1
|
Lin Y, Yan GJ, Liu MY, Cao Y, Zhang K, Wang N, Long FL, Mao DW. Review of the potential value of serum interleukin levels as prognostic biomarkers of liver failure. World J Clin Cases 2024; 12:6045-6056. [PMID: 39328855 PMCID: PMC11326103 DOI: 10.12998/wjcc.v12.i27.6045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/29/2024] Open
Abstract
Liver failure (LF) is prevalent in China and is characterized by complex pathogenesis, challenging clinical management, poor prognosis, and rising incidence and mortality rates. The immune status is an important factor affecting LF prognosis. Interleukins (Ils) are a type of cytokine that act and interact with multiple cells, including immune cells. These signaling molecules play important roles in intercellular information transmission, including the regulation of immune cells; mediation of the activation, proliferation, and differentiation of T and B cells; and orchestration of the inflammatory response. To date, many studies have explored the correlation between IL expression and liver disease prognosis, but few studies have evaluated Ils as the prognostic biomarkers of LF. This article reviews the potential use of Ils as the prognostic biomarkers of LF. Particularly, it evaluates the predictive values of IL-21, IL-22, and IL-31, the three often overlooked yet promising prognostic biomarkers, in predicting susceptibility to LF. Harnessing biomarkers for early prognostic insights can facilitate tailored treatment strategies and enhance patient survival. Thus, this article focuses on the identification of IL-21, IL-22, and IL-33 as biomarkers in preclinical and clinical studies on LF and reviews their role as biomarkers in the pathogenesis and diagnosis of LF.
Collapse
Affiliation(s)
- Yong Lin
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Geng-Jie Yan
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Mei-Yan Liu
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi Zhuang Autonomous Region, China
| | - Yin Cao
- Guangxi School of Chinese Medicine, Guangxi University of Traditional Chinese Medicine, Nanning 530022, Guangxi Zhuang Autonomous Region, China
| | - Kan Zhang
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Na Wang
- Department of Administration, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - Fu-Li Long
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| | - De-Wen Mao
- Department of Hepatology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning 530023, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
2
|
Choi YJ, Kim Y, Hwang S. Role of Neutrophils in the Development of Steatotic Liver Disease. Semin Liver Dis 2024; 44:300-318. [PMID: 39117322 DOI: 10.1055/s-0044-1789207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review explores the biological aspects of neutrophils, their contributions to the development of steatotic liver disease, and their potential as therapeutic targets for the disease. Although alcohol-associated and metabolic dysfunction-associated liver diseases originate from distinct etiological factors, the two diseases frequently share excessive lipid accumulation as a common contributor to their pathogenesis, thereby classifying them as types of steatotic liver disease. Dysregulated lipid deposition in the liver induces hepatic injury, triggering the activation of the innate immunity, partially through neutrophil recruitment. Traditionally recognized for their role in microbial clearance, neutrophils have recently garnered attention for their involvement in sterile inflammation, a pivotal component of steatotic liver disease pathogenesis. In conclusion, technological innovations, including single-cell RNA sequencing, have gradually disclosed the existence of various neutrophil subsets; however, how the distinct subsets of neutrophil population contribute differentially to the development of steatotic liver disease remains unclear.
Collapse
Affiliation(s)
- You-Jin Choi
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Republic of Korea
| | - Yeonsoo Kim
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| | - Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Gu M, Wang Y, Yu Y. Ovarian fibrosis: molecular mechanisms and potential therapeutic targets. J Ovarian Res 2024; 17:139. [PMID: 38970048 PMCID: PMC11225137 DOI: 10.1186/s13048-024-01448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024] Open
Abstract
Ovarian fibrosis, characterized by the excessive proliferation of ovarian fibroblasts and the accumulation of extracellular matrix (ECM), serves as one of the primary causes of ovarian dysfunction. Despite the critical role of ovarian fibrosis in maintaining the normal physiological function of the mammalian ovaries, research on this condition has been greatly underestimated, which leads to a lack of clinical treatment options for ovarian dysfunction caused by fibrosis. This review synthesizes recent research on the molecular mechanisms of ovarian fibrosis, encompassing TGF-β, extracellular matrix, inflammation, and other profibrotic factors contributing to abnormal ovarian fibrosis. Additionally, we summarize current treatment approaches for ovarian dysfunction targeting ovarian fibrosis, including antifibrotic drugs, stem cell transplantation, and exosomal therapies. The purpose of this review is to summarize the research progress on ovarian fibrosis and to propose potential therapeutic strategies targeting ovarian fibrosis for the treatment of ovarian dysfunction.
Collapse
Affiliation(s)
- Mengqing Gu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Yibo Wang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Institute of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Ministry of Education, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
4
|
Mercurio L, Bailey J, Glick AB, Dellambra E, Scarponi C, Pallotta S, Albanesi C, Madonna S. RAS-activated PI3K/AKT signaling sustains cellular senescence via P53/P21 axis in experimental models of psoriasis. J Dermatol Sci 2024; 115:21-32. [PMID: 38926058 DOI: 10.1016/j.jdermsci.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Psoriasis is a chronic immune-mediated skin disease in which upper epidermal keratinocytes exhibit a senescent-like phenotype. In psoriatic skin, a variety of inflammatory cytokines can activate intracellular pathways including phosphatidylinositol 3-kinase (PI3K)/AKT signaling and RAS effectors. AKT and RAS participate to cellular senescence, but currently their role in senescence responses occurring in psoriasis have not yet been investigated. OBJECTIVE The role of AKT molecular axis and RAS activation was evaluated in the context of cellular senescence in psoriasis disease. METHODS RAS/AKT involvement in senescence was analyzed in psoriatic keratinocytes cultures subjected to multiple passages to promote senescence in vitro, as well as in skin lesions of patients affected by psoriasis. The impact of pharmacological inhibition of PI3K/AKT pathway on senescence and inflammation responses was tested in senescent psoriatic keratinocytes and in a psoriasiform dermatitis murine model induced by RAS overexpression in the upper epidermis of mice. RESULTS We found AKT hyperactivation associated to the upregulation of senescence markers, in senescent psoriatic keratinocyte cultures, as well as in skin lesions of psoriatic patients. AKT-induced senescence was sustained by constitutive RAS activation, and down-stream responses were mediated by P53/P21 axis. PI3K/AKT inhibition contrasted senescence processes induced by cytokines in psoriatic keratinocytes. Additionally, RAS-induced psoriasis-like dermatitis in mice was accompanied by AKT upregulation, increase of senescence marker expression and by skin inflammation. In this model, both senescence and inflammation were significantly reduced by selective AKT inhibition. CONCLUSION Therefore, targeting RAS-AKT pathway could be a promising novel strategy to counteract multiple psoriasis symptoms.
Collapse
Affiliation(s)
- Laura Mercurio
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Jacob Bailey
- Department of Immunology & Microbial Disease, Albany Medical College, NY, USA
| | - Adam Bleier Glick
- Department of Veterinary and Biomedical Sciences, Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, PA, USA
| | - Elena Dellambra
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Claudia Scarponi
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Sabatino Pallotta
- Integrated Center for Research in Psoriasis (CRI-PSO), Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Cristina Albanesi
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy.
| | - Stefania Madonna
- Laboratory of Experimental Immunology and Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| |
Collapse
|
5
|
Bordagaray MJ, Pellegrini E, Garrido M, Hernández-Ríos P, Villalobos T, Fernández A, Hernández M. Elevated serum hepatic transaminases in apical periodontitis individuals. Int Endod J 2024. [PMID: 38864596 DOI: 10.1111/iej.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/22/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
AIM Apical periodontitis (AP) is the chronic inflammation of the periradicular tissues in response to root canal infection. Whilst AP has been linked with systemic inflammation and noncommunicable diseases, its potential association with nonalcoholic fatty liver disease (NAFLD) is unknown. We aimed to evaluate the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels as surrogate markers of hepatic injury, and the systemic inflammatory burden in otherwise healthy individuals with and without AP diagnosis. METHODOLOGY Cross-sectional study. Individuals with AP (n = 30) and healthy controls (n = 29) were recruited. The number, mean diameter (mm) and periapical index of the apical lesions of endodontic origin (ALEO) were assessed. ALT and AST levels (pg/mL) were measured through enzyme-linked immunosorbent assays. The serum levels of TNF-α, IL-4, IL-9, IL-10, IL-17A and IL-22 were evaluated by Multiplex assay. Inferential analysis was performed using t-test or Mann-Whitney tests according to data distribution and linear regression models. Data were analysed with StataV16 (p < .05). RESULTS ALT and AST levels were significantly higher in individuals with AP compared to controls (p < .05). Serum inflammatory biomarkers showed no significant differences between the study groups. Bivariate and multivariate analyses confirmed that AP diagnosis was independently associated with ALT and AST elevations (p < .05). Additionally, the number of ALEO positively influenced AST levels (p = .002). IL-22 on the other hand, was associated with reduced ALT levels (p = .043). CONCLUSION AP is associated with higher serum hepatic transaminases ALT and AST, potentially contributing to NAFLD physiopathology in young adults.
Collapse
Affiliation(s)
- María José Bordagaray
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Elizabeth Pellegrini
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Patricia Hernández-Ríos
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Thomas Villalobos
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | | | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
6
|
Okruszko MA, Szabłowski M, Zarzecki M, Michnowska-Kobylińska M, Lisowski Ł, Łapińska M, Stachurska Z, Szpakowicz A, Kamiński KA, Konopińska J. Inflammation and Neurodegeneration in Glaucoma: Isolated Eye Disease or a Part of a Systemic Disorder? - Serum Proteomic Analysis. J Inflamm Res 2024; 17:1021-1037. [PMID: 38370463 PMCID: PMC10874189 DOI: 10.2147/jir.s434989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction Glaucoma is the most common optic neuropathy and the leading cause of irreversible blindness worldwide, which affects 3.54% of the population aged 40-80 years. Despite numerous published studies, some aspects of glaucoma pathogenesis, serum biomarkers, and their potential link with other diseases remain unclear. Recent articles have proposed that autoimmune, oxidative stress and inflammation may be involved in the pathogenesis of glaucoma. Methods We investigated the serum expression of 92 inflammatory and neurotrophic factors in glaucoma patients. The study group consisted of 26 glaucoma patients and 192 healthy subjects based on digital fundography. Results Patients with glaucoma had significantly lower serum expression of IL-2Rβ, TWEAK, CX3CL1, CD6, CD5, LAP TGF-beta1, LIF-R, TRAIL, NT-3, and CCL23 and significantly higher expression of IL-22Rα1. Conclusion Our results indicate that patients with glaucoma tend to have lower levels of neuroprotective proteins and higher levels of neuroinflammatory proteins, similar to those observed in psychiatric, neurodegenerative and autoimmune diseases, indicating a potential link between these conditions and glaucoma pathogenesis.
Collapse
Affiliation(s)
| | - Maciej Szabłowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Mateusz Zarzecki
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | | | - Łukasz Lisowski
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| | - Magda Łapińska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Zofia Stachurska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, Białystok, Poland
| | - Karol Adam Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Białystok, Białystok, Poland
| | - Joanna Konopińska
- Department of Ophthalmology, Medical University of Bialystok, Białystok, 15-089, Poland
| |
Collapse
|
7
|
Gazzillo A, Volponi C, Soldani C, Polidoro MA, Franceschini B, Lleo A, Bonavita E, Donadon M. Cellular Senescence in Liver Cancer: How Dying Cells Become "Zombie" Enemies. Biomedicines 2023; 12:26. [PMID: 38275386 PMCID: PMC10813254 DOI: 10.3390/biomedicines12010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Liver cancer represents the fourth leading cause of cancer-associated death worldwide. The heterogeneity of its tumor microenvironment (TME) is a major contributing factor of metastasis, relapse, and drug resistance. Regrettably, late diagnosis makes most liver cancer patients ineligible for surgery, and the frequent failure of non-surgical therapeutic options orientates clinical research to the investigation of new drugs. In this context, cellular senescence has been recently shown to play a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to cancer. Moreover, the stem-like state triggered by senescence has been associated with the emergence of drug-resistant, aggressive tumor clones. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies, leading to promising results. In this review, we intend to provide an overview of the recent evidence that unveils the role of cellular senescence in the most frequent forms of primary and metastatic liver cancer, focusing on the involvement of this mechanism in therapy resistance.
Collapse
Affiliation(s)
- Aurora Gazzillo
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Camilla Volponi
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Cristiana Soldani
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Barbara Franceschini
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Eduardo Bonavita
- Cellular and Molecular Oncoimmunology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.G.); (C.V.); (E.B.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy;
| | - Matteo Donadon
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (C.S.); (M.A.P.); (B.F.)
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
- Department of General Surgery, University Maggiore Hospital della Carità, 28100 Novara, Italy
| |
Collapse
|
8
|
Kim HY, Sakane S, Eguileor A, Carvalho Gontijo Weber R, Lee W, Liu X, Lam K, Ishizuka K, Rosenthal SB, Diggle K, Brenner DA, Kisseleva T. The Origin and Fate of Liver Myofibroblasts. Cell Mol Gastroenterol Hepatol 2023; 17:93-106. [PMID: 37743012 PMCID: PMC10665929 DOI: 10.1016/j.jcmgh.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Liver fibrosis of different etiologies is a serious health problem worldwide. There is no effective therapy available for liver fibrosis except the removal of the underlying cause of injury or liver transplantation. Development of liver fibrosis is caused by fibrogenic myofibroblasts that are not present in the normal liver, but rather activate from liver resident mesenchymal cells in response to chronic toxic or cholestatic injury. Many studies indicate that liver fibrosis is reversible when the causative agent is removed. Regression of liver fibrosis is associated with the disappearance of activated myofibroblasts and resorption of the fibrous scar. In this review, we discuss the results of genetic tracing and cell fate mapping of hepatic stellate cells and portal fibroblasts, their specific characteristics, and potential phenotypes. We summarize research progress in the understanding of the molecular mechanisms underlying the development and reversibility of liver fibrosis, including activation, apoptosis, and inactivation of myofibroblasts.
Collapse
Affiliation(s)
- Hyun Young Kim
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sadatsugu Sakane
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Alvaro Eguileor
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Raquel Carvalho Gontijo Weber
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Wonseok Lee
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Xiao Liu
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - Kevin Lam
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Kei Ishizuka
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California
| | - Sara Brin Rosenthal
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California
| | - Karin Diggle
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Department of Surgery, University of California San Diego School of Medicine, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, California; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego School of Medicine, La Jolla, California.
| |
Collapse
|
9
|
Ge T, Shao Y, Bao X, Xu W, Lu C. Cellular senescence in liver diseases: From mechanisms to therapies. Int Immunopharmacol 2023; 121:110522. [PMID: 37385123 DOI: 10.1016/j.intimp.2023.110522] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is an irreversible state of cell cycle arrest, characterized by a gradual decline in cell proliferation, differentiation, and biological functions. Cellular senescence is double-edged for that it can provoke organ repair and regeneration in physiological conditions but contribute to organ and tissue dysfunction and prime multiple chronic diseases in pathological conditions. The liver has a strong regenerative capacity, where cellular senescence and regeneration are closely involved. Herein, this review firstly introduces the morphological manifestations of senescent cells, the major regulators (p53, p21, and p16), and the core pathophysiologic mechanisms underlying senescence process, and then specifically generalizes the role and interventions of cellular senescence in multiple liver diseases, including alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. In conclusion, this review focuses on interpreting the importance of cellular senescence in liver diseases and summarizes potential senescence-related regulatory targets, aiming to provide new insights for further researches on cellular senescence regulation and therapeutic developments for liver diseases.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Wakil A, Niazi M, Meybodi MA, Pyrsopoulos NT. Emerging Pharmacotherapies in Alcohol-Associated Hepatitis. J Clin Exp Hepatol 2023; 13:116-126. [PMID: 36647403 PMCID: PMC9840076 DOI: 10.1016/j.jceh.2022.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/25/2022] [Indexed: 02/07/2023] Open
Abstract
The incidence of alcoholic-associated hepatitis (AH) is increasing. The treatment options for severe AH (sAH) are scarce and limited to corticosteroid therapy which showed limited mortality benefit in short-term use only. Therefore, there is a dire need for developing safe and effective therapies for patients with sAH and to improve their high mortality rates.This review article focuses on the current novel therapeutics targeting various mechanisms in the pathogenesis of alcohol-related hepatitis. Anti-inflammatory agents such as IL-1 inhibitor, Pan-caspase inhibitor, Apoptosis signal-regulating kinase-1, and CCL2 inhibitors are under investigation. Other group of agents include gut-liver axis modulators, hepatic regeneration, antioxidants, and Epigenic modulators. We describe the ongoing clinical trials of some of the new agents for alcohol-related hepatitis. Conclusion A combination of therapies was investigated, possibly providing a synergistic effect of drugs with different mechanisms. Multiple clinical trials of novel therapies in AH remain ongoing. Their result could potentially make a difference in the clinical course of the disease. DUR-928 and granulocyte colony-stimulating factor had promising results and further trials are ongoing to evaluate their efficacy in the large patient sample.
Collapse
Key Words
- AH, alcohol-Associated hepatitis
- ALD, Alcohol-associated liver disease
- ASK-1, Apoptosis signal-regulating kinase-1
- AUD, alcohol use disorder
- CCL2, C–C chemokine ligand type 2
- CVC, Cenicriviroc
- ELAD, Extracorporeal liver assist device
- FMT, Fecal Microbiota Transplant
- G-CSF, Granulocyte colony-stimulating factor
- HA35, Hyaluronic Acid 35KD
- IL-1, interleukin 1
- IL-6, interleukin 6
- LCFA, saturated long-chain fatty acids
- LDL, low-density lipoprotein cholesterol
- LPS, Lipopolysaccharides
- MCP-1, monocyte chemoattractant protein −1
- MDF, Maddrey's discriminant function
- MELD, Model for end-stage disease
- NAC, N-acetylcysteine
- NLRs, nucleotide-binding oligomerization domain-like receptors
- PAMPs, Pathogen-associated molecular patterns
- RCT, Randomized controlled trial
- SAM, S-Adenosyl methionine
- SCFA, short-chain fatty acids. 5
- TLRs, Toll-like receptors
- TNF, tumor necrotic factor
- alcohol-associated hepatitis
- anti-inflammatory
- antioxidants
- liver-gut axis
- microbiome
- sAH, severe alcohol-associated hepatitis
Collapse
Affiliation(s)
- Ali Wakil
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Mumtaz Niazi
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Mohamad A. Meybodi
- Department of Internal Medicine, Rutgers New Jersey Medical School, New York, New Jersey, USA
| | - Nikolaos T. Pyrsopoulos
- Department of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, New York, New Jersey, USA
| |
Collapse
|
11
|
Adekunle AD, Adejumo A, Singal AK. Therapeutic targets in alcohol-associated liver disease: progress and challenges. Therap Adv Gastroenterol 2023; 16:17562848231170946. [PMID: 37187673 PMCID: PMC10176580 DOI: 10.1177/17562848231170946] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a complex disease with rapidly increasing prevalence. Although there are promising therapeutic targets on the horizon, none of the newer targets is currently close to an Food and Drug Administration approval. Strategies are needed to overcome challenges in study designs and conducting clinical trials and provide impetus to the field of drug development in the landscape of ALD and alcoholic hepatitis. Management of ALD is complex and should include therapies to achieve and maintain alcohol abstinence, preferably delivered by a multidisciplinary team. Although associated with clear mortality benefit in select patients, the use of early liver transplantation still requires refinement to create uniformity in selection protocols across transplant centers. There is also a need for reliable noninvasive biomarkers for prognostication. Last but not the least, strategies are urgently needed to implement integrated multidisciplinary care models for treating the dual pathology of alcohol use disorder and of liver disease for improving the long-term outcomes of patients with ALD.
Collapse
Affiliation(s)
- Ayooluwatomiwa Deborah Adekunle
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | - Adeyinka Adejumo
- Department of Internal Medicine, St. Luke’s
Hospital, Chesterfield, Missouri, USA
- Division of Hepatology, University of
Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Transplant Hepatology, University
of South Dakota Sanford Medical School, Sioux Falls, SD
| | | |
Collapse
|
12
|
Cellular Senescence in Hepatocellular Carcinoma: The Passenger or the Driver? Cells 2022; 12:cells12010132. [PMID: 36611926 PMCID: PMC9818733 DOI: 10.3390/cells12010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
With the high morbidity and mortality, hepatocellular carcinoma (HCC) represents a major yet growing burden for our global community. The relapse-prone nature and drug resistance of HCC are regarded as the consequence of varying intracellular processes and extracellular interplay, which actively participate in tumor microenvironment remodeling. Amongst them, cellular senescence is regarded as a fail-safe program, leading to double-sword effects of both cell growth inhibition and tissue repair promotion. Particularly, cellular senescence serves a pivotal role in the progression of chronic inflammatory liver diseases, ultimately leading to carcinogenesis. Given the current challenges in improving the clinical management and outcome of HCC, senescence may exert striking potential in affecting anti-cancer strategies. In recent years, an increasing number of studies have emerged to investigate senescence-associated hepatocarcinogenesis and its derived therapies. In this review, we intend to provide an up-to-date understanding of liver cell senescence and its impacts on treatment modalities of HCC.
Collapse
|
13
|
Carvalho-Gontijo R, Han C, Zhang L, Zhang V, Hosseini M, Mekeel K, Schnabl B, Loomba R, Karin M, Brenner DA, Kisseleva T. Metabolic Injury of Hepatocytes Promotes Progression of NAFLD and AALD. Semin Liver Dis 2022; 42:233-249. [PMID: 36001995 PMCID: PMC9662188 DOI: 10.1055/s-0042-1755316] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nonalcoholic liver disease is a component of metabolic syndrome associated with obesity, insulin resistance, and hyperlipidemia. Excessive alcohol consumption may accelerate the progression of steatosis, steatohepatitis, and fibrosis. While simple steatosis is considered a benign condition, nonalcoholic steatohepatitis with inflammation and fibrosis may progress to cirrhosis, liver failure, and hepatocellular cancer. Studies in rodent experimental models and primary cell cultures have demonstrated several common cellular and molecular mechanisms in the pathogenesis and regression of liver fibrosis. Chronic injury and death of hepatocytes cause the recruitment of myeloid cells, secretion of inflammatory and fibrogenic cytokines, and activation of myofibroblasts, resulting in liver fibrosis. In this review, we discuss the role of metabolically injured hepatocytes in the pathogenesis of nonalcoholic steatohepatitis and alcohol-associated liver disease. Specifically, the role of chemokine production and de novo lipogenesis in the development of steatotic hepatocytes and the pathways of steatosis regulation are discussed.
Collapse
Affiliation(s)
- Raquel Carvalho-Gontijo
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Cuijuan Han
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Lei Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Vivian Zhang
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla,Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Mojgan Hosseini
- Department of Pathology, University of California, San Diego School of Medicine, La Jolla
| | - Kristin Mekeel
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Rohit Loomba
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla
| | - David A. Brenner
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego School of Medicine, La Jolla,Corresponding author: Tatiana Kisseleva, 9500 Gilman Drive, #0063, La Jolla, California 92093, USA. Phone: 858.822.5339,
| |
Collapse
|
14
|
Zhang J, Zhai H, Yu P, Shang D, Mo R, Li Z, Wang X, Lu J, Xie Q, Xiang X. Human Umbilical Cord Blood Mononuclear Cells Ameliorate CCl4-Induced Acute Liver Injury in Mice via Inhibiting Inflammatory Responses and Upregulating Peripheral Interleukin-22. Front Pharmacol 2022; 13:924464. [PMID: 35942221 PMCID: PMC9356225 DOI: 10.3389/fphar.2022.924464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Human umbilical cord blood mononuclear cells (hUCBMNCs) show therapeutic effects on many inflammatory diseases. The deterioration of acute liver injury is attributed to excessive inflammatory responses triggered by damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). Whether hUCBMNCs treatment is a promising strategy for acute liver injury/failure needs to be investigated.Methods: Liver injury mice induced by PAMPs, DAMPs, or DAMPs plus PAMPs were developed. DAMPs included CCl4 (carbon tetrachloride), APAP (acetaminophen), and ConA (Concanavalin A). PAMPs included Klebsiella pneumoniae (K.P.) and Salmonella typhimurium (S. Typhimurium). DAMP plus PAMP-induced liver injury was developed by sequential CCl4 and K.P. administration. hUCBMNCs were injected intravenously.Results: hUCBMNCs significantly prolonged mice survival time in DAMP plus PAMP-induced liver failure but had no benefit in bacteria-infected mice. hUCBMNCs significantly alleviated hepatic necrosis post CCl4/ConA insult. In CCl4-induced acute liver injury, peripheral levels of interleukin (IL)-22 were upregulated and liver regeneration was enhanced after treating with hUCBMNCs at 48h. The levels of p62 and LC3B-II, autophagy markers, were also upregulated in the hUCBMNC-treated group.Conclusion: hUCBMNCs as a kind of cell therapeutic strategy could attenuate acute liver injury in mice, which is executed by enhancing autophagy and regeneration in the liver via inhibiting inflammatory responses and upregulating peripheral IL-22.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengben Zhai
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Yu
- Department of Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dabao Shang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruidong Mo
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziqiang Li
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jie Lu, ; Qing Xie, ; Xiaogang Xiang,
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jie Lu, ; Qing Xie, ; Xiaogang Xiang,
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Lab of Liver Diseases, Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Jie Lu, ; Qing Xie, ; Xiaogang Xiang,
| |
Collapse
|
15
|
Yu S, Tam ALC, Campbell R, Renwick N. Emerging Evidence of Noncoding RNAs in Bleb Scarring after Glaucoma Filtration Surgery. Cells 2022; 11:1301. [PMID: 35455980 PMCID: PMC9029189 DOI: 10.3390/cells11081301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To conduct a narrative review of research articles on the potential anti- and pro-fibrotic mechanisms of noncoding RNAs following glaucoma filtration surgery. METHODS Keyword searches of PubMed, and Medline databases were conducted for articles discussing post-glaucoma filtration surgeries and noncoding RNA. Additional manual searches of reference lists of primary articles were performed. RESULTS Fifteen primary research articles were identified. Four of the included papers used microarrays and qRT-PCR to identify up- or down-regulated microRNA (miRNA, miR) profiles and direct further study, with the remainder focusing on miRNAs or long noncoding RNAs (lncRNAs) based on previous work in other organs or disease processes. The results of the reviewed papers identified miR-26a, -29b, -139, -155, and -200a as having anti-fibrotic effects. In contrast, miRs-200b and -216b may play pro-fibrotic roles in filtration surgery fibrosis. lncRNAs including H19, NR003923, and 00028 have demonstrated pro-fibrotic effects. CONCLUSIONS Noncoding RNAs including miRNAs and lncRNAs are emerging and promising therapeutic targets in the prevention of post-glaucoma filtration surgery fibrosis.
Collapse
Affiliation(s)
- Sabrina Yu
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Alex L. C. Tam
- Department of Ophthalmology and Visual Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.L.C.T.); (R.C.)
| | - Robert Campbell
- Department of Ophthalmology and Visual Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.L.C.T.); (R.C.)
| | - Neil Renwick
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
16
|
Crosstalk between Oxidative Stress and Inflammatory Liver Injury in the Pathogenesis of Alcoholic Liver Disease. Int J Mol Sci 2022; 23:ijms23020774. [PMID: 35054960 PMCID: PMC8775426 DOI: 10.3390/ijms23020774] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) is characterized by the injury, inflammation, and scarring in the liver owing to excessive alcohol consumption. Currently, ALD is a leading cause for liver transplantation. Therefore, extensive studies (in vitro, in experimental ALD models and in humans) are needed to elucidate pathological features and pathogenic mechanisms underlying ALD. Notably, oxidative changes in the liver have been recognized as a signature trait of ALD. Progression of ALD is linked to the generation of highly reactive free radicals by reactions involving ethanol and its metabolites. Furthermore, hepatic oxidative stress promotes tissue injury and, in turn, stimulates inflammatory responses in the liver, forming a pathological loop that promotes the progression of ALD. Accordingly, accumulating further knowledge on the relationship between oxidative stress and inflammation may help establish a viable therapeutic approach for treating ALD.
Collapse
|
17
|
Baghaei K, Mazhari S, Tokhanbigli S, Parsamanesh G, Alavifard H, Schaafsma D, Ghavami S. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov Today 2021; 27:1044-1061. [PMID: 34952225 DOI: 10.1016/j.drudis.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
Hepatic fibrosis is a manifestation of different etiologies of liver disease with the involvement of multiple mediators in complex network interactions. Activated hepatic stellate cells (aHSCs) are the central driver of hepatic fibrosis, given their potential to induce connective tissue formation and extracellular matrix (ECM) protein accumulation. Therefore, identifying the cellular and molecular pathways involved in the activation of HSCs is crucial in gaining mechanistic and therapeutic perspectives to more effectively target the disease. In addition to a comprehensive summary of our current understanding of the role of HSCs in liver fibrosis, we also discuss here the proposed therapeutic strategies based on targeting HSCs.
Collapse
Affiliation(s)
- Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Gilda Parsamanesh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | | | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
18
|
Abstract
The incidence of alcoholic hepatitis is increasing while the mortality rate remains high. The single current available therapy for severe alcoholic hepatitis is administration of corticosteroids for patients with severe alcoholic hepatitis, which has demonstrated limited benefits, providing a short-term mortality benefit with a marginal response rate. There is a need for developing safe and effective therapies. This article reviews novel therapies targeting various mechanisms in the pathogenesis of alcoholic hepatitis, such as the gut-liver axis, inflammatory cascade, oxidative stress, and hepatic regeneration. Current ongoing clinical trials for alcoholic hepatitis also are described.
Collapse
Affiliation(s)
- Ma Ai Thanda Han
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-526, Newark, NJ 07103, USA
| | - Nikolaos Pyrsopoulos
- Division of Gastroenterology and Hepatology, Rutgers New Jersey Medical School, 185 South Orange Avenue, H-536, Newark, NJ 07103, USA.
| |
Collapse
|
19
|
Lücke J, Sabihi M, Zhang T, Bauditz LF, Shiri AM, Giannou AD, Huber S. The good and the bad about separation anxiety: roles of IL-22 and IL-22BP in liver pathologies. Semin Immunopathol 2021; 43:591-607. [PMID: 33851257 PMCID: PMC8443499 DOI: 10.1007/s00281-021-00854-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022]
Abstract
The human liver fulfills several vital tasks daily and possesses an impressive ability to self-regenerate. However, the capacity of this self-healing process can be exhausted by a variety of different liver diseases, such as alcoholic liver damage, viral hepatitis, or hepatocellular carcinoma. Over time, all these diseases generally lead to progressive liver failure that can become fatal if left untreated. Thus, a great effort has been directed towards the development of innovative therapies. The most recently discovered therapies often involve modifying the patient's immune system to enhance a beneficial immune response. Current data suggest that, among others, the cytokine IL-22 might be a promising therapeutical candidate. IL-22 and its endogenous antagonist, IL-22BP, have been under thorough scientific investigation for nearly 20 years. While IL-22 is mainly produced by TH22 cells, ILC3s, NKT cells, or γδ T cells, sources of IL-22BP include dendritic cells, eosinophils, and CD4+ cells. In many settings, IL-22 was shown to promote regenerative potential and, thus, could protect tissues from pathogens and damage. However, the effects of IL-22 during carcinogenesis are more ambiguous and depend on the tumor entity and microenvironment. In line with its capabilities of neutralizing IL-22 in vivo, IL-22BP possesses often, but not always, an inverse expression pattern compared to its ligand. In this comprehensive review, we will summarize past and current findings regarding the roles of IL-22 and IL-22BP in liver diseases with a particular focus on the leading causes of advanced liver failure, namely, liver infections, liver damage, and liver malignancies.
Collapse
Affiliation(s)
- Jöran Lücke
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Morsal Sabihi
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tao Zhang
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lennart Fynn Bauditz
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
20
|
D’Onofrio F, Renga G, Puccetti M, Pariano M, Bellet MM, Santarelli I, Stincardini C, Mosci P, Ricci M, Giovagnoli S, Costantini C, Romani L. Indole-3-Carboxaldehyde Restores Gut Mucosal Integrity and Protects from Liver Fibrosis in Murine Sclerosing Cholangitis. Cells 2021; 10:1622. [PMID: 34209524 PMCID: PMC8305598 DOI: 10.3390/cells10071622] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is a long-term liver disease characterized by a progressive course of cholestasis with liver inflammation and fibrosis. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC. According to the "leaky gut" hypothesis, gut inflammation alters the permeability of the intestinal mucosa, with the translocation of gut-derived products that enter the enterohepatic circulation and cause hepatic inflammation. Thus, the administration of molecules that preserve epithelial barrier integrity would represent a promising therapeutic strategy. Indole-3-carboxaldehyde (3-IAld) is a microbial-derived product working at the interface between the host and the microbiota and is able to promote mucosal immune homeostasis in a variety of preclinical settings. Herein, by resorting to a murine model of PSC, we found that 3-IAld formulated for localized delivery in the gut alleviates hepatic inflammation and fibrosis by modulating the intestinal microbiota and activating the aryl hydrocarbon receptor-IL-22 axis to restore mucosal integrity. This study points to the therapeutic potential of 3-IAld in liver pathology.
Collapse
Affiliation(s)
- Fiorella D’Onofrio
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Giorgia Renga
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Ilaria Santarelli
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Claudia Stincardini
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Paolo Mosci
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy; (M.P.); (M.R.); (S.G.)
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Piazzale Lucio Severi 1, 06132 Perugia, Italy; (F.D.); (G.R.); (M.P.); (M.M.B.); (I.S.); (C.S.); (P.M.); (C.C.)
- University Research Center on Functional Genomics (C.U.R.Ge.F), University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
21
|
Ganguly S, Muench GA, Shang L, Rosenthal SB, Rahman G, Wang R, Wang Y, Kwon HC, Diomino AM, Kisseleva T, Soorosh P, Hosseini M, Knight R, Schnabl B, Brenner DA, Dhar D. Nonalcoholic Steatohepatitis and HCC in a Hyperphagic Mouse Accelerated by Western Diet. Cell Mol Gastroenterol Hepatol 2021; 12:891-920. [PMID: 34062281 PMCID: PMC8342972 DOI: 10.1016/j.jcmgh.2021.05.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS How benign liver steatosis progresses to nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular carcinoma (HCC) remains elusive. NASH progression entails diverse pathogenic mechanisms and relies on complex cross-talk between multiple tissues such as the gut, adipose tissues, liver, and the brain. Using a hyperphagic mouse fed with a Western diet (WD), we aimed to elucidate the cross-talk and kinetics of hepatic and extrahepatic alterations during NASH-HCC progression, as well as regression. METHODS Hyperphagic mice lacking a functional Alms1 gene (Foz/Foz) and wild-type littermates were fed WD or standard chow for 12 weeks for NASH/fibrosis and for 24 weeks for HCC development. NASH regression was modeled by switching back to normal chow after NASH development. RESULTS Foz+WD mice were steatotic within 1 to 2 weeks, developed NASH by 4 weeks, and grade 3 fibrosis by 12 weeks, accompanied by chronic kidney injury. Foz+WD mice that continued on WD progressed to cirrhosis and HCC within 24 weeks and had reduced survival as a result of cardiac dysfunction. However, NASH mice that were switched to normal chow showed NASH regression, improved survival, and did not develop HCC. Transcriptomic and histologic analyses of Foz/Foz NASH liver showed strong concordance with human NASH. NASH was preceded by an early disruption of gut barrier, microbial dysbiosis, lipopolysaccharide leakage, and intestinal inflammation. This led to acute-phase liver inflammation in Foz+WD mice, characterized by neutrophil infiltration and increased levels of several chemokines/cytokines. The liver cytokine/chemokine profile evolved as NASH progressed, with subsequent predominance by monocyte recruitment. CONCLUSIONS The Foz+WD model closely mimics the pathobiology and gene signature of human NASH with fibrosis and subsequent HCC. Foz+WD mice provide a robust and relevant preclinical model of NASH, NASH-associated HCC, chronic kidney injury, and heart failure.
Collapse
Affiliation(s)
- Souradipta Ganguly
- Department of Medicine, University of California San Diego, La Jolla, California
| | | | - Linshan Shang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Sara Brin Rosenthal
- Department of Medicine, University of California San Diego, La Jolla, California; Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California
| | - Gibraan Rahman
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California
| | - Ruoyu Wang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Hyeok Choon Kwon
- Department of Gastroenterology and Hepatology, National Medical Center, Jung-Gu, Seoul, South Korea
| | - Anthony M Diomino
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, La Jolla, California
| | | | - Mojgan Hosseini
- Department of Pathology, University of California San Diego, La Jolla, California
| | - Rob Knight
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California; Center for Microbiome Innovation, University of California San Diego, La Jolla, California; Department of Pediatrics, University of California San Diego, La Jolla, California
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California
| | - David A Brenner
- Department of Medicine, University of California San Diego, La Jolla, California.
| | - Debanjan Dhar
- Department of Medicine, University of California San Diego, La Jolla, California.
| |
Collapse
|
22
|
Thapa K, Grewal AS, Kanojia N, Rani L, Sharma N, Singh S. Alcoholic and Non-Alcoholic Liver Diseases: Promising Molecular Drug Targets and their Clinical Development. Curr Drug Discov Technol 2021; 18:333-353. [PMID: 31965945 DOI: 10.2174/1570163817666200121143959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Alcoholic and non-alcoholic fatty liver diseases have become a serious concern worldwide. Both these liver diseases have an identical pathology, starting from simple steatosis to cirrhosis and, ultimately to hepatocellular carcinoma. Treatment options for alcoholic liver disease (ALD) are still the same as they were 50 years ago which include corticosteroids, pentoxifylline, antioxidants, nutritional support and abstinence; and for non-alcoholic fatty liver disease (NAFLD), weight loss, insulin sensitizers, lipid-lowering agents and anti-oxidants are the only treatment options. Despite broad research in understanding the disease pathophysiology, limited treatments are available for clinical use. Some therapeutic strategies based on targeting a specific molecule have been developed to lessen the consequences of disease and are under clinical investigation. Therefore, focus on multiple molecular targets will help develop an efficient therapeutic strategy. This review comprises a brief overview of the pathogenesis of ALD and NAFLD; recent molecular drug targets explored for ALD and NAFLD that may prove to be effective for multiple therapeutic regimens and also the clinical status of these promising drug targets for liver diseases.
Collapse
Affiliation(s)
- Komal Thapa
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neha Kanojia
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Lata Rani
- Chitkara University School of Basic Sciences, Chitkara University, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
23
|
Melin N, Sánchez-Taltavull D, Fahrner R, Keogh A, Dosch M, Büchi I, Zimmer Y, Medová M, Beldi G, Aebersold DM, Candinas D, Stroka D. Synergistic effect of the TLR5 agonist CBLB502 and its downstream effector IL-22 against liver injury. Cell Death Dis 2021; 12:366. [PMID: 33824326 PMCID: PMC8024273 DOI: 10.1038/s41419-021-03654-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/07/2023]
Abstract
The toll-like receptor 5 (TLR5) agonist, CBLB502/Entolimod, is a peptide derived from bacterial flagellin and has been shown to protect against radiation-induced tissue damage in animal models. Here we investigated the protective mechanism of CBLB502 in the liver using models of ischemia-reperfusion injury and concanavalin A (ConA) induced immuno-hepatitis. We report that pretreatment of mice with CBLB502 provoked a concomitant activation of NF-κB and STAT3 signaling in the liver and reduced hepatic damage in both models. To understand the underlying mechanism, we screened for cytokines in the serum of CBLB502 treated animals and detected high levels of IL-22. There was no transcriptional upregulation of IL-22 in the liver, rather it was found in extrahepatic tissues, mainly the colon, mesenteric lymph nodes (MLN), and spleen. RNA-seq analysis on isolated hepatocytes demonstrated that the concomitant activation of NF-κB signaling by CBLB502 and STAT3 signaling by IL-22 produced a synergistic cytoprotective transcriptional signature. In IL-22 knockout mice, the loss of IL-22 resulted in a decrease of hepatic STAT3 activation, a reduction in the cytoprotective signature, and a loss of hepatoprotection following ischemia-reperfusion-induced liver injury. Taken together, these findings suggest that CBLB502 protects the liver by increasing hepatocyte resistance to acute liver injury through the cooperation of TLR5-NF-κB and IL-22-STAT3 signaling pathways.
Collapse
Affiliation(s)
- Nicolas Melin
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Daniel Sánchez-Taltavull
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - René Fahrner
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of General, Visceral and Vascular Surgery, Bürgerspital Solothurn, 4500, Solothurn, Switzerland
| | - Adrian Keogh
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Michel Dosch
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Isabel Büchi
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Yitzhak Zimmer
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Michaela Medová
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Guido Beldi
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Daniel M Aebersold
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Daniel Candinas
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland.
- Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
24
|
Li SW, Takahara T, Que W, Fujino M, Guo WZ, Hirano SI, Ye LP, Li XK. Hydrogen-rich water protects against liver injury in nonalcoholic steatohepatitis through HO-1 enhancement via IL-10 and Sirt 1 signaling. Am J Physiol Gastrointest Liver Physiol 2021; 320:G450-G463. [PMID: 33439102 DOI: 10.1152/ajpgi.00158.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) could progress to hepatic fibrosis in the absence of effective control. The purpose of our experiment was to investigate the protective effect of drinking water with a high concentration of hydrogen, namely, hydrogen-rich water (HRW), on mice with nonalcoholic fatty liver disease to elucidate the mechanism underlying the therapeutic action of molecular hydrogen. The choline-supplemented, l-amino acid-defined (CSAA) or the choline-deficient, l-amino acid-defined (CDAA) diet for 20 wk was used to induce NASH and fibrosis in the mice model and simultaneously treated with the high-concentration 7-ppm HRW for different periods (4 wk, 8 wk, and 20 wk). Primary hepatocytes were stimulated by palmitate to mimic liver lipid metabolism during fatty liver formation. Primary hepatocytes were cultured in a closed vessel filled with 21% O2 + 5% CO2 + 3.8% H2 and N2 as the base gas to verify the response of primary hepatocytes in a high concentration of hydrogen gas in vitro. Mice in the CSAA + HRW group had lower serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and milder histological damage. The inflammatory cytokines were expressed at lower levels in the HRW group than in the CSAA group. Importantly, HRW reversed hepatocyte fatty acid oxidation and lipogenesis as well as hepatic inflammation and fibrosis in preexisting hepatic fibrosis specimens. Molecular hydrogen inhibits the lipopolysaccharide-induced production of inflammation cytokines through increasing heme oxygenase-1 (HO-1) expression. Furthermore, HRW improved hepatic steatosis in the CSAA + HRW group. Sirtuin 1 (Sirt1) induction by molecular hydrogen via the HO-1/adenosine monophosphate activated protein kinase (AMPK)/peroxisome proliferator-activated receptor α (PPARα)/peroxisome proliferator-activated receptor γ (PPAR-γ) pathway suppresses palmitate-mediated abnormal fat metabolism. Orally administered HRW suppressed steatosis induced by CSAA and attenuated fibrosis induced by CDAA, possibly by reducing oxidative stress and the inflammation response.NEW & NOTEWORTHY The mRNA expression of inflammatory cytokines in the HRW group was lower than in the CSAA group. HRW reversed hepatocyte apoptosis as well as hepatic inflammation and fibrosis in NASH specimens. Molecular hydrogen inhibits LPS-induced inflammation via an HO-1/interleukin 10 (IL-10)-independent pathway. HRW improved hepatic steatosis in the CSAA + HRW group. Sirt1 induction by molecular hydrogen via the HO-1/AMPK/PPARα/PPARγ pathway suppresses palmitate-mediated abnormal fat metabolism.
Collapse
Affiliation(s)
- Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Terumi Takahara
- Third Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayuki Fujino
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Li-Ping Ye
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol Hepatol 2021; 18:151-166. [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7] [Citation(s) in RCA: 850] [Impact Index Per Article: 283.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Chronic liver injury leads to liver inflammation and fibrosis, through which activated myofibroblasts in the liver secrete extracellular matrix proteins that generate the fibrous scar. The primary source of these myofibroblasts are the resident hepatic stellate cells. Clinical and experimental liver fibrosis regresses when the causative agent is removed, which is associated with the elimination of these activated myofibroblasts and resorption of the fibrous scar. Understanding the mechanisms of liver fibrosis regression could identify new therapeutic targets to treat liver fibrosis. This Review summarizes studies of the molecular mechanisms underlying the reversibility of liver fibrosis, including apoptosis and the inactivation of hepatic stellate cells, the crosstalk between the liver and the systems that orchestrate the recruitment of bone marrow-derived macrophages (and other inflammatory cells) driving fibrosis resolution, and the interactions between various cell types that lead to the intracellular signalling that induces fibrosis or its regression. We also discuss strategies to target hepatic myofibroblasts (for example, via apoptosis or inactivation) and the myeloid cells that degrade the matrix (for example, via their recruitment to fibrotic liver) to facilitate fibrosis resolution and liver regeneration.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, CA, USA.
| | - David Brenner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Wang HH, Huang JH, Sue MH, Ho WC, Hsu YH, Chang KC, Chang MS. Interleukin-24 protects against liver injury in mouse models. EBioMedicine 2021; 64:103213. [PMID: 33508745 PMCID: PMC7841303 DOI: 10.1016/j.ebiom.2021.103213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Interleukin-24 (IL-24) binds to two kinds of receptor complexes, namely IL-20R1/IL-20R2 and IL-20R2/IL-22R1, which are also bound by IL-20. IL-20 plays a detrimental role in liver fibrosis. Due to the sharing of receptor complexes, we aimed to determine whether IL-24 also participates in liver fibrosis. Methods Clinical biopsy specimens from various stages of liver fibrosis were used to analyze IL-24 expression. IL-24 protein was administered to mice with thioacetamide (TAA)-induced liver injury. The direct effects of IL-24 on mouse primary hepatocytes or hepatic stellate cells (HSCs) were analyzed. Wild-type, IL-20R1-, and IL20R2-deficient mice were used to establish a model of acute TAA-induced liver injury. Findings Among patients with more severe liver fibrosis, there was a reduced IL-24/IL-20 ratio. Administration of IL-24 protein protected mice from TAA-induced liver injury and reduction of liver inflammation by antioxidant effects. IL-24 protected hepatocytes from TAA-induced apoptosis and prevented liver fibrosis through the inhibition of the HSCs activation. The protective role of IL-24 acted on liver cells were mainly IL-20R1-independent. IL-20R2-deficient mice exhibited more severe liver injury upon TAA treatment, thus confirming the protective role of IL-24. Interpretation IL-24 plays a key protective role in the progression of liver injury and has therapeutic potential for treating liver injuries. Funding This work was supported by the Ministry of Science and Technology of Taiwan (MOST 106–2320-B-006–024) and Taiwan Liver Disease Prevention & Treatment Research Foundation.
Collapse
Affiliation(s)
- Hsiao-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jian-Hao Huang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Min-Hao Sue
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chih Ho
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Kung-Chao Chang
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Shi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
27
|
Hwang S, Yun H, Moon S, Cho YE, Gao B. Role of Neutrophils in the Pathogenesis of Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2021; 12:751802. [PMID: 34707573 PMCID: PMC8542869 DOI: 10.3389/fendo.2021.751802] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) includes a spectrum of liver disorders, from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Compared with fatty liver, NASH is characterized by increased liver injury and inflammation, in which liver-infiltrating immune cells, with neutrophil infiltration as a hallmark of NASH, play a critical role in promoting the progression of fatty liver to NASH. Neutrophils are the first responders to injury and infection in various tissues, establishing the first line of defense through multiple mechanisms such as phagocytosis, cytokine secretion, reactive oxygen species production, and neutrophil extracellular trap formation; however, their roles in the pathogenesis of NASH remain obscure. The current review summarizes the roles of neutrophils that facilitate the progression of fatty liver to NASH and their involvement in inflammation resolution during NASH pathogenesis. The notion that neutrophils are potential therapeutic targets for the treatment of NASH is also discussed.
Collapse
Affiliation(s)
- Seonghwan Hwang
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Sungwon Moon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Ye Eun Cho
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, South Korea
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
28
|
Role of N-acetyl Cysteine in Post-transarterial Chemoembolization Transaminitis in Hepatocellular Carcinoma: A Single-center Experience. J Clin Exp Hepatol 2021; 11:299-304. [PMID: 33994712 PMCID: PMC8103334 DOI: 10.1016/j.jceh.2020.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transarterial chemoembolization (TACE) is the most common locoregional therapy for hepatocellular carcinoma (HCC). Postembolization syndrome is not an uncommon complication. At present, there is no specific treatment for management of this complication. We aimed to study the role of N-acetyl cysteine (NAC), an antioxidant, in management of this complication. METHODS In a prospective observational study, consecutive patients with HCC undergoing TACE from January 2016 to January 2017 were included. Patients with postembolization syndrome, defined as an elevation of transaminase levels more than 3-4 times the upper limit of normal, were administered intravenous NAC for 72 h (150 mg/kg for 1 h, then 12.5 mg/kg/h for 4 h, and continuous infusion 6.25 mg/h for the remaining 67 h). The other group received only supportive standard of care. The primary end point was reduction in post-TACE transaminitis. RESULTS Of 112 patients with HCC, 53 (47.3%) received NAC. The majority were cirrhotics in both the groups. Both groups were well matched in demographic, laboratory, and tumor characteristics. In the NAC group, there was significant reduction in Aspartate transaminase (AST) and Alanine transaminase (ALT) levels from day 1 to day 3 (p = 0.000) compared with the non-NAC group, with no significant change in bilirubin or international normalized ratio levels. The duration of hospital stay was similar in both the groups. None had any major adverse events to NAC. CONCLUSION This is a prospective, single-center experience, showing that early initiation of N-acetyl cysteine in those with post-TACE embolization syndrome reduces the transaminase level significantly.
Collapse
Key Words
- AFP, alpha-fetoprotein
- ANOVA, analysis of variance
- BCLC, Barcelona Clinic Liver Cancer
- CT, computed tomography
- HCC, hepatocellular carcinoma
- IL, interleukin
- INR, international normalized ratio
- LT, liver transplantation
- NAC, N-acetyl cysteine
- PES, postembolization syndrome
- TACE, Transarterial chemoembolization
- chronic liver disease
- liver cancer
- liver transplant
Collapse
|
29
|
Khanam A, Kottilil S. Abnormal Innate Immunity in Acute-on-Chronic Liver Failure: Immunotargets for Therapeutics. Front Immunol 2020; 11:2013. [PMID: 33117329 PMCID: PMC7578249 DOI: 10.3389/fimmu.2020.02013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a severe life-threatening condition with high risk of multiorgan failure, sepsis, and mortality. ACLF activates a multifaceted interplay of both innate and adaptive immune response in the host which governs the overall outcome. Innate immune cells recognize the conserved elements of microbial and viral origin, both to extort instant defense by transforming into diverse modules of effector responses and to generate long-lasting immunity but can also trigger a massive intrahepatic immune inflammatory response. Acute insult results in the activation of innate immune cells which provokes cytokine and chemokine cascade and subsequently initiates aggressive systemic inflammatory response syndrome, hepatic damage, and high mortality in ACLF. Dysregulated innate immune response not only plays a critical role in disease progression but also potentially correlates with clinical disease severity indices including Child-Turcotte-Pugh, a model for end-stage liver disease, and sequential organ failure assessment score. A better understanding of the pathophysiological basis of the disease and precise immune mechanisms associated with liver injury offers a novel approach for the development of new and efficient therapies to treat this severely ill entity. Immunotherapies could be helpful in targeting immune-mediated organ damage which may constrain progression toward liver failure and eventually reduce the requirement for liver transplantation. Here, in this review we discuss the defects of different innate immune cells in ACLF which updates the current knowledge of innate immune response and provide potential targets for new therapeutic interventions.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
30
|
Arshad T, Mansur F, Palek R, Manzoor S, Liska V. A Double Edged Sword Role of Interleukin-22 in Wound Healing and Tissue Regeneration. Front Immunol 2020; 11:2148. [PMID: 33042126 PMCID: PMC7527413 DOI: 10.3389/fimmu.2020.02148] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022] Open
Abstract
Wound healing and tissue regeneration is an intricate biological process that involves repair of cellular damage and maintenance of tissue integrity. Cascades involved in wound healing and tissue regeneration highly overlap with cancer causing pathways. Usually, subsequent tissue damage events include release of a number of cytokines to accomplish post-trauma restoration. IL-22 is one of the cytokines that are immediately produced to initiate immune response against several tissue impairments. IL-22 is a fundamental mediator in inflammation, mucous production, protective role against pathogens, wound healing, and tissue regeneration. However, accumulating evidence suggests pivotal role of IL-22 in instigation of various cancers due to its pro-inflammatory and tissue repairing activity. In this review, we summarize how healing effects of IL-22, when executed in an uncontrollable fashion can lead to carcinogenesis.
Collapse
Affiliation(s)
- Tanzeela Arshad
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fizzah Mansur
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Richard Palek
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Sobia Manzoor
- Molecular Virology and Immunology Research Group, Atta-ur-Rahman School of Applied Bio-Sciences, National University of Sciences and Technology, Islamabad, Pakistan
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| | - Vaclav Liska
- Department of Surgery, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Prague, Czechia
| |
Collapse
|
31
|
Arab JP, Sehrawat TS, Simonetto DA, Verma VK, Feng D, Tang T, Dreyer K, Yan X, Daley WL, Sanyal A, Chalasani N, Radaeva S, Yang L, Vargas H, Ibacache M, Gao B, Gores GJ, Malhi H, Kamath PS, Shah VH. An Open-Label, Dose-Escalation Study to Assess the Safety and Efficacy of IL-22 Agonist F-652 in Patients With Alcohol-associated Hepatitis. Hepatology 2020; 72:441-453. [PMID: 31774566 PMCID: PMC7250715 DOI: 10.1002/hep.31046] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Interleukin-22 has beneficial effects on inflammation and impaired hepatic regeneration that characterize alcohol-associated hepatitis (AH). F-652 is a recombinant fusion protein of human interleukin-22 and immunoglobulin G2 fragment crystallizable. This study aims to assess the safety and efficacy signals of F-652 in patients with moderate and severe AH. APPROACH AND RESULTS A phase-2 dose-escalating study was carried out. F-652 (10 μg/kg, 30 μg/kg, or 45 μg/kg) administered on days 1 and 7 was tested in 3 patients each with moderate (Model for End-Stage Liver Disease [MELD] scores: 11-20) and severe AH (MELD scores: 21-28). Safety was defined by absence of serious adverse events and efficacy was assessed by Lille score, changes in MELD score, and serum bilirubin and aminotransferases at days 28 and 42. Three independent propensity-matched comparator patient cohorts were used. Plasma extracellular vesicles and multiplex serum cytokines were measured to assess inflammation and hepatic regeneration. Eighteen patients (9 moderate and 9 severe AH) were enrolled, 66% were male, and the mean age was 48 years. The half-life of F-652 following the first dose was 61-85 hours. There were no serious adverse events leading to discontinuation. The MELD score and serum aminotransferases decreased significantly at days 28 and 42 from baseline (P < 0.05). Day-7 Lille score was 0.45 or less in 83% patients as compared with 6%, 12%, and 56% among the comparator cohorts. Extracellular vesicle counts decreased significantly at day 28 (P < 0.013). Cytokine inflammatory markers were down-regulated, and regeneration markers were up-regulated at days 28 and 42. CONCLUSIONS F-652 is safe in doses up to 45 μg/kg and associated with a high rate of improvement as determined by Lille and MELD scores, reductions in markers of inflammation and increases in markers of hepatic regeneration. This study supports the need for randomized placebo-controlled trials to test the efficacy of F-652 in AH.
Collapse
Affiliation(s)
- Juan P. Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Departamento de Gastroenterologia, Escuela de Medicina, Pontificia Universidad Catolica de Chile, Santiago, CHILE
| | - Tejasav S. Sehrawat
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | | | - Vikas K. Verma
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Dechun Feng
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Tom Tang
- Generon Corporation Ltd. Shanghai, China
| | | | | | | | - Arun Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Naga Chalasani
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Svetlana Radaeva
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Liu Yang
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, USA
| | - Hugo Vargas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Scottsdale, AZ, USA
| | - Mauricio Ibacache
- División Anestesiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, CHILE
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gregory J. Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Patrick S. Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
32
|
Støy S, Laursen TL, Glavind E, Eriksen PL, Terczynska-Dyla E, Magnusson NE, Hamilton-Dutoit S, Mortensen FV, Veidal SS, Rigbolt K, Riggio O, Deleuran B, Vilstrup H, Sandahl TD. Low Interleukin-22 Binding Protein Is Associated With High Mortality in Alcoholic Hepatitis and Modulates Interleukin-22 Receptor Expression. Clin Transl Gastroenterol 2020; 11:e00197. [PMID: 32955203 PMCID: PMC8443818 DOI: 10.14309/ctg.0000000000000197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/12/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION In alcoholic hepatitis (AH), high interleukin (IL)-22 production is associated with disease improvement, purportedly through enhanced infection resistance and liver regeneration. IL-22 binding protein (BP) binds and antagonizes IL-22 bioactivity, but data on IL-22BP in liver disease suggest a complex interplay. Despite the scarcity of human data, IL-22 is in clinical trial as treatment of AH. We, therefore, in patients with AH, described the IL-22 system focusing on IL-22BP and associations with disease course, and mechanistically pursued the human associations in vitro. METHODS We prospectively studied 41 consecutive patients with AH at diagnosis, days 7 and 90, and followed them for up to 1 year. We measured IL-22 pathway proteins in liver biopsies and blood and investigated IL-22BP effects on IL-22 in hepatocyte cultures. RESULTS IL-22BP was produced in the gut and was identifiable in the patients with AH' livers. Plasma IL-22BP was only 50% of controls and the IL-22/IL-22BP ratio thus elevated. Consistently, IL-22-inducible genes were upregulated in AH livers at diagnosis. Low plasma IL-22BP was closely associated with high 1-year mortality. In vitro, IL-22 stimulation reduced IL-22 receptor (R) expression, but coincubation with IL-22BP sustained IL-22R expression. In the AH livers, IL-22R mRNA expression was similar to healthy livers, although IL-22R liver protein was higher at diagnosis. DISCUSSION Plasma IL-22BP was associated with an adverse disease course, possibly because its low level reduces IL-22R expression so that IL-22 bioactivity was reduced. This suggests the IL-BP interplay to be central in AH pathogenesis, and in future treatment trials (see Visual abstract, Supplementary Digital Content 5, http://links.lww.com/CTG/A338).
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tea Lund Laursen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie Glavind
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Ewa Terczynska-Dyla
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Nils Erik Magnusson
- Diabetes and Hormone Diseases-Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Denmark
| | | | | | | | | | - Oliviero Riggio
- Department of Clinical Medicine, Sapienza University of Rome, Italy
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
33
|
Wu Y, Min J, Ge C, Shu J, Tian D, Yuan Y, Zhou D. Interleukin 22 in Liver Injury, Inflammation and Cancer. Int J Biol Sci 2020; 16:2405-2413. [PMID: 32760208 PMCID: PMC7378634 DOI: 10.7150/ijbs.38925] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Interleukin 22(IL-22), a member of the IL-10 cytokine family and is an emerging CD4+Th cytokine that plays an important role in anti-microbial defense, homeostasis and tissue repair. We are interested in IL-22 as it has the double function of suppressing or encouraging inflammation in various disease models including hepatic inflammation. As a survival factor for hepatocytes, IL-22 plays a protective role in many kinds of liver diseases, such as hepatitis, liver fibrosis, or hepatocellular carcinoma (HCC) by binding to the receptors IL-22R1 and IL-10R2. Overexpression of IL-22 reduces liver fibrosis by attenuating the activation of hepatic stellate cell (the main cell types involved in hepatic fibrosis), and down-regulating the levels of inflammatory cytokines. Administration of exogenous IL-22 increases the replication of hepatocytes by inhibiting cell apoptosis and promoting mitosis, ultimately plays a contributing role in liver regeneration. Furthermore, treatment with IL-22 activates hepatic signal transducer and activator of transcription 3 (STAT3), ameliorates hepatic oxidative stress and alcoholic fatty liver, effectively alleviate the liver damage caused by alcohol and toxicant. In conclusion, the hepatoprotective functions and liver regeneration promoting effect of IL-22 suggests the therapeutic potential of IL-22 in the treatment of human hepatic diseases.
