1
|
Arienzo A, Gallo V, Tomassetti F, Pitaro N, Pitaro M, Antonini G. A narrative review of alternative transmission routes of COVID 19: what we know so far. Pathog Glob Health 2023; 117:681-695. [PMID: 37350182 PMCID: PMC10614718 DOI: 10.1080/20477724.2023.2228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023] Open
Abstract
The Coronavirus disease 19 (COVID-19) pandemics, caused by severe acute respiratory syndrome coronaviruses, SARS-CoV-2, represent an unprecedented public health challenge. Beside person-to-person contagion via airborne droplets and aerosol, which is the main SARS-CoV-2's route of transmission, alternative modes, including transmission via fomites, food and food packaging, have been investigated for their potential impact on SARS-CoV-2 diffusion. In this context, several studies have demonstrated the persistence of SARS-CoV-2 RNA and, in some cases, of infectious particles on exposed fomites, food and water samples, confirming their possible role as sources of contamination and transmission. Indeed, fomite-to-human transmission has been demonstrated in a few cases where person-to-person transmission had been excluded. In addition, recent studies supported the possibility of acquiring COVID-19 through the fecal-oro route; the occurrence of COVID-19 gastrointestinal infections, in the absence of respiratory symptoms, also opens the intriguing possibility that these cases could be directly related to the ingestion of contaminated food and water. Overall, most of the studies considered these alternative routes of transmission of low epidemiological relevance; however, it should be considered that they could play an important role, or even be prevalent, in settings characterized by different environmental and socio-economic conditions. In this review, we discuss the most recent findings regarding SARS-CoV-2 alternative transmission routes, with the aim to disclose what is known about their impact on COVID-19 spread and to stimulate research in this field, which could potentially have a great impact, especially in low-resource contexts.
Collapse
Affiliation(s)
| | | | | | | | - Michele Pitaro
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - Giovanni Antonini
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
2
|
Zhong Y, Lu H, Jiang Y, Tan D, Pan Y, Liabsuetrakul T. Detection rates of norovirus gastroenteritis and factors associated with the infection before and during COVID-19 pandemic: a secondary analysis of surveillance data in Guangxi Zhuang Autonomous Region, Southern China. Infect Ecol Epidemiol 2023; 13:2278246. [PMID: 38187165 PMCID: PMC10769525 DOI: 10.1080/20008686.2023.2278246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/29/2023] [Indexed: 01/09/2024] Open
Abstract
Background: Changes in oral and hand hygiene behaviors have been reported during the COVID-19 pandemic in 2020 which may be associated with the incidence of the norovirus infection, a common cause of gastroenteritis. Objective: To estimate the trends of detection rates of norovirus gastroenteritis and associated factors before COVID-19 in 2015-2019 and during the COVID-19 in 2020 in Guangxi, China. Methods: A secondary analysis of Guangxi surveillance data of gastroenteritis patients was conducted. The detection rate in 2020 was predicted using an autoregressive integrated moving average modeland associated factors were analyzed using multiple logistic regression adjusted for interaction effects. Results: Of 7,903 gastroenteritis patients, the overall detection rate of norovirus gastroenteritis was 12.8%, (14.3% before and 6.1% during COVID-19). Detection rates gradually decreased from 2015 to 2020, of which the slope of predicted line was slightly flatter than the actual line. The odds ratios of detection were double to triple increase during COVID-19 in the younger age group and having food intake outside their homes. Tourist city, season, and types of food were independent associated factors. Conclusion: The detection rates were higher during the COVID-19 year among the population aged 45 years or less and those who consumed food outside their home.
Collapse
Affiliation(s)
- Yanxu Zhong
- Food Safety Monitoring and Evaluation Department, Guangxi Zhuang Autonomous Region Centre for Disease Control and Prevention (Guangxi CDC), Nanning, Guangxi Region, China
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Huan Lu
- Infectious Department, The Fourth People’s Hospital of Nanning, Nanning, Guangxi Region, China
| | - Yuyan Jiang
- Food Safety Monitoring and Evaluation Department, Guangxi Zhuang Autonomous Region Centre for Disease Control and Prevention (Guangxi CDC), Nanning, Guangxi Region, China
| | - Dongmei Tan
- Food Safety Monitoring and Evaluation Department, Guangxi Zhuang Autonomous Region Centre for Disease Control and Prevention (Guangxi CDC), Nanning, Guangxi Region, China
| | - Yuli Pan
- Food Safety Monitoring and Evaluation Department, Guangxi Zhuang Autonomous Region Centre for Disease Control and Prevention (Guangxi CDC), Nanning, Guangxi Region, China
| | - Tippawan Liabsuetrakul
- Department of Epidemiology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
3
|
Spena A, Palombi L, Carestia M, Spena VA, Biso F. SARS-CoV-2 Survival on Surfaces. Measurements Optimisation for an Enthalpy-Based Assessment of the Risk. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6169. [PMID: 37372756 DOI: 10.3390/ijerph20126169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
The present work, based on the results found in the literature, yields a consistent model of SARS-CoV-2 survival on surfaces as environmental conditions, such as temperature and relative humidity, change simultaneously. The Enthalpy method, which has recently been successfully proposed to investigate the viability of airborne viruses using a holistic approach, is found to allow us to take a reasoned reading of the data available on surfaces in the literature. This leads us to identify the domain of conditions of lowest SARS-CoV-2 viability, in a specific enthalpy range between 50 and 60 kJ/Kgdry-air. This range appears well-superimposed with the results we previously obtained from analyses of coronaviruses' behaviour in aerosols, and may be helpful in dealing with the spread of infections. To steer future investigations, shortcomings and weaknesses emerging from the assessment of viral measurement usually carried out on surfaces are also discussed in detail. Once demonstrated that current laboratory procedures suffer from both high variability and poor standardisation, targeted implementations of standards and improvement of protocols for future investigations are then proposed.
Collapse
Affiliation(s)
- Angelo Spena
- Department of Enterprise Engineering, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Leonardo Palombi
- Catholic University of "Our Lady of Good Counsel", 1001 Tirana, Albania
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Mariachiara Carestia
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Vincenzo Andrea Spena
- Department of Astronautical, Electrical and Energy Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Francesco Biso
- Department of Enterprise Engineering, Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
4
|
Li P, Ke X, Leng D, Lin X, Yang W, Zhang H, Tian C, Xu H, Chen Q. High-Intensity Ultraviolet-C Irradiation Efficiently Inactivates SARS-CoV-2 Under Typical Cold Chain Temperature. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:123-130. [PMID: 36890342 PMCID: PMC9994784 DOI: 10.1007/s12560-023-09552-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/27/2023] [Indexed: 06/13/2023]
Abstract
SARS-CoV-2 contaminated items in the cold chain becomes a threat to public health, therefore the effective and safe sterilization method fit for the low temperature is needed. Ultraviolet is an effective sterilization method while its effect on SARS-CoV-2 under low-temperature environment is unclear. In this research, the sterilization effect of high-intensity ultraviolet-C (HIUVC) irradiation against SARS-CoV-2 and Staphylococcus aureus on different carriers at 4 °C and - 20 °C was investigated. The results showed that dose of 15.3 mJ/cm2 achieved more than 3 log reduction of SARS-CoV-2 on gauze at 4 °C and - 20 °C. The vulnerability of coronavirus to HIUVC under - 20 °C was not significantly different than those under 4 °C. Four models including Weibull, biphasic, log-linear tail and log linear were used to fit the survival curves of SARS-CoV-2 and Staphylococcus aureus. The biphasic model fitted best with R2 ranging from 0.9325 to 0.9878. Moreover, the HIUVC sterilization correlation between SARS-CoV-2 and Staphylococcus aureus was established. This paper provides data support for the employment of HIUVC under low-temperature environment. Also, it provides a method of using Staphylococcus aureus as a marker to evaluate the sterilization effect of cold chain sterilization equipment.
Collapse
Affiliation(s)
- Peiru Li
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xianliang Ke
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Dongmei Leng
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Lin
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Wenling Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China
| | - Hainan Zhang
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Changqing Tian
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongbo Xu
- Key Laboratory of Science and Technology on Space Energy Conversion, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, Hubei, China.
| |
Collapse
|
5
|
Yu H, Zhang J, Li H, Zhao Y, Xia S, Qiu Y, Zhu J. Effects of E-beam irradiation on the physicochemical properties of Atlantic cod ( Gadus morhua). FOOD BIOSCI 2022; 50:101803. [PMID: 35693638 PMCID: PMC9169420 DOI: 10.1016/j.fbio.2022.101803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/21/2022] [Accepted: 05/21/2022] [Indexed: 11/13/2022]
Abstract
Electron beam (E-beam) irradiation can effectively inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in cold-chain seafood. This study evaluated the effects of E-beam irradiation at doses killing SARS-CoV-2 on quality indicators of Atlantic cod. The cod samples were exposed to 0, 2, 4, 7, and 10 kGy E-beam irradiation, and nutrition, texture, color, and sensory attributes were investigated. The results showed that E-beam irradiation significantly increased thiobarbituric acid (TBA) value and decreased hardness, chewiness, and a* value of Atlantic cod (P < 0.05). E-beam irradiation with 10 kGy significantly lowered total volatile base nitrogen (TVB-N) and reducing sugar content while increasing moisture and ash content (P < 0.05). A significant color change was observed after irradiation with 2 kGy-7 kGy E-beam (P < 0.05). E-beam irradiation had no effects on sensory attributes (P > 0.05). A dose of 4 kGy was recommended considering the keeping quality in Atlantic cod.
Collapse
Affiliation(s)
- Huilin Yu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Junhui Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Honghao Li
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yan Zhao
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Shengyao Xia
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Yang Qiu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| | - Jiajin Zhu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Design of UVC Surface Disinfection Robot with Coverage Path Planning Using Map-Based Approach At-The-Edge. ROBOTICS 2022. [DOI: 10.3390/robotics11060117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In response to the issue of virus contamination in the cold-chain warehouse or hospital environment under the influence of the COVID-19, we propose the design work of a disinfection robot based on the UVC radiation mechanism using the low-computational path optimization at-the-edge. To build a surface disinfection robot with less computing power to generate a collision-free path with shorter total distance in studies, a 2D map is used as a graph-based approach to automatically generate a closed-loop disinfection path to cover all the accessible surfaces. The discrete disinfection points from the map are extracted with effective disinfection distances and sorted by a nearest-neighbor (NN) search over historical trajectory data and improved A * algorithm to obtain an efficient coverage path to all accessible boundaries of the entire area. The purpose of improved A * algorithm with NN is not to find the optimal path solution but to optimize one with reasonable computing power. The proposed algorithm enhances the path-finding efficiency by a dynamically weighted heuristic function and reduces the path turning angles, which improves the path smoothness significantly requiring less computing power. The Gazebo simulation is conducted, and the prototype disinfection robot has been built and tested in a real lab environment. Compared with the classic A * algorithm, the improved A * algorithm with NN has improved the path-finding efficiency and reduced the path length while covering the same area. Both the simulation and experimental results show that this approach can provide the design to balance the tradeoffs among the path-finding efficiency, smoothness, disinfection coverage, and computation resources.
Collapse
|
7
|
Zhang X, Yang Y, Cao J, Qi Z, Li G. Point-of-care CRISPR/Cas biosensing technology: A promising tool for preventing the possible COVID-19 resurgence caused by contaminated cold-chain food and packaging. FOOD FRONTIERS 2022; 4:FFT2176. [PMID: 36712576 PMCID: PMC9874772 DOI: 10.1002/fft2.176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/1912] [Revised: 12/12/1912] [Accepted: 12/12/1912] [Indexed: 02/01/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused great public health concern and has been a global threat due to its high transmissibility and morbidity. Although the SARS-CoV-2 transmission mainly relies on the person-to-person route through the respiratory droplets, the possible transmission through the contaminated cold-chain food and packaging to humans has raised widespread concerns. This review discussed the possibility of SARS-CoV-2 transmission via the contaminated cold-chain food and packaging by tracing the occurrence, the survival of SARS-CoV-2 in the contaminated cold-chain food and packaging, as well as the transmission and outbreaks related to the contaminated cold-chain food and packaging. Rapid, accurate, and reliable diagnostics of SARS-CoV-2 is of great importance for preventing and controlling the COVID-19 resurgence. Therefore, we summarized the recent advances on the emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system-based biosensing technology that is promising and powerful for preventing the possible COVID-19 resurgence caused by the contaminated cold-chain food and packaging during the COVID-19 pandemic, including CRISPR/Cas system-based biosensors and their integration with portable devices (e.g., smartphone, lateral flow assays, microfluidic chips, and nanopores). Impressively, this review not only provided an insight on the possibility of SARS-CoV-2 transmission through the food supply chain, but also proposed the future opportunities and challenges on the development of CRISPR/Cas system-based detection methods for the diagnosis of SARS-CoV-2.
Collapse
Affiliation(s)
- Xianlong Zhang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Yan Yang
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Juanjuan Cao
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Zihe Qi
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| | - Guoliang Li
- Food safety and Quality Control Innovation team, Department of Food Science and EngineeringSchool of Food and Biological Engineering, Shaanxi University of Science and TechnologyXi'an710021China
| |
Collapse
|
8
|
Li Q, Bergquist R, Grant L, Song JX, Feng XY, Zhou XN. Consideration of COVID-19 beyond the human-centred approach of prevention and control: the ONE-HEALTH perspective. Emerg Microbes Infect 2022; 11:2520-2528. [PMID: 36102336 PMCID: PMC9621238 DOI: 10.1080/22221751.2022.2125343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Most of the new emerging and re-emerging zoonotic virus outbreaks in recent years stem from close interaction with dead or alive infected animals. Since late 2019, the coronavirus disease 2019 (COVID-19) has spread into 221 countries and territories resulting in close to 300 million known infections and 5.4 million deaths in addition to a huge impact on both public health and the world economy. This paper reviews the COVID-19 prevalence in animals, raise concerns about animal welfare and discusses the role of environment in the transmission of COVID-19. Attention is drawn to the One Health concept as it emphasizes the environment in connection with the risk of transmission and establishment of diseases shared between animals and humans. Considering the importance of One Health for an effective response to the dissemination of infections of pandemic character, some unsettled issues with respect to COVID-19 are highlighted.
Collapse
Affiliation(s)
- Qin Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, China
| | - Robert Bergquist
- Ingerod, Brastad, Sweden (formerly at the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - Liz Grant
- Global Health, The University of Edinburgh, Edinburgh, UK
| | - Jun-Xia Song
- Food and Agriculture Organization of United Nations, Rome, Italy
| | - Xin-Yu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, China
- Department of Biology, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiao-Nong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine; One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai 20025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research); NHC Key Laboratory of Parasite and Vector Biology; WHO Collaborating Centre for Tropical Diseases; National Center for International Research on Tropical Diseases, China
| |
Collapse
|
9
|
Paparella A, Purgatorio C, Chaves-López C, Rossi C, Serio A. The Multifaceted Relationship between the COVID-19 Pandemic and the Food System. Foods 2022; 11:2816. [PMID: 36140944 PMCID: PMC9497833 DOI: 10.3390/foods11182816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
The SARS-CoV-2 pandemic is being questioned for its possible food transmission, due to several reports of the virus on food, outbreaks developed in food companies, as well as its origins linked to the wet market of Wuhan, China. The purpose of this review is to analyze the scientific evidence gathered so far on the relationship between food and the pandemic, considering all aspects of the food system that can be involved. The collected data indicate that there is no evidence that foods represent a risk for the transmission of SARS-CoV-2. In fact, even if the virus can persist on food surfaces, there are currently no proven cases of infection from food. Moreover, the pandemic showed to have deeply influenced the eating habits of consumers and their purchasing methods, but also to have enhanced food waste and poverty. Another important finding is the role of meat processing plants as suitable environments for the onset of outbreaks. Lessons learned from the pandemic include the correct management of spaces, food hygiene education for both food workers and common people, the enhancement of alternative commercial channels, the reorganization of food activities, in particular wet markets, and intensive farming, following correct hygiene practices. All these outcomes lead to another crucial lesson, which is the importance of the resilience of the food system. These lessons should be assimilated to deal with the present pandemic and possible future emergencies. Future research directions include further investigation of the factors linked to the food system that can favor the emergence of viruses, and of innovative technologies that can reduce viral transmission.
Collapse
Affiliation(s)
- Antonello Paparella
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | | | | | | | | |
Collapse
|
10
|
Lian Z, Yang D, Wang Y, Zhao L, Rao L, Liao X. Investigating the microbial inactivation effect of low temperature high pressure carbon dioxide and its application in frozen prawn (Penaeus vannamei). Food Control 2022; 145:109401. [PMID: 36186659 PMCID: PMC9512252 DOI: 10.1016/j.foodcont.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/03/2022]
Abstract
During the pandemic of coronavirus disease 2019, the fact that frozen foods can carry the relevant virus raises concerns about the microbial safety of cold-chain foods. As a non-thermal processing technology, high pressure carbon dioxide (HPCD) is a potential method to reduce microbial load on cold-chain foods. In this study, we explored the microbial inactivation of low temperature (5-10 °C) HPCD (LT-HPCD) and evaluated its effect on the quality of prawn during freeze-chilled and frozen storage. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min could effectively inactivate E. coli (99.45%) and S. aureus (94.6%) suspended in 0.85% NaCl, SARS-CoV-2 Spike pseudovirus (>99%) and human coronavirus 229E (hCoV-229E) (>1-log virus tilter reduction) suspended in DMEM medium. The inactivation effect of LT-HPCD was weakened but still significant when the microorganisms were inoculated on the surface of food or package. LT-HPCD treatment at 6.5 MPa and 10 °C for 15 min achieved about 60% inactivation of total aerobic count while could maintain frozen state and quality of prawn. Moreover, LT-HPCD treated prawn exhibited significant slower microbial proliferation and no occurrence of melanosis compared with the untreated samples during chilled storage. A comprehensive quality investigation indicated that LT-HPCD treatment could maintain the color, texture and sensory of prawn during chilled or frozen storage. Consequently, LT-HPCD could improve the microbial safety of frozen prawn while maintaining its original quality, and could be a potential method for food industry to improve the microbial safety of cold-chain foods.
