1
|
Deng C, Li M, Wang T, Duan W, Guo A, Ma G, Yang F, Dai F, Li Q. Integrating genomics and transcriptomics to identify candidate genes for high-altitude adaptation and egg production in Nixi chicken. Br Poult Sci 2024; 65:652-664. [PMID: 38922310 DOI: 10.1080/00071668.2024.2367228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
1. This study combined genome-wide selection signal analysis with RNA-sequencing to identify candidate genes associated with high altitude adaptation and egg production performance in Nixi chickens (NXC).2. Based on the whole-genome data from 20 NXC (♂:10; ♀:10), the population selection signal was analysed by sliding window analysis. The selected genes were screened by combination with the population differentiation statistic (FST). The sequence diversity statistic (θπ). RNA-seq was performed on the ovarian tissues of NXC (n = 6) and Lohmann laying hens (n = 6) to analyse the differentially expressed genes (DEGs) between the two groups. The functional enrichment analysis of the selected genes and differentially expressed genes was performed.3. There were 742 genes under strong positive selection and 509 differentially expressed genes screened in NXC. Integrated analysis of the genome and transcriptome revealing 26 overlapping genes. The candidate genes for adaptation to a high-altitude environment, as well as for egg production, disease resistance, vision and pigmentation in NXC were preliminarily screened.4. The results provided theoretical guidance for further research on the genetic resource protection and utilisation of NXC.
Collapse
Affiliation(s)
- C Deng
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - M Li
- School of Mathematics and Computer Science, Yunnan Nationalities University, Kunming, China
| | - T Wang
- School of Pharmacy, Chengdu University, Chengdu, China
| | - W Duan
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - A Guo
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
| | - G Ma
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Yang
- Agricultural and Rural Bureau of Gejiu County, Honghe, China
| | - F Dai
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Q Li
- College of Biology and Food Engineering, Southwest Forestry University, Kunming, China
- Kunming Xianghao Technology Co. Ltd., Kunming, China
| |
Collapse
|
2
|
Zhang T, Shi C, Ye Z, Deng J, Gu M, Chen Z, Huang L, Su X, Chang Z. Crystal structure combined with metabolomics and biochemical studies indicates that FAM3A participates in fatty acid beta-oxidation upon binding of acyl-L-carnitine. Biochem Biophys Res Commun 2024; 735:150481. [PMID: 39111121 DOI: 10.1016/j.bbrc.2024.150481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 11/05/2024]
Abstract
As the first member of the family with sequence similarity 3 (FAM3), FAM3A promotes synthesis of ATP in mitochondria of hepatic cells and cells from other organs. Dysregulations of FAM3A are involved in the development of diabetes and nonalcoholic fatty liver disease (NAFLD). So far, the molecule mechanism under the physiological and pathological functions of FAM3A is largely unexplored. Here, we determined the crystal structure of FAM3A at high resolution of 1.38Å, complexed with an unknown-source compound which was characterized through metabolomics and confirmed as methacholine by thermal shift assay and surface plasmon resonance (SPR). Exploration for natural ligands of FAM3A was conducted through the same molecular interaction assays. The observed binding of acyl-L-carnitine molecules indicated FAM3A participating in fatty acid beta-oxidation. Knockdown and rescue assays coupled with fatty acid oxidation determination confirmed the role of FAM3A in beta-oxidation. This investigation reveals the molecular mechanism for the biological function of FAM3A and would provide basis for identifying drug target for treatment of diabetes and NAFLD.
Collapse
Affiliation(s)
- Tianzhuo Zhang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Chao Shi
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhaoyang Ye
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China
| | - Jie Deng
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Mingyue Gu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhangxin Chen
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Lixin Huang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiaodong Su
- State Key Laboratory of Protein and Plant Gene Research and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
| | - Zhenzhan Chang
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China.
| |
Collapse
|
3
|
Yang L, Du B, Zhang S, Wang M. FAM3A mediates the phenotypic switch of human aortic smooth muscle cells stimulated with oxidised low-density lipoprotein by influencing the PI3K-AKT pathway. In Vitro Cell Dev Biol Anim 2023; 59:431-442. [PMID: 37474885 DOI: 10.1007/s11626-023-00775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/26/2023] [Indexed: 07/22/2023]
Abstract
Family with sequence similarity 3 member A (FAM3A) is a multifunctional protein that is related to the pathological process of various disorders. FAM3A is reportedly able to affect the phenotypic change of vascular smooth muscle cells under a hypertensive state. Whether FAM3A mediates the phenotypic switch of vascular smooth muscle cells under an atherosclerotic state remains unaddressed. This work investigated the roles and mechanisms of FAM3A in mediating the phenotypic switch of human aortic smooth muscle cells (HASMCs) stimulated with oxidised low-density lipoprotein (ox-LDL) in vitro. FAM3A expression was elevated in HASMCs following ox-LDL treatment. FAM3A silencing led to a suppressive effect on ox-LDL-provoked proliferation, migration and inflammation of HASMCs, whereas FAM3A overexpression had an opposite effect. Ox-LDL elicited a change in HASMCs from a contractile phenotype to a synthetic phenotype, which was inhibited by FAM3A silencing or enhanced by FAM3A overexpression. Further investigation elucidated that FAM3A silencing repressed and FAM3A overexpression promoted ox-LDL-induced activation of the PI3K-AKT pathway in HASMCs. Reactivation of AKT reversed the suppressive effect of FAM3A silencing on the ox-LDL-induced phenotypic switch of HASMCs. Restraining AKT blocked the promoting effect of FAM3A overexpression on the ox-LDL-induced phenotypic switch of HASMCs. In summary, this work elucidates that FAM3A mediates the ox-LDL-induced phenotypic switch of HASMCs by influencing the PI3K-AKT pathway, indicating a potential role for FAM3A in atherosclerosis.
Collapse
Affiliation(s)
- Lei Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China
| | - Baoshun Du
- Second Department of Neurosurgery, Xinxiang Central Hospital, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Shitao Zhang
- Department of Neurosurgery, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi Province, 710018, People's Republic of China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an City, Shaanxi Province, 710038, People's Republic of China.
| |
Collapse
|
4
|
Huang B, Luo YL, Huang JL, Li GZ, Qiu SY, Huang CC. FAM3D inhibits gluconeogenesