass production or animal feed. However, because of their polyphenolic composition, olive leaves have potential in numerous other applications. In this review we analyze the chemical composition of olive leaves, and discuss current processing methods of the olive leaf waste, including thermochemical, biochemical, drying, extraction and condensation methods. We also examine current applications of the treated olive leaves in sectors relating to cattle feed, fertilizers, novel materials, energy generation, and food and pharmaceutical products. The aim of this review is to provide a resource for producers, policy makers, innovators and industry in shaping environmentally sustainable decisions for how olive leaf waste can be utilized and optimized.
Collapse
|
24
|
Martínez-Navarro EM, Cebrián-Tarancón C, Moratalla-López N, Lorenzo C, Alonso GL, Salinas RM. Development and validation of an HPLC-DAD method for determination of oleuropein and other bioactive compounds in olive leaf by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1447-1453. [PMID: 32839982 DOI: 10.1002/jsfa.10758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Oil mills could benefit by preparing their own aqueous extracts from olive leaves. Accordingly, the present study aimed to measure the bioactive compounds richness of such extracts, especially oleuropein. A water-based microwave extraction procedure was developed and a selective and precise high-performance liquid chromatography with diode array detection (HPLC-DAD) method was validated for the determination of oleuropein and others bioactive compounds from olive leaves. RESULTS The water solubility of oleuropein was determined to be 9.5 g L-1 . The extraction procedure was optimized in terms of power, olive leaf weight/water volume ratio and time of extraction, and the results revealed that 2 mg mL-1 and a microwave irradiation at 800 W for 30 s resulted in the greatest efficiency. Oleuropein was determined by the new validation method, which showed good linearity (r2 = 0.996), precision (% relative standard deviation < 10%), recovery (118.6%), and limits of detection (17.48 mg L-1 ) and quantification (21.54 mg L-1 ). Good correlation (r2 = 0.979) was obtained between oleuropein of the olive leaf extracts determined by HPLC-DAD and by UV-visible spectrophotometry. CONCLUSION A simple extraction method was developed and validated to obtain aqueous extract from olive leaves by microwave extraction, determining for the first time oleuropein water solubility. Validation of the method showed that oleuropein in olive leaves could be quantified when it is at least 1% of dry weight by means of HPLC-DAD. UV-visible spectrophotometry can be useful in oil mills because it enables the content of oleuropein and other bioactive compounds content to be determined in situ in such leaf aqueous extracts. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Esther M Martínez-Navarro
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Cristina Cebrián-Tarancón
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Natalia Moratalla-López
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Cándida Lorenzo
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Gonzalo L Alonso
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| | - Rosario M Salinas
- Cátedra de Química Agrícola, Universidad de Castilla-La Mancha, E.T.S.I. Agrónomos y Montes, Albacete, Spain
| |
Collapse
|
25
|
Kasara A, Babar OA, Tarafdar A, Senthilkumar T, Sirohi R, Arora VK. Thin‐layer drying of
sadabahar
(
Catharanthus roseus
) leaves using different drying techniques and fate of bioactive compounds. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Akansha Kasara
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| | - Onkar A. Babar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| | - Ayon Tarafdar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
- Divison of Livestock Production and Management ICAR‐Indian Veterinary Research Institute Izatnagar, Bareilly India
| | - Thangalakshmi Senthilkumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| | - Ranjna Sirohi
- The Centre for Energy and Environmental Sustainability Lucknow UP India
| | - Vinkel Kumar Arora
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat India
| |
Collapse
|
26
|
Phenolic Compounds Obtained from Olea europaea By-Products and their Use to Improve the Quality and Shelf Life of Meat and Meat Products-A Review. Antioxidants (Basel) 2020; 9:antiox9111061. [PMID: 33138148 PMCID: PMC7692586 DOI: 10.3390/antiox9111061] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Consumers are interested in consuming clean label foods. Replacing synthetic additives with natural alternatives (especially sources rich in polyphenols) is a valid solution to produce and also preserve foods, especially meat and meat products. Olea europaea leaves and olive pomace and wastewater contain polyphenols that can be explored in this context. In this review, we summarize the main aspects related to the phenolic composition, extraction conditions, antimicrobial potential, and antioxidant activity (in vitro and in vivo) of Olea europaea leaves, olive pomace and wastewater as well as their applications in the production of meat and meat products. This review found evidence that extracts and isolated polyphenols from the Olea europaea tree and olive processing by-products can be explored as natural antioxidant and antimicrobial additives to improve the preservation of meat and meat products. The polyphenols found in these residues (especially oleuropein, hydroxytyrosol and tyrosol) increased the redox state in the main meat-producing animals and, consequently, the oxidative stability of fresh meat obtained from these animals. Moreover, the extracts and isolated polyphenols also improved the shelf life of fresh meat and meat products (as additive and as active component in film) by delaying the growth of microorganisms and the progression of oxidative reactions during storage. The accumulated evidence supports further investigation as a natural additive to improve the preservation of reformulated muscle products and in the production of edible and sustainable films and coatings for fresh meat and meat products.
Collapse
|
27
|
Yu W, Gao J, Hao R, Yang J, Wei J. Effects of simulated digestion on black chokeberry ( Aronia melanocarpa (Michx.) Elliot) anthocyanins and intestinal flora. Journal of Food Science and Technology 2020; 58:1511-1523. [PMID: 33746279 DOI: 10.1007/s13197-020-04664-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/05/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022]
Abstract
In this study, the changes of anthocyanin content, total phenols, antioxidant capacity, microbiota composition before and after digestion and intestine fermentation in stomach and intestine were studied. The results indicated that after simulated gastrointestinal digestion, compared with the original sample, the total phenol content and anthocyanin content of intestinal digestion group for 2 h (ID 2 group) decreased by 53.64% and 70.45%, respectively, DPPH inhibition rate was 32.75% and T-AOC values of the extracts decreased to 62.89U/mg. The anthocyanins were identified to be composed of cyanidin-3-arabinoside, cyanidin-3-galactoside, cyanidin-3-xyloside, and cyanidin-3-glucoside. Black Chokeberry (Aronia melanocarpa (Michx.) Elliot) anthocyanins significantly increased the relative richness of Bacteroides, promoted the growth of Bifidobacterium, Blautia, Faecalibacterium, and inhibited the growth of Prevotella, Megamonas, Escherichia/Shigella, etc. Anthocyanins have a positive regulatory effect on intestinal flora. These studies also provide essential information for the development of anthocyanin related health care products and drug products.
Collapse
Affiliation(s)
- Wenchen Yu
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jun Gao
- Liaoning Forestry Academy, Shenyang, 110032 China
| | - Ruobing Hao
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jing Yang
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| | - Jie Wei
- School of Life Science, Liaoning University, Chongshan Middle road 66, Huanggu District, Shenyang, 110036 Liaoning China
| |
Collapse
|
28
|
Smart advanced solvents for bioactive compounds recovery from agri-food by-products: A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
de Carvalho FAL, Munekata PES, Lopes de Oliveira A, Pateiro M, Domínguez R, Trindade MA, Lorenzo JM. Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil. Food Res Int 2020; 136:109487. [PMID: 32846569 DOI: 10.1016/j.foodres.2020.109487] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate the effect of turmeric extract as natural antioxidant on modified atmosphere-packaged fresh lamb sausages with fat replacement during storage (2 °C). Five treatments were prepared: control without antioxidant (CONT); with 500 mg/kg sodium erythorbate (E500); and three batches with 250, 500 or 750 mg/kg turmeric extract (T250, T500 and T750), respectively. The proximate composition, pH, color, texture, oxidative stability, sensorial analysis, free fatty acids and volatile compounds of sausages were analyzed. Turmeric extract improved the antioxidant capacity of lamb sausages and also slowed lipid oxidation and the generation of related volatile compounds. Moreover, physic-chemical parameters of lamb sausages were not greatly influenced by turmeric addition and concentration, except for yellow color. All samples were considered acceptable by consumers. These findings showed that turmeric extract is effective against lipid oxidation and could be a good strategy to enhance the shelf life of lamb sausage.
Collapse
Affiliation(s)
- Francisco Allan L de Carvalho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil; Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, 56328-000, Brazil
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Alessandra Lopes de Oliveira
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Marco Antonio Trindade
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
30
|
Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Alcántara C, Žugčić T, Abdelkebir R, García-Pérez JV, Jambrak AR, Lorenzo JM, Collado MC, Granato D, Barba FJ. Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules 2020; 25:molecules25071718. [PMID: 32283592 PMCID: PMC7180590 DOI: 10.3390/molecules25071718] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
Mediterranean plants, such as fig and olive leaves, are well-known to exert beneficial effects in humans because of the presence of a wide range of bioactive compounds. However, scarce information regarding the impact of extraction methods, such as ultrasound and types of solvents, on their profile of antioxidant and anti-inflammatory compounds is provided. In addition, no information is available on the effects of extraction methods and solvents on the inhibition of pathogenic bacteria or promoting probiotic growth. In this scenario, this study was aimed to study the effects of ultrasound-assisted extraction (UAE) and solvent on the phenolic profile (Triple TOF-LC-MS/MS), antioxidant and anti-inflammatory compounds of olive and fig leaves. Results showed that UAE extracted more carotenoids compared to conventional extraction, while the conventional extraction impacted on higher flavonoids (olive leaves) and total phenolics (fig leaves). The antioxidant capacity of aqueous extract of fig leaves was three times higher than the extract obtained with ethanol for conventional extraction and four times higher for UAE. In general terms, hydroethanolic extracts presented the highest bacterial growth inhibition, and showed the highest anti-inflammatory activity. In conclusion, these side streams can be used as sources of bioactive compounds for further development of high-added-value products.
Collapse
Affiliation(s)
- Cristina Alcántara
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 Valencia, Spain;
| | - Tihana Žugčić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.Ž.); (A.R.J.)
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain;
| | - Radhia Abdelkebir
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain;
- Range Ecology Laboratory in the Institute of Arid Regions (IRA) of Medenine, 4100 Medenine, Tunisia
| | - Jose V. García-Pérez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, 46022 Valencia, Spain;
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (T.Ž.); (A.R.J.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Adva. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain;
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Av. Agustin Escardino 7, 46980 Valencia, Spain;
- Correspondence: (M.C.C.); (D.G.); (F.J.B.)
| | - Daniel Granato
- Food Processing and Quality, Production Systems Unit-Natural Resources Institute Finland (Luke)-Tietotie 2, FI-02150 Espoo, Finland
- Correspondence: (M.C.C.); (D.G.); (F.J.B.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Universitat de València, Avda. Vicent Andrés Estellés, 46100 València, Spain;
- Correspondence: (M.C.C.); (D.G.); (F.J.B.)
| |
Collapse
|
32
|
Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn ( Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods 2020; 9:foods9040436. [PMID: 32260449 PMCID: PMC7230283 DOI: 10.3390/foods9040436] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/05/2022] Open
Abstract
Hawthorn belongs to the Crataegus genus of the Rosaceae family and is an important medicinal plant. Due to its beneficial effects on the cardiovascular system and its antioxidant and antimicrobial activity hawthorn has recently become quite a popular herbal medicine in phytotherapy and food applications. In this study, physicochemical characterization (color parameters, pH, titratable acidity, total soluble solids, soluble carbohydrate, total carotenoid, total phenols, and flavonoid contents), antioxidant activity (by ferric-reducing antioxidant power, FRAP assay), and quantification of some individual phenolic compounds of fruits of 15 samples of different hawthorn species (Crataegus spp.) collected from different regions of Iran were investigated. According to findings, the total phenols, total flavonoid content, and antioxidant activity were in the range of 21.19–69.12 mg gallic acid equivalent (GAE)/g dry weight (dw), 2.44–6.08 mg quercetin equivalent (QUE)/g dw and 0.32–1.84 mmol Fe++/g dw, respectively. Hyperoside (0.87–2.94 mg/g dw), chlorogenic acid (0.06–1.16 mg/g dw), and isoquercetin (0.24–1.59 mg/g dw) were found to be the most abundant phenolic compounds in the extracts of hawthorn fruits. The considerable variations in the antioxidant activity and phenolic compounds of hawthorn species were demonstrated by our results. Hence, the evaluation of hawthorn genetic resources could supply precious data for screening genotypes with high bioactive contents for producing natural antioxidants and other phytochemical compounds valuable for food and pharma industries.
Collapse
|
33
|
Consumer Acceptance and Quality Parameters of the Commercial Olive Oils Manufactured with Cultivars Grown in Galicia (NW Spain). Foods 2020; 9:foods9040427. [PMID: 32260195 PMCID: PMC7230829 DOI: 10.3390/foods9040427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Mansa and Brava are olive autochthonous cultivars from Galicia, a new olive-growing zone from NW Spanish, from which high-quality extra virgin olive oils (EVOOs) are obtained. The oils obtained as by co-crushing Mansa and Brava olives in different proportions as by blending with others olives cultivars have different composition that influence in their sensory quality. The consumer acceptance of commercial oils elaborated with Local Galician cultivars was evaluated and a quality-mapping of olive oils was created. It was found that the both Local oils had good physical-chemical quality parameters. From sensory analysis viewpoint, Local-MB oils presented the highest intensity values for color, odor, taste, and flavor, and the consumers had a higher acceptance and preference by Picual, Local-MBPA (60% Mansa and Brava, 25% Picual, and 15% Arbequina and Local-MB (60% Mansa and 40% Brava) oils. A quality-mapping of olive oils indicate that attributes better scored from the consumer are high intensity for color, odor, taste and flavor, and pungent and floral series, and bitter is rejected by them.