Collapse
|
11
|
Meng J, Zhang Q, Ma M, Shi H, He G. Persistence of avian influenza virus (H9N2) on plastic surface. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155355. [PMID: 35460779 DOI: 10.1016/j.scitotenv.2022.155355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Plastics have been found to be colonized with pathogens and may become vectors for transmission of diseases. In this study, we evaluated the persistence of H9N2 avian influenza virus (AIV) on the surfaces of various plastics (PP, PE, PS, PET, PVC, PMMA) under different environmental conditions using glass and stainless steel for comparison. Our results showed that the RNA abundance of AIV on plastics was decreased over time but still detectable 14 days after AIV had been dropped on plastic surfaces. Low temperature (4 °C) was more favorable for AIV RNA preservation and infectivity maintenance. The abundance of AIV RNA was significantly greater on polyethylene terephthalate (PET) than that on glass and stainless steel at higher temperature (i.e., 25 °C and 37 °C) and lower humidity (<20% and 40-60%) (p < 0.05). Infectivity assay showed that AIV infectivity was only maintained at 4 °C after 24 h of incubation. Taken together, the persistence of AIV was more affected by environmental factors than material types. Plastics were able to preserve viral RNA more effectively in relatively high-temperature or low-humidity environments. Our study indicates that environmental factors should be taken into consideration when we evaluate the capacity of plastics to spread viruses.
Collapse
Affiliation(s)
- Jian Meng
- Institute of Eco-Chongming, East China Normal University, Shanghai 200162, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Qun Zhang
- Shanghai Key Laboratory for Urban Ecological Process and Eco-Restoration, School of Ecological and Environmental Sciences; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Min Ma
- Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Huahong Shi
- Institute of Eco-Chongming, East China Normal University, Shanghai 200162, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Guimei He
- Institute of Eco-Chongming, East China Normal University, Shanghai 200162, China; Laboratory of Wildlife Epidemic Diseases, School of Life Sciences, East China Normal University, Shanghai 200062, China.
| |
Collapse
|
12
|
Hassoun A, Harastani R, Jagtap S, Trollman H, Garcia-Garcia G, Awad NMH, Zannou O, Galanakis CM, Goksen G, Nayik GA, Riaz A, Maqsood S. Truths and myths about superfoods in the era of the COVID-19 pandemic. Crit Rev Food Sci Nutr 2022; 64:585-602. [PMID: 35930325 DOI: 10.1080/10408398.2022.2106939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Nowadays, during the current COVID-19 pandemic, consumers increasingly seek foods that not only fulfill the basic need (i.e., satisfying hunger) but also enhance human health and well-being. As a result, more attention has been given to some kinds of foods, termed "superfoods," making big claims about their richness in valuable nutrients and bioactive compounds as well as their capability to prevent illness, reinforcing the human immune system, and improve overall health.This review is an attempt to uncover truths and myths about superfoods by giving examples of the most popular foods (e.g., berries, pomegranates, watermelon, olive, green tea, several seeds and nuts, honey, salmon, and camel milk, among many others) that are commonly reported as having unique nutritional, nutraceutical, and functional characteristics.While superfoods have become a popular buzzword in blog articles and social media posts, scientific publications are still relatively marginal. The reviewed findings show that COVID-19 has become a significant driver for superfoods consumption. Food Industry 4.0 innovations have revolutionized many sectors of food technologies, including the manufacturing of functional foods, offering new opportunities to improve the sensory and nutritional quality of such foods. Although many food products have been considered superfoods and intensively sought by consumers, scientific evidence for their beneficial effectiveness and their "superpower" are yet to be provided. Therefore, more research and collaboration between researchers, industry, consumers, and policymakers are still needed to differentiate facts from marketing gimmicks and promote human health and nutrition.
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtch Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Rania Harastani
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, UK
| | - Sandeep Jagtap
- Sustainable Manufacturing Systems Centre, School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, UK
| | - Hana Trollman
- Department of Work, Employment, Management and Organisations, School of Business, University of Leicester, Leicester, UK
| | - Guillermo Garcia-Garcia
- Department of Agrifood System Economics, Centre 'Camino de Purchil', Institute of Agricultural and Fisheries Research and Training (IFAPA), Granada, Spain
| | - Nour M H Awad
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Oscar Zannou
- Faculty of Engineering, Food Engineering Department, Ondokuz Mayis University, Samsun, Turkey
| | - Charis M Galanakis
- Department of Research & Innovation, Galanakis Laboratories, Chania, Greece
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Food Waste Recovery Group, ISEKI Food Association, Vienna, Austria
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, Mersin, Turkey
| | - Gulzar Ahmad Nayik
- Department of Food Science and Technology, Government Degree College, Shopian, Jammu & Kashmir, India
| | - Asad Riaz
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
13
|
Wang M, Cui J, Wang Y, Yang L, Jia Z, Gao C, Zhang H. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8188-8206. [PMID: 35786878 DOI: 10.1021/acs.jafc.2c02366] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food safety is an issue that cannot be ignored at any time because of the great impact of food contaminants on people's daily life, social production, and the economy. Because of the extensive demand for high-quality food, it is necessary to develop rapid, reliable, and efficient devices for food contaminant detection. Microfluidic paper-based analytical devices (μPADs) have been applied in a variety of detection fields owing to the advantages of low-cost, ease of handling, and portability. This review systematically discusses the latest progress of μPADs, including the fundamentals of fabrication as well as applications in the detection of chemical and biological hazards in foods, hoping to provide suitable screening strategies for contaminants in foods and accelerating the technology transformation of μPADs from the lab into the field.
Collapse
Affiliation(s)
- Minglu Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Jiarui Cui
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Ying Wang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Liu Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Zhenzhen Jia
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| | - Chuanjie Gao
- Shandong Province Institute for the Control of Agrochemicals, Jinan, 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|
14
|
Wei Y, Dong Z, Fan W, Xu K, Tang S, Wang Y, Wu F. A narrative review on the role of temperature and humidity in COVID-19: Transmission, persistence, and epidemiological evidence. ECO-ENVIRONMENT & HEALTH 2022; 1:73-85. [PMID: 38013745 PMCID: PMC9181277 DOI: 10.1016/j.eehl.2022.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Since December 2019, the 2019 coronavirus disease (COVID-19) outbreak has become a global pandemic. Understanding the role of environmental conditions is important in impeding the spread of COVID-19. Given that airborne spread and contact transmission are considered the main pathways for the spread of COVID-19, this narrative review first summarized the role of temperature and humidity in the airborne trajectory of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Meanwhile, we reviewed the persistence of the virus in aerosols and on inert surfaces and summarized how the persistence of SARS-CoV-2 is affected by temperature and humidity. We also examined the existing epidemiological evidence and addressed the limitations of these epidemiological studies. Although uncertainty remains, more evidence may support the idea that high temperature is slightly and negatively associated with COVID-19 growth, while the conclusion for humidity is still conflicting. Nonetheless, the spread of COVID-19 appears to have been controlled primarily by government interventions rather than environmental factors.
Collapse
Affiliation(s)
- Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, Beijing 102206, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing 102206, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China
| | - Kaiqiang Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing 102206, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
15
|
Kong J, Li W, Hu J, Zhao S, Yue T, Li Z, Xia Y. The Safety of Cold-Chain Food in Post-COVID-19 Pandemic: Precaution and Quarantine. Foods 2022; 11:1540. [PMID: 35681292 PMCID: PMC9180738 DOI: 10.3390/foods11111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Since the outbreak of coronavirus disease-19 (COVID-19), cold-chain food contamination caused by the pathogenic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has attracted huge concern. Cold-chain foods provide a congenial environment for SARS-CoV-2 survival, which presents a potential risk for public health. Strengthening the SARS-CoV-2 supervision of cold-chain foods has become the top priority in many countries. Methodologically, the potential safety risks and precaution measures of SARS-CoV-2 contamination on cold-chain food are analyzed. To ensure the safety of cold-chain foods, the advances in SARS-CoV-2 detection strategies are summarized based on technical principles and target biomarkers. In particular, the techniques suitable for SARS-CoV-2 detection in a cold-chain environment are discussed. Although many quarantine techniques are available, the field-based quarantine technique on cold-chain food with characteristics of real-time, sensitive, specific, portable, and large-scale application is urgently needed.
Collapse
Affiliation(s)
- Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Wenxin Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Jinyao Hu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Shixuan Zhao
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Xianyang 712100, China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
- Laboratory of Quality & Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Xianyang 712100, China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China; (J.K.); (W.L.); (J.H.); (S.Z.); (T.Y.); (Z.L.)
| |
Collapse
|
16
|
Bojórquez-Velázquez E, Llamas-García ML, Elizalde-Contreras JM, Zamora-Briseño JA, Ruiz-May E. Mass Spectrometry Approaches for SARS-CoV-2 Detection: Harnessing for Application in Food and Environmental Samples. Viruses 2022; 14:872. [PMID: 35632614 PMCID: PMC9144875 DOI: 10.3390/v14050872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
The public health crisis caused by the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in 2019 has drastically changed our lifestyle in virtually all contexts around the world. SARS-CoV-2 is mainly airborne, transmitted by the salivary droplets produced when infected people cough or sneeze. In addition, diarrhea symptoms and the detection of SARS-CoV-2 in feces suggest a fecal-oral route of contagion. Currently, the high demand for SARS-CoV-2 diagnosis has surpassed the availability of PCR and immunodetection probes and has prompted the development of other diagnostic alternatives. In this context, mass spectrometry (MS) represents a mature, robust alternative platform for detection of SARS-CoV-2 and other human viruses. This possibility has raised great interest worldwide. Therefore, it is time for the global application of MS as a feasible option for detecting SARS-CoV-2, not only in human fluids, but also in other matrices such as foods and wastewater. This review covers the most relevant established methods for MS-based SARS-CoV-2 detection and discusses the future application of these tools in different matrices. Significance: The Coronavirus Disease 2019 (COVID-19) pandemic highlighted the pros and cons of currently available PCR and immunodetection tools. The great concern over the infective potential of SARS-CoV-2 viral particles that can persist for several hours on different surfaces under various conditions further evidenced the need for reliable alternatives and high-throughput methods to meet the needs for mass detection of SARS-CoV-2. In this context, MS-based proteomics emerging from fundamental studies in life science can offer a robust option for SARS-CoV-2 detection in human fluids and other matrices. In addition, the substantial efforts towards detecting SARS-CoV-2 in clinal samples, position MS to support the detection of this virus in different matrices such as the surfaces of the packing food process, frozen foods, and wastewaters. Proteomics and mass spectrometry are, therefore, well positioned to play a role in the epidemiological control of COVID-19 and other future diseases. We are currently witnessing the opportunity to generate technologies to overcome prolonged pandemics for the first time in human history.
Collapse
Affiliation(s)
- Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| | - Miriam Livier Llamas-García
- IPICYT, Instituto Potosino de Investigación Científica y Tecnológica A. C., Camino a la Presa San José 2055, San Luis Potosí, San Luis Potosí CP 78216, Mexico;
| | - José M. Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| | - Eliel Ruiz-May
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Cluster BioMimic, Carretera Antigua a Coatepec 351, Xalapa, Veracruz CP 91073, Mexico; (J.M.E.-C.); (J.A.Z.-B.)
| |
Collapse
|
17
|
Li M, Li J, Yang Y, Liu W, Liang Z, Ding G, Chen X, Song Q, Xue C, Sun B. Investigation of mouse hepatitis virus strain A59 inactivation under both ambient and cold environments reveals the mechanisms of infectivity reduction following UVC exposure. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107206. [PMID: 35043085 PMCID: PMC8757640 DOI: 10.1016/j.jece.2022.107206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The surface contamination of SARS-CoV-2 is becoming a potential source of virus transmission during the pandemic of COVID-19. Under the cold environment, the infection incidents would be more severe with the increase of virus survival time. Thus, the disinfection of contaminated surfaces in both ambient and cold environments is a critical measure to restrain the spread of the virus. In our study, it was demonstrated that the 254 nm ultraviolet-C (UVC) is an efficient method to inactivate a coronavirus, mouse hepatitis virus strain A59 (MHV-A59). The inactivation rate to MHV-A59 coronavirus was up to 99.99% when UVC doses were 2.90 and 14.0 mJ/cm2 at room temperature (23 °C) and in cold environment (-20 °C), respectively. Further mechanistic study demonstrated that UVC could induce spike protein damage to partly impede virus attachment and genome penetration processes, which contributes to 12% loss of viral infectivity. Additionally, it can induce genome damage to significantly interrupt genome replication, protein synthesis, virus assembly and release processes, which takes up 88% contribution to viral inactivation. With these mechanistic understandings, it will greatly contribute to the prevention and control of the current SARS-CoV-2 transmissions in cold chains (low temperature-controlled product supply chains), public area such as airport, school, and warehouse.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Jiahuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Yunlong Yang