Collapse
Affiliation(s)
- Ye Wu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jie Min
- The Second Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Chang Ge
- The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, 230022, China
| | - Jinping Shu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Di Tian
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Yuan Yuan
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Dian Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| |
Collapse
|
34
|
Hwang S, Feng D, Gao B. Interleukin-22 acts as a mitochondrial protector. Theranostics 2020; 10:7836-7840. [PMID: 32685023 PMCID: PMC7359092 DOI: 10.7150/thno.48022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Interleukin (IL)-22 has been increasingly recognized as a promising therapeutic option for various types of diseases. This commentary summarizes the novel mechanistic aspects of IL-22 for the treatment of liver diseases including the study by Chen et al. published in the recent issue of the Theranostics that elucidated the novel function of IL-22 as a mitochondrial protector for the adaptive defense against liver injury.
Collapse
Affiliation(s)
| | | | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Opoku YK, Liu Z, Afrifa J, Kumi AK, Liu H, Ghartey-Kwansah G, Koranteng H, Jiang X, Ren G, Li D. Fibroblast Growth Factor-21 ameliorates hepatic encephalopathy by activating the STAT3-SOCS3 pathway to inhibit activated hepatic stellate cells. EXCLI JOURNAL 2020; 19:567-581. [PMID: 32483404 PMCID: PMC7257252 DOI: 10.17179/excli2020-1287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022]
Abstract
Neurological dysfunction, one of the consequences of acute liver failure (ALF), and also referred to as hepatic encephalopathy (HE), contributes to mortality posing challenges for clinical management. FGF21 has been implicated in the inhibition of cognitive decline and fibrogenesis. However, the effects of FGF21 on the clinical and molecular presentations of HE has not been elucidated. HE was induced by fulminant hepatic failure using thioacetamide (TAA) in male C57BL/6J mice while controls were injected with saline. For two consecutive weeks, mice were treated intraperitoneally with FGF21 (3 mg/kg) while controls were treated with saline. Cognitive, neurological, and activity function scores were recorded. Serum, liver, and brain samples were taken for analysis of CCL5 and GABA by ELISA, and RT qPCR was used to measure the expressions of fibrotic and pro-inflammatory markers. We report significant improvement in both cognitive and neurological scores by FGF21 treatment after impairment by TAA. GABA and CCL5, key factors in the progression of HE were also significantly reduced in the treatment group. Furthermore, the expression of fibrotic markers such as TGFβ and Col1 were also significantly downregulated after FGF21 treatment. TNFα and IL-6 were significantly reduced in the liver while in the brain, TNFα and IL-1 were downregulated. However, both in the liver and the brain, IL-10 was significantly upregulated. FGF21 inhibits CXCR4/CCL5 activation and upregulates the production of IL-10 in the damaged liver stimulating the production pro-inflammatory cytokines and apoptosis of hepatic stellate cells through the STAT3-SOCS3 pathway terminating the underlying fibrosis in HE.
Collapse
Affiliation(s)
- Yeboah Kwaku Opoku
- Department of Biology Education, Faculty of Science Education, University of Education, Winneba, Ghana.,Bio-pharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Zhihang Liu
- Bio-pharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Justice Afrifa
- Department of Medical Laboratory Science, University of Cape Coast, Cape Coast, Ghana.,Scientific Research Center, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Asare Kwame Kumi
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.,Department of Biomedical Sciences, University of Cape Coast, Ghana
| | - Han Liu
- Bio-pharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | | | - Harriet Koranteng
- Jiamusi University No. 148, Xuefu Road, Jiamusi, Heilongjiang, China
| | - Xinghao Jiang
- Bio-pharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Guiping Ren
- Bio-pharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Deshan Li
- Bio-pharmaceutical Laboratory, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
36
|
Abstract
Alcoholic liver diseases (ALD) are a wide spectrum of liver diseases caused by excessive alcohol consumption, from steatosis to cirrhosis. The pathogenesis of ALD is insufficiently understood, but mainly involves oxidative stress, inflammation, bacterial translocation, cell death, and impaired regeneration. Despite numerous attempts to improve patient prognosis, the treatment of advanced ALD is still based on abstinence, brief exposure to corticosteroids, or liver transplantation. However, poor response to corticosteroids and the shortage of liver donors leaves patients helpless towards the end stages. Advances in basic research have contributed to a better understanding of ALD pathophysiology, which offers new options for treatment. In recent years, several therapies related to liver regeneration have been tested with promising prospects, including molecule-induced liver regeneration, stem cell transplantation, and full-function 3D artificial liver assembly. This review discusses mechanisms underlying ALD that can be considered therapeutic targets for regeneration-based treatments.
Collapse
Affiliation(s)
- Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Kwok Fai So
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China
| | - Jia Xiao
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, College of Life Sciences, Fujian Normal University, Fuzhou 350108, China.,Institute of Clinical Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| |
Collapse
|
37
|
Avila MA, Dufour JF, Gerbes AL, Zoulim F, Bataller R, Burra P, Cortez-Pinto H, Gao B, Gilmore I, Mathurin P, Moreno C, Poznyak V, Schnabl B, Szabo G, Thiele M, Thursz MR. Recent advances in alcohol-related liver disease (ALD): summary of a Gut round table meeting. Gut 2020; 69:764-780. [PMID: 31879281 PMCID: PMC7236084 DOI: 10.1136/gutjnl-2019-319720] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/28/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022]
Abstract
Alcohol-related liver disease (ALD), which includes a range of disorders of different severity and is one of the most prevalent types of liver disease worldwide, has recently regained increased attention. Among other reasons, the realisation that any alcohol intake, regardless of type of beverage represents a health risk, and the new therapeutic strategies tested in recently published or undergoing clinical trials spur scientific interest in this area.In April 2019, Gut convened a round table panel of experts during the European Association for the Study of the Liver International Liver Congress in Vienna to discuss critical and up-to-date issues and clinical trial data regarding ALD, its epidemiology, diagnosis, management, pathomechanisms, possible future treatments and prevention. This paper summarises the discussion and its conclusions.
Collapse
Affiliation(s)
- Matias A Avila
- Hepatology, CIBERehd, IdiSNA, CIMA, University of Navarra, Pamplona, Spain
| | - Jean-François Dufour
- Hepatology, Department of Clinical Research and University Clinic for Visceral Surgery and Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Alexander L Gerbes
- Liver Centre Munich, Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Fabien Zoulim
- Hepatology Department, INSERM U1052, Hospices Civils de Lyon, Cancer Research Centerl of Lyon, University of Lyon, Lyon, France
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Patrizia Burra
- Multivisceral Transplant Unit, Gastroenterology, Department of Surgery, Oncology and Gastroenterology, Padua University Hospital, Padua, Italy
| | - Helena Cortez-Pinto
- Departamento de Gastroenterologia, CHLN, Laboratorio de Nutriçao, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian Gilmore
- Liverpool Centre for Alcohol Research, University of Liverpool, Liverpool, UK
| | - Philippe Mathurin
- Service des Maladies de l'Appareil Digestif, INSERM U795, Hôpital Huriez, Lille, France
| | - Christophe Moreno
- Service de Gastroentérologie, Hépatopancréatologie et Oncologie Digestive, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Vladimir Poznyak
- Department of Mental Health and Substance Abuse, World Health Organization, Geneve, Switzerland
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maja Thiele
- Department of Gastroenterology and Hepatology, and Department of Clinical Research, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Mark R Thursz
- Department of Metabolism, Faculty of Medicine, Imperial College, London, UK
| |
Collapse
|
38
|
D'Alessio FR, Kurzhagen JT, Rabb H. Reparative T lymphocytes in organ injury. J Clin Invest 2019; 129:2608-2618. [PMID: 31259743 DOI: 10.1172/jci124614] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute organ injuries such as acute cerebrovascular accidents, myocardial infarction, acute kidney injury, acute lung injury, and others are among the leading causes of death worldwide. Dysregulated or insufficient organ repair mechanisms limit restoration of homeostasis and contribute to chronic organ failure. Studies reveal that both humans and mice harness potent non-stem cells that are capable of directly or indirectly promoting tissue repair. Specific populations of T lymphocytes have emerged as important reparative cells with context-specific actions. These T cells can resolve inflammation and secrete reparative cytokines and growth factors as well as interact with other immune and stromal cells to promote the complex and active process of tissue repair. This Review focuses on the major populations of T lymphocytes known to mediate tissue repair, their reparative mechanisms, and the diseases in which they have been implicated. Elucidating and harnessing the mechanisms that promote the reparative functions of these T cells could greatly improve organ dysfunction after acute injury.
Collapse
Affiliation(s)
| | - Johanna T Kurzhagen
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hamid Rabb
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Tang KY, Lickliter J, Huang ZH, Xian ZS, Chen HY, Huang C, Xiao C, Wang YP, Tan Y, Xu LF, Huang YL, Yan XQ. Safety, pharmacokinetics, and biomarkers of F-652, a recombinant human interleukin-22 dimer, in healthy subjects. Cell Mol Immunol 2019; 16:473-482. [PMID: 29670279 PMCID: PMC6474205 DOI: 10.1038/s41423-018-0029-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/26/2018] [Indexed: 12/13/2022] Open
Abstract
F-652 is a recombinant fusion protein consisting of two human interleukin-22 (IL-22) molecules linked to an immunoglobulin constant region (IgG2-Fc). IL-22 plays critical roles in promoting tissue repair and suppressing bacterial infection. The safety, pharmacokinetics (PK), tolerability, and biomarkers of F-652 were evaluated following a single dose in healthy male volunteers in a randomized, double-blind, placebo-controlled study. Following single-dose subcutaneous (SC) injection of F-652 at 2.0 µg/kg into healthy subjects, six out of six subjects experienced delayed injection site reactions, which presented as erythematous and/or discoid eczematous lesions 10 to 17 days post-dosing. F-652 was then administered to the healthy subjects via an intravenous (IV) infusion at 2.0, 10, 30, and 45 µg/kg. No severe adverse event (SAE) was observed during the study. Among the IV-dosed cohorts, eye and skin treatment emergent adverse events (TEAEs) were observed in the 30 and 45 µg/kg cohorts. F-652 IV dosing resulted in linear increases in Cmax and AUC(0-t), and the T1/2 ranged from 39.4 to 206 h in the cohorts. An IV injection of F-652 induced dose-dependent increases in serum marker serum amyloid A, C-reactive protein, and FIB, and decreased serum triglycerides. The serum levels of 36 common pro-inflammatory cytokines/chemokines were not altered by the treatment of F-652 at 45 μg/kg. In conclusion, IV administration of F-652 to healthy male volunteers is safe and well-tolerated and demonstrates favorable PK and pharmacodynamic properties. These results warrant further clinical development of F-652 to treat inflammatory diseases.