Collapse
|
34
|
Lama-Muñoz A, Contreras MDM, Espínola F, Moya M, Romero I, Castro E. Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chem 2020; 320:126626. [PMID: 32222659 DOI: 10.1016/j.foodchem.2020.126626] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
Olive leaves are considered a promising source of bioactives such as phenolic compounds and mannitol. The extraction of high added value products is an issue of great interest and importance from the point of view of their exploitation. However, the content of these compounds can differ between cultivars and extraction methods. In this work, six olive leaves cultivars, including three wild cultivars, and two extraction processes (an innovative and alternative technique, pressurized liquid extraction, and a conventional Soxhlet extraction) were evaluated and compared towards the selective recovery of bioactive compounds. The wild cultivars showed the highest content of phenolic and flavonoid compounds, being oleuropein the compound present in higher amount. Findings also revealed that the highest mannitol content in the extracts was observed with the commercial cultivars, specifically in Arbequina. It is thus possible to decide which cultivars to use in order to obtain the highest yield of each bioproduct.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain.
| | - María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| |
Collapse
|
35
|
Cavaca LA, López-Coca IM, Silvero G, Afonso CA. The olive-tree leaves as a source of high-added value molecules: Oleuropein. BIOACTIVE NATURAL PRODUCTS 2020. [DOI: 10.1016/b978-0-12-817903-1.00005-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Şahin Sevgili S. Experimental and modeling study of polyphenols in Olea europaea leaves through ultrasound-assisted extraction. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.508113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
37
|
Medina E, Romero C, García P, Brenes M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct 2019; 10:4716-4724. [PMID: 31304950 DOI: 10.1039/c9fo00698b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A large spectrum of beneficial health properties has been attributed to olive leaves. This study was undertaken to characterize the bioactive compounds of commercial olive leaf extracts and olive leaves and their infusions. High variability of bioactive compounds was found among commercial samples. Polyphenol was detected in a range of 44-108 g kg-1 and 7.5-250 g kg-1 for olive leaves and olive leaf extracts, respectively. The main phenol was oleuropein, representing 74-94% of total phenols. However, only 17-26% of polyphenols were diffused to the aqueous phases when olive leaf infusions were prepared. Triterpenic acids were found in a range of 26-37 g kg-1 in olive leaves, but not detected in the infusions. Hence, the absence of the latter substances and the low oleuropein diffusion in olive leaf infusions make new studies necessary to maximize the presence of these bioactive compounds in the final product.
Collapse
Affiliation(s)
- Eduardo Medina
- Food Biotechnology Department. Instituto de la Grasa (IG-CSIC), Ctra. Utrera km 1, Building 46, 41013, Seville, Spain.
| | | | | | | |
Collapse
|
38
|
Zielinska M, Ropelewska E, Xiao HW, Mujumdar AS, Law CL. Review of recent applications and research progress in hybrid and combined microwave-assisted drying of food products: Quality properties. Crit Rev Food Sci Nutr 2019; 60:2212-2264. [PMID: 31257908 DOI: 10.1080/10408398.2019.1632788] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The growing concerns over product quality have increased demand for high quality dried food products and encouraged researchers to explore and producers of such products to implement novel microwave (MW)-assisted drying methods. This paper presents a critical review of the key principles and drawbacks of MW-assisted drying as well as needs for future research. In this article, recent research into application of microwaves as an alternative heat source, applications and progress in hybrid MW-assisted drying that rely on various drying media and combined two or three stages of MW-assisted drying for the preservation of food products is reviewed critically. The effect of different MW-assisted drying methods, conditions and initial pretreatments on the thermophysical properties, color, nutritional value and rehydration potential of dried food products is discussed in detail along with the discussion on how the material properties evolve and change in structure, color, and composition during MW-assisted drying and recent attempts at mathematical modeling of these changes made for different fruits and vegetables. It should be noted that most of the published results were obtained in laboratory-scale dryers. Pilot-scale testing is needed to bridge the gap between laboratory research and industrial applications to fulfill the potential for novel hybrid and combined MW-assisted drying methods and to expand their role in food processing.