- School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Wenhui Liu
- School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Guanyu Ding
- Soleilware Photonics Co.,LTD, Suzhou, Jiangsu 215000, China
| | - Xiaohe Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Qi Song
- Soleilware Photonics Co.,LTD, Suzhou, Jiangsu 215000, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024 Dalian, China
- School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
18
|
Chen W, Chen CL, Cao Q, Chiu CH. Time course and epidemiological features of COVID-19 resurgence due to cold-chain food or packaging contamination. Biomed J 2022; 45:432-438. [PMID: 35276413 PMCID: PMC8904003 DOI: 10.1016/j.bj.2022.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 01/28/2022] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
Contaminations in frozen food imported from countries with ongoing COVID-19 epidemics have been reported in China. However, the epidemiological features of the outbreaks initiated by material-to-human transmission were less reported. The risk of this route of transmission remains unclear, and strategies to prevent resurgence could be flawed. We aimed to demonstrate the existence of cold-chain food or packaging contamination transmission and describe the time course and epidemiological features associated with the transmission in China. This review was based on the official reports or literature for resurging COVID-19 events that were related to cold-chain food or packaging contamination in China and other countries. Although SARS-CoV-2 on the material surface is not the main source of infection, the closed and humid environment for food packaging and transportation is a place favoring the material-to-human spread of SARS-CoV-2. In this transmission mode, patient zero is often hidden and difficult to detect, such that the outbreak usually can only be perceived after a period of a secret epidemic. Regular testing for high-risk populations and imported cold-chain products, proper disinfection of imported products, and protection of susceptible population while working remain an effective way to detect and prevent SARS-CoV-2 spread.
Collapse
Affiliation(s)
- Wenjuan Chen
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
19
|
Chen L, Lee WJ, Ma Y, Jang SS, Fong K, Wang S. The efficacy of different sanitizers against MS2 bacteriophage introduced onto plastic or stainless steel surfaces. Curr Res Food Sci 2022; 5:175-181. [PMID: 35072105 PMCID: PMC8761864 DOI: 10.1016/j.crfs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
The virucidal activities of 11 prepared disinfectant solutions (active ingredients of household sanitizers) and 10 household sanitizers against bacteriophage MS2 on plastic and stainless steel surfaces were studied. Among the prepared sanitizers, 70-90% ethanol and ethanol-based disinfectants resulted in 1-2.5 log PFU/mL reductions on both surfaces. The 70% isopropanol and isopropanol-based formula reduced MS2 by 0.7-1.5 log PFU/mL on both surfaces. Other disinfectants, containing 0.1% benzalkonium chloride (BAC), 0.5% hydrogen peroxide, or 4% acetic acid, showed significant (P < 0.05) lower log reductions (-0.17-0.55 log PFU/mL) compared with other treatments. At room temperature, the virucidal activities of 70% ethanol on plastic (1.46-1.64 log PFU/mL reductions) and stainless steel (0.84-0.93 log PFU/mL reductions) surfaces were not significantly (P > 0.05) affected by the treatment time (30-600 s). However, 85% ethanol-treated groups showed significant (P < 0.05) higher log reductions in 60 and 600 s treated groups (1.69-2.24 log PFU/mL) compared with those in 30 s treated groups (0.92-1.32 log PFU/mL). Their virucidal activities were further examined at low temperatures (4 and 8 °C). We observed that the surface inactivation efficacies were not affected by the low temperatures. In addition, the virucidal activities of household sanitizers revealed that sanitizers with 1.84% (pH = 12.5, ∼17,500 ppm free-chlorine concentrations) or 3% (pH = 13.1, ∼38,100 ppm free-chlorine concentrations) sodium hypochlorite (NaClO) reduced 4.15-6.23 log PFU/mL MS2 on hard surfaces after 60 s contact time. Furthermore, an approximately 1.5 log PFU/mL reduction was observed in groups treated by sanitizer H (active ingredients: 58% ethanol + 0.1% quaternary ammonium compound). Household products with BAC or organic acid resulted in -0.28-0.33 log reductions on two surfaces after 30 or 60 s treatment. Therefore, the use of ethanol and NaClO-based products should be considered as a potential surface decontamination strategy in the food industry.
Collapse
Affiliation(s)
- Lin Chen
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Win-ju Lee
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Yvonne Ma
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Sung Sik Jang
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
| | - Karen Fong
- Summerland Research & Development Centre, Agriculture & Agri-Food Canada, Summerland, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|