Collapse
Affiliation(s)
- Kai-Yang Tang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | | | - Zhi-Hua Huang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Zong-Shu Xian
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Han-Yang Chen
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Cheng Huang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Chong Xiao
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Yu-Peng Wang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Ying Tan
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Lin-Feng Xu
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Yu-Liang Huang
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China
| | - Xiao-Qiang Yan
- Generon (Shanghai) Corporation Ltd., Zhangjiang Hi-Tech Park, Shanghai, China.
| |
Collapse
|
40
|
Zhu J, Zhou M, Zhao X, Mu M, Cheng M. Blueberry, combined with probiotics, alleviates non-alcoholic fatty liver disease via IL-22-mediated JAK1/STAT3/BAX signaling. Food Funct 2018; 9:6298-6306. [PMID: 30411754 DOI: 10.1039/c8fo01227j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent diseases worldwide. Blueberry, combined with probiotics (BP), might be a potential candidate for NAFLD treatment, due to its anti-inflammatory and anti-apoptotic properties. Here, we investigated whether the anti-inflammatory cytokine, IL-22, was involved in the therapeutic process of BP, using cell and rat models of NAFLD. Results indicated that BP significantly reduced lipid droplets and triglyceride (TG) accumulation in NAFLD cells. However, when IL-22 was deficient, the lipid droplets and TG content were significantly increased. In vivo, the serum parameters and pathological degree of NAFLD rats were significantly improved by BP, while IL-22 silencing significantly abolished the BP effect. Immunohistochemistry, immunofluorescence, qRT-PCR, and western blotting showed that the NAFLD group expressed significantly lower levels of IL-22, JAK1, and STAT3, and higher levels of BAX, than the normal group. Furthermore, BP significantly elevated the levels of IL-22, JAK1 and STAT3, and reduced the level of BAX in NAFLD, while IL-22 silencing prevented BP from restoring the expression of JAK1, STAT3, and BAX. We conclude that IL-22 is vital for the therapeutic effect of BP, and acts via activation of JAK1/STAT3 signaling and inhibition of the apoptosis factor BAX, which makes IL-22 a promising target for therapy of NAFLD.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyang Street, Guiyang 550001, Guizhou, China.
| | | | | | | | | |
Collapse
|
41
|
Zhuang Gu Guan Jie Wan: Reasonable Application Can Alleviate the Liver Injury for Osteoarthritis Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:6716529. [PMID: 30538762 PMCID: PMC6260402 DOI: 10.1155/2018/6716529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/23/2018] [Accepted: 10/25/2018] [Indexed: 12/20/2022]
Abstract
The potential toxicity of herbal drugs, particularly drug-induced liver injury (DILI), has received extensive attention as the use of Chinese herbal medicine has rapidly increased globally. As a classic Chinese patent medicine, Zhuang Gu Guan Jie Wan (ZGGJW) has been brought into focus recently because of its satisfactory therapeutic effects on osteoarthritis (OA) as well as its unanticipated side effects. This study aimed to decipher the puzzling phenomenon of liver injury developing in response to ZGGJW that varies by the subtype of OA. Normal, anterior cruciate ligament transaction (ACLT) and partial medial meniscectomy (MMx) induced OA and ovariectomy combined with ACLT and partial MMx induced rat models were used and treated orally with ZGGJW or distilled water for 30 days. The results from histopathology, biochemistry, and immunohistochemistry showed that ZGGJW induced liver injury, increased the level of malondialdehyde (MDA), and decreased the levels of total antioxidation capability (T-AOC), superoxide dismutase (SOD), interleukin-22 (IL-22), and signal transducer and activator of transcription factor 3 (STAT3) in the liver of normal rats, while liver injury was alleviated and showed different tendencies in the above markers for ACLT and partial MMx induction rats and ovariectomy combined with ACLT and partial MMx induction rats after ZGGJW treatment. In the OA disease states, hepatic injury induced by ZGGJW could be associated with an impairment in antioxidant capacity and the high levels of IL-22 and STAT3 after ZGGJW treatment may be responsible for the slight hepatic injury of ZGGJW based on the subtype of OA. This study provides a novel approach to better understanding of the risks and limitations when using potentially toxic Chinese patent medicine in clinical applications.
Collapse
|
42
|
Ohashi K, Pimienta M, Seki E. Alcoholic liver disease: A current molecular and clinical perspective. LIVER RESEARCH 2018; 2:161-172. [PMID: 31214376 PMCID: PMC6581514 DOI: 10.1016/j.livres.2018.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heavy alcohol use is the cause of alcoholic liver disease (ALD). The ALD spectrum ranges from alcoholic steatosis to steatohepatitis, fibrosis, and cirrhosis. In Western countries, approximately 50% of cirrhosis-related deaths are due to alcohol use. While alcoholic cirrhosis is no longer considered a completely irreversible condition, no effective anti-fibrotic therapies are currently available. Another significant clinical aspect of ALD is alcoholic hepatitis (AH). AH is an acute inflammatory condition that is often comorbid with cirrhosis, and severe AH has a high mortality rate. Therapeutic options for ALD are limited. The established treatment for AH is corticosteroids, which improve short-term survival but do not affect long-term survival. Liver transplantation is a curative treatment option for alcoholic cirrhosis and AH, but patients must abstain from alcohol use for 6 months to qualify. Additional effective therapies are needed. The molecular mechanisms underlying ALD are complex and have not been fully elucidated. Various molecules, signaling pathways, and crosstalk between multiple hepatic and extrahepatic cells contribute to ALD progression. This review highlights established and emerging concepts in ALD clinicopathology, their underlying molecular mechanisms, and current and future ALD treatment options.
Collapse
Affiliation(s)
- Koichiro Ohashi
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Pimienta
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA,University of California San Diego, School of Medicine, La Jolla, CA, USA,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA,Department of Medicine, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA,Corresponding author. Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA., (E. Seki)
| |
Collapse
|
43
|
Zhou H, Xie G, Mao Y, Zhou K, Ren R, Zhao Q, Wang H, Yin S. Enhanced Regeneration and Hepatoprotective Effects of Interleukin 22 Fusion Protein on a Predamaged Liver Undergoing Partial Hepatectomy. J Immunol Res 2018; 2018:5241526. [PMID: 30515423 PMCID: PMC6234454 DOI: 10.1155/2018/5241526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
Liver ischemia-reperfusion injury (IRI) and regeneration deficiency are two major challenges for surgery patients with chronic liver disease. As a survival factor for hepatocytes, interleukin 22 (IL-22) plays an important role in hepatoprotection and the promotion of regeneration after hepatectomy. In this study, we aim to investigate the roles of an interleukin 22 fusion protein (IL-22-FP) in mice with a predamaged liver after a two-third partial hepatectomy (PHx). Predamaged livers in mice were induced by concanavalin A (ConA)/carbon tetrachloride (CCl4) following PHx with or without IL-22-FP treatment. A hepatic IRI mouse model was also used to determine the hepatoprotective effects of IL-22-FP. In the ConA/CCl4 model, IL-22-FP treatment alleviated liver injury and accelerated hepatocyte proliferation. Administration of IL-22-FP activated the hepatic signal transducer and activator of transcription 3 (STAT3) and upregulated the expression of many mitogenic proteins. IL-22-FP treatment prior to IRI effectively reduced liver damage through decreased aminotransferase and improved liver histology. In conclusion, IL-22-FP promotes liver regeneration in mice with predamaged livers following PHx and alleviates IRI-induced liver injury. Our study suggests that IL-22-FP may represent a promising therapeutic drug against regeneration deficiency and liver IRI in patients who have undergone PHx.
Collapse
Affiliation(s)
- Heng Zhou
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Guomin Xie
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Yudi Mao
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| | - Ke Zhou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
| | - Ruixue Ren
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qihong Zhao
- Department of Food and Nutrition Hygiene, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Institute for Liver Disease, Anhui Medical University, Hefei 230032, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Shi Yin
- Department of Geriatrics, Anhui Provincial Hospital, Anhui Medical University, Hefei 230001, China
| |
Collapse
|
44
|
Jamhiri I, Shahin K, Khodabandeh Z, Kalantar K, Sarvari J, Atapour A, Mina F, Ahmadnejad A, Hosseini SY. Recombinant NS3 Protein Induced Expression of Immune Modulatory Elements in Hepatic Stellate Cells During Its Fibrotic Activity. Viral Immunol 2018; 31:575-582. [PMID: 30281404 DOI: 10.1089/vim.2018.0018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing body of studies that show the important role of NS3 protein from hepatitis C virus in fibrosis. However, mechanisms of the effects of this protein on immune modulation of stellate cells remain to be investigated. Herein, the effect of NS3 protein on the expression level of suppressor of cytokine signaling (SOCS)1/3 and interleukin-24 (IL-24)-related genes was investigated in hepatic stellate cell (HSC), LX-2. Recombinant NS3 protein was added to LX-2 HSC culture. Leptin and standard medium treatments were also included in experiments as positive and negative controls, respectively. Total RNA was extracted from each well at 6, 12, and 24 h after NS3 addition. The expression levels of the fibrotic (transforming growth factor beta 1 [TGF-β], alpha-smooth muscle actin [α-SMA], and COL1A1), inflammatory (IL-6 and IL-24), IL-20R, IL-22R, and immunosuppressive genes (SOCS1 and SOCS3) were evaluated by real-time polymerase chain reaction (PCR). Recombinant NS3 protein induced activated phenotypes of LX-2 with a significant increase in the expression level of α-SMA COL1A1 (p < 0.0001) and TGF-β. Moreover, this exposure led to a meaningful elevation in the expression of IL-6. Furthermore, compared with leptin (control), after the stellate cell treatment with NS3, SOCS1 and SOCS3 gene expression induced at a comparable level. Compared with the control sample, the NS3 protein significantly increased the expression level of IL-24 and its related receptors, IL-20R and IL-22R. This study not only confirmed the previously proved inflammatory and fibrotic effect of this protein but also indicated that high expression levels of SOCS1, SOCS3, and IL-24 have a significant effect on HSC activation. Therefore, these two molecules can be used as a potential therapeutic target candidate.
Collapse
Affiliation(s)
- Iman Jamhiri
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Khashayar Shahin
- 2 Department of Biology, Faculty of Sciences, University of Isfahan , Isfahan, Iran
| | - Zahra Khodabandeh
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Kurosh Kalantar
- 3 Department of Immunology, School of Medicine, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Jamal Sarvari
- 4 Gastroenterohepatology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran .,5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Amir Atapour
- 6 Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Fatemeh Mina
- 5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Asma Ahmadnejad
- 5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| | - Seyed Younes Hosseini
- 1 Stem Cell Technology Research Center, Shiraz University of Medical Sciences , Shiraz, Iran .,5 Department of Bacteriology and Virology, Shiraz University of Medical Sciences , Shiraz, Iran
| |
Collapse
|
45
|
Seitz HK, Bataller R, Cortez-Pinto H, Gao B, Gual A, Lackner C, Mathurin P, Mueller S, Szabo G, Tsukamoto H. Alcoholic liver disease. Nat Rev Dis Primers 2018; 4:16. [PMID: 30115921 DOI: 10.1038/s41572-018-0014-7] [Citation(s) in RCA: 681] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease worldwide. ALD can progress from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which is characterized by hepatic inflammation. Chronic ASH can eventually lead to fibrosis and cirrhosis and in some cases hepatocellular cancer (HCC). In addition, severe ASH (with or without cirrhosis) can lead to alcoholic hepatitis, which is an acute clinical presentation of ALD that is associated with liver failure and high mortality. Most individuals consuming >40 g of alcohol per day develop AFL; however, only a subset of individuals will develop more advanced disease. Genetic, epigenetic and non-genetic factors might explain the considerable interindividual variation in ALD phenotype. The pathogenesis of ALD includes hepatic steatosis, oxidative stress, acetaldehyde-mediated toxicity and cytokine and chemokine-induced inflammation. Diagnosis of ALD involves assessing patients for alcohol use disorder and signs of advanced liver disease. The degree of AFL and liver fibrosis can be determined by ultrasonography, transient elastography, MRI, measurement of serum biomarkers and liver biopsy histology. Alcohol abstinence achieved by psychosomatic intervention is the best treatment for all stages of ALD. In the case of advanced disease such as cirrhosis or HCC, liver transplantation may be required. Thus, new therapies are urgently needed.
Collapse
Affiliation(s)
- Helmut K Seitz
- Centre of Alcohol Research (CAR),, University of Heidelberg, Heidelberg and Department of Medicine, Salem Medical Center, Heidelberg, Germany.
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Helena Cortez-Pinto
- Departmento de Gastroenterologia, CHLN, Laboratorio de Nutricão, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Antoni Gual
- Addiction Unit, Neuroscience Institute Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Philippe Mathurin
- Service des Maladies de l'Appareil Digestif, Universite Lille 2 and INSERM U795, Lille, France
| | - Sebastian Mueller
- Centre of Alcohol Research (CAR),, University of Heidelberg, Heidelberg and Department of Medicine, Salem Medical Center, Heidelberg, Germany
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hidekazu Tsukamoto
- University of Southern California Keck School of Medicine and Greater Los Angeles VA Healthcare System, Los Angeles, CA, USA
| |
Collapse
|
46
|
Caparrós E, Francés R. The Interleukin-20 Cytokine Family in Liver Disease. Front Immunol 2018; 9:1155. [PMID: 29892294 PMCID: PMC5985367 DOI: 10.3389/fimmu.2018.01155] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022] Open
Abstract
The three main causes of inflammation and chronic injury in the liver are viral hepatitis, alcohol consumption, and non-alcoholic steatohepatitis, all of which can lead to liver fibrosis, cirrhosis, and hepatocellular carcinoma, which in turn may prompt the need for liver transplant. The interleukin (IL)-20 is a subfamily part of the IL-10 family of cytokines that helps the liver respond to damage and disease, they participate in the control of tissue homeostasis, and in the immunological responses developed in this organ. The best-studied member of the family in inflammatory balance of the liver is the IL-22 cytokine, which on the one hand may have a protective role in fibrosis progression but on the other may induce liver tissue susceptibility in hepatocellular carcinoma development. Other members of the family might also carry out this dual function, as some of them share IL receptor subunits and signal through common intracellular pathways. Investigators are starting to consider the potential for targeting IL-20 subfamily members in liver disease. The recently explored role of miRNA in the transcriptional regulation of IL-22 and IL-24 opens the door to promising new approaches for controlling the local immune response and limiting organ injury. The IL-20RA cytokine receptor has also been classified as being under miRNA control in non-alcoholic steatohepatitis. Moreover, researchers have proposed combining anti-inflammatory drugs with IL-22 as a hepatoprotective IL for alcoholic liver disease (ALD) treatment, and clinical trials of ILs for managing severe alcoholic-derived liver degeneration are ongoing. In this review, we focus on exploring the role of the IL-20 subfamily of cytokines in viral hepatitis, ALD, non-alcoholic steatohepatitis, and hepatocellular carcinoma, as well as delineating the main strategies explored so far in terms of therapeutic possibilities of the IL-20 subfamily of cytokines in liver disease.
Collapse
Affiliation(s)
- Esther Caparrós
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rubén Francés
- Departamento de Medicina Clínica, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Instituto ISABIAL-FISABIO, Hospital General Universitario de Alicante, Alicante, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Wang X, Chu Q, Jiang X, Yu Y, Wang L, Cui Y, Lu J, Teng L, Wang D. Sarcodon imbricatus polysaccharides improve mouse hematopoietic function after cyclophosphamide-induced damage via G-CSF mediated JAK2/STAT3 pathway. Cell Death Dis 2018; 9:578. [PMID: 29784961 PMCID: PMC5962553 DOI: 10.1038/s41419-018-0634-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/20/2022]
Abstract
Sarcodon imbricatus, a rare medicinal and edible fungus, has various pharmacological bioactivities. We investigated the effects of S. imbricatus polysaccharides (SIPS) on hematopoietic function and identified the underlying mechanisms using in vitro experiments with CHRF, K562, and bone marrow mononuclear cells (BMMNCs) and in vivo experiments with a mouse model of cyclophosphamide-induced hematopoietic dysfunction. We found that SIPS induced proliferation and differentiation of CHRF and K562 cells and upregulated the expression of hematopoietic-related proteins, including p90 ribosomal S6 kinases (RSK1p90), c-Myc, and ETS transcription factor, in the two cell lines. After 28 days of treatment, SIPS enhanced the bodyweight and thymus indices of the mice, alleviated enlargement of the spleen and liver, and contributed to the recovery of peripheral blood to normal levels. More importantly, the percentages of B lymphocytes and hematopoietic stem cells or hematopoietic progenitor cells were significantly elevated in bone marrow. Based on an antibody chip analysis and enzyme-linked immunosorbent assay, SIPS were found to successfully regulate 12 cytokines to healthy levels in serum and spleen. The cytokines included the following: interleukins 1Ra, 2, 3, 4, 5, and 6, tumor necrosis factor α, interferon−γ, granulocyte colony-stimulating factor (G-CSF) and macrophage colony-stimulating factor (M-CSF), C-C motif chemokine1, and monocyte chemoattractant protein−1. Moreover, SIPS upregulated the phosphorylation levels of janus kinase 2 (JAK2) and the signal transducer and activator of transcription 3 (STAT3) in the spleen, and similar results were validated in CHRF cells, K562 cells, and BMMNCs. The data indicate that SIPS activated the JAK2/STAT3 pathway, possibly by interactions among multiple cytokines, particularly G-CSF. We found that SIPS was remarkably beneficial to the bone marrow hematopoietic system, and we anticipate that it could improve myelosuppression induced by long-term radiotherapy or chemotherapy.
Collapse
Affiliation(s)
- Xue Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Qiubo Chu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Xue Jiang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yue Yu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Libian Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Yaqi Cui
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Jiahui Lu
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,Zhuhai College of Jilin University, Jilin University, Zhuhai, 519041, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, 130012, China. .,Zhuhai College of Jilin University, Jilin University, Zhuhai, 519041, China.
| |
Collapse
|
48
|
DeTemple DE, Oldhafer F, Falk CS, Chen‐Wacker C, Figueiredo C, Kleine M, Ramackers W, Timrott K, Lehner F, Klempnauer J, Bock M, Vondran FWR. Hepatocyte-induced CD4 + T cell alloresponse is associated with major histocompatibility complex class II up-regulation on hepatocytes and suppressible by regulatory T cells. Liver Transpl 2018; 24:407-419. [PMID: 29365365 PMCID: PMC5887891 DOI: 10.1002/lt.25019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/07/2017] [Accepted: 12/16/2017] [Indexed: 12/21/2022]
Abstract
Hepatocyte transplantation is a promising therapeutic approach for various liver diseases. Despite the liver's tolerogenic potential, early immune-mediated loss of transplanted cells is observed, and longterm acceptance has not been achieved yet. Patients deemed tolerant after liver transplantation presented an increased frequency of regulatory T cells (Tregs), which therefore also might enable reduction of posttransplant cell loss and enhance longterm allograft acceptance. We hence characterized hepatocyte-induced immune reactions and evaluated the immunomodulatory potential of Tregs applying mixed lymphocyte cultures and mixed lymphocyte hepatocyte cultures. These were set up using peripheral blood mononuclear cells and primary human hepatocytes, respectively. Polyclonally expanded CD4+ CD25high CD127low Tregs were added to cocultures in single-/trans-well setups with/without supplementation of anti-interferon γ (IFNγ) antibodies. Hepatocyte-induced alloresponses were then analyzed by multicolor flow cytometry. Measurements indicated that T cell response upon stimulation was associated with IFNγ-induced major histocompatibility complex (MHC) class II up-regulation on hepatocytes and mediated by CD4+ T cells. An indirect route of antigen presentation could be ruled out by use of fragmented hepatocytes and culture supernatants of hepatocytes. Allospecific proliferation was accompanied by inflammatory cytokine secretion. CD8+ T cells showed early up-regulation of CD69 despite lack of cell proliferation in the course of coculture. Supplementation of Tregs effectively abrogated hepatocyte-induced alloresponses and was primarily cell contact dependent. In conclusion, human hepatocytes induce a CD4+ T cell alloresponse in vitro, which is associated with MHC class II up-regulation on hepatocytes and is susceptible to suppression by Tregs. Liver Transplantation 24 407-419 2018 AASLD.
Collapse
Affiliation(s)
- Daphne E. DeTemple
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Felix Oldhafer
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Christine S. Falk
- Institute of Transplant Immunology, Integrated Research and Treatment Centre TransplantationHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| | - Chen Chen‐Wacker
- Institute for Transfusion MedicineHannover Medical SchoolHannoverGermany
| | | | - Moritz Kleine
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Wolf Ramackers
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Kai Timrott
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Frank Lehner
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Juergen Klempnauer
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany
| | - Michael Bock
- Department of Gastroenterology, Hepatology and EndocrinologyHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| | - Florian W. R. Vondran
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant SurgeryHannover Medical SchoolHannoverGermany,German Centre for Infection Researchpartner site Hannover‐BraunschweigHannoverGermany
| |
Collapse
|
49
|
Malaisé Y, Menard S, Cartier C, Gaultier E, Lasserre F, Lencina C, Harkat C, Geoffre N, Lakhal L, Castan I, Olier M, Houdeau E, Guzylack-Piriou L. Gut dysbiosis and impairment of immune system homeostasis in perinatally-exposed mice to Bisphenol A precede obese phenotype development. Sci Rep 2017; 7:14472. [PMID: 29101397 PMCID: PMC5670173 DOI: 10.1038/s41598-017-15196-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/14/2022] Open
Abstract
Epidemiology evidenced the Bisphenol A (BPA), a chemical found in daily consumer products, as an environmental contributor to obesity and type II diabetes (T2D) in Humans. However, the BPA-mediated effects supporting these metabolic disorders are still unknown. Knowing that obesity and T2D are associated with low-grade inflammation and gut dysbiosis, we performed a longitudinal study in mice to determine the sequential adverse effects of BPA on immune system and intestinal microbiota that could contribute to the development of metabolic disorders. We observed that perinatal exposure to BPA (50 µg/kg body weight/day) induced intestinal and systemic immune imbalances at PND45, through a decrease of Th1/Th17 cell frequencies in the lamina propria concomitant to an increase of splenic Th1/Th17 immune responses. These early effects are associated with an altered glucose sensitivity, a defect of IgA secretion into faeces and a fall of faecal bifidobacteria relative to control mice. Such BPA-mediated events precede infiltration of pro-inflammatory M1 macrophages in gonadal white adipose tissue appearing with ageing, together with a decreased insulin sensitivity and an increased weight gain. Our findings provide a better understanding of the sequential events provoked by perinatal exposure to BPA that could support metabolic disorder development in later life.
Collapse
Affiliation(s)
- Yann Malaisé
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sandrine Menard
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Christel Cartier
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Gaultier
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Frédéric Lasserre
- Integrative Toxicology and Metabolism team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Corinne Lencina
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cherryl Harkat
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nancy Geoffre
- Adipocyte secretions, obesities and related diseases team, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Laïla Lakhal
- Integrative Toxicology and Metabolism team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Isabelle Castan
- Adipocyte secretions, obesities and related diseases team, Institut National de la Santé et de la Recherche Médicale (INSERM), Université Paul Sabatier (UPS), Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Toulouse, France
| | - Maïwenn Olier
- Neuro-Gastroenterology and Nutrition team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Eric Houdeau
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Laurence Guzylack-Piriou
- Intestinal Development, Xenobiotics and ImmunoToxicology team, Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France.
| |
Collapse
|
50
|
Carmo RF, Cavalcanti MSM, Moura P. Role of Interleukin-22 in chronic liver injury. Cytokine 2017; 98:107-114. [PMID: 27816383 DOI: 10.1016/j.cyto.2016.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 12/12/2022]
Abstract
Liver fibrosis is the result of an exacerbated wound-healing response associated with chronic liver injury. Advanced liver fibrosis results in cirrhosis, liver failure, and portal hypertension and frequently requires liver transplantation. The host immune response has an important role driving fibrosis deposition by activating hepatic stellate cells (HSCs). Interleukin-22 (IL-22) is a cytokine that plays a key role in promoting antimicrobial immunity and tissue repair at barrier surfaces. Data from literature suggest that IL-22 has a protective role in the liver by reducing fibrosis in some pathological conditions, however the results are contradictory. This review highlights current knowledge of IL-22' role in chronic liver injury, as well as its therapeutic potential for the treatment of chronic liver injury.
Collapse
Affiliation(s)
- Rodrigo F Carmo
- Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil.
| | - Maria S M Cavalcanti
- Instituto de Ciências Biológicas, Universidade de Pernambuco (UPE), Recife, Brazil
| | - Patrícia Moura
- Instituto de Ciências Biológicas, Universidade de Pernambuco (UPE), Recife, Brazil
| |
Collapse
|