Collapse
Affiliation(s)
- Magdalena Zielinska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Ewa Ropelewska
- Department of Systems Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Hong-Wei Xiao
- College of Engineering, China Agricultural University, Beijing, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, McGill University, Québec, Canada
| | - Chung L Law
- Department of Chemical and Environmental Engineering, The University of Nottingham, Semenyih, Malaysia
| |
Collapse
|
39
|
Yazar S, Kurtulbaş E, Ortaboy S, Atun G, Şahin S. Screening of the antioxidant properties of olive (Olea europaea) leaf extract by titanium based reduced graphene oxide electrode. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0288-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Optimization of Oleuropein and Luteolin-7-O-Glucoside Extraction from Olive Leaves by Ultrasound-Assisted Technology. ENERGIES 2019. [DOI: 10.3390/en12132486] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The olive orchard cultivation in Mediterranean countries results in huge amounts of lignocellulosic biomass residues. One of the main residues are olive leaves. Olive leaves contain high concentrations of bioactive antioxidant compounds like oleuropein and luteolin-7-glucoside. The production of biactive compounds from olive leaves requires treatments capable of breaking the lignocellulosic structure. Current research focuses on use of inexpensive, quick, and not harmful to the environment treatments, searching a more simplified large-scale operation approach. Recently, advances in applied chemistry have led to possible new emerging industrial techniques like ultrasound-assisted extraction (UAE). This technology is a promising candidate as a green treatment solution for olive leaves utilization in a biorefinery. However, this application goes through prior optimization of technique and operating conditions. The goal of this study was to optimize the extraction of oleuropein and luteolin-7-glucoside from olive leaves through an investigation of the influence of key factors of ultrasound-assisted extraction using an experimental central composite design, in comparison with conventional Soxhlet extraction. The highest extraction efficiency and antioxidant capacity were obtained under optimal increment of temperature and amplitude conditions (40 °C and 30%, respectively). Values for oleuropein, luteolin-7-glucoside were 69.91 g/kg and 1.82 g/kg, respectively.
Collapse
|
41
|
Kurtulbaş E, Yazar S, Ortaboy S, Atun G, Şahin S. Evaluation of the phenolic antioxidants of olive (Olea europaea) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis. CHEM ENG COMMUN 2019. [DOI: 10.1080/00986445.2019.1630397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ebru Kurtulbaş
- Engineering Faculty, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Sibel Yazar
- Engineering Faculty, Department of Chemistry, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Sinem Ortaboy
- Engineering Faculty, Department of Chemistry, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Gülten Atun
- Engineering Faculty, Department of Chemistry, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Selin Şahin
- Engineering Faculty, Department of Chemical Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| |
Collapse
|
42
|
Effect of the spray and freeze dryers on the bioactive compounds of olive leaf aqueous extract by chemometrics of HCA and PCA. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00196-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Lama-Muñoz A, Del Mar Contreras M, Espínola F, Moya M, de Torres A, Romero I, Castro E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem 2019; 293:161-168. [PMID: 31151597 DOI: 10.1016/j.foodchem.2019.04.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/11/2019] [Accepted: 04/21/2019] [Indexed: 01/11/2023]
Abstract
Olive leaves have become a promising source of phenolic compounds and flavonoids with high added value. Phenolic compounds and flavonoids are important sources of antioxidants and bioactives, and one of the processes used to effectively produce them is extraction via solvents, using aqueous ethanol solutions. To obtain the highest extraction yield per kg of biomass, olive leaves were extracted using a conventional technique (dynamic maceration) and an emerging technology, such as pressurized liquid extraction. Studies of the factors that influence these processes were performed: temperature, leaf moisture content, solvent/solid, and aqueous ethanol concentration were optimized using the central composite and Box-Behnken experiment designs. Pressurized liquid extraction resulted in more efficient oleuropein and luteolin-7-O-glucoside extraction than dynamic maceration. The operational conditions for maximizing the recovery of phenolic compounds and flavonoids and antioxidant capacity were determined to be 190 °C, leaf moisture content of 5%, and aqueous ethanol concentration of 80%.
Collapse
Affiliation(s)
- Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain.
| | - María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Antonia de Torres
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, s/n, Building B3, 23071 Jaén, Spain
| |
Collapse
|
44
|
Nikmaram N, Budaraju S, Barba FJ, Lorenzo JM, Cox RB, Mallikarjunan K, Roohinejad S. Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products. Meat Sci 2018; 145:245-255. [DOI: 10.1016/j.meatsci.2018.06.031] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/21/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
|
45
|
Effects of microwave cooking on carotenoids, phenolic compounds and antioxidant activity of Cichorium intybus L. (chicory) leaves. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3168-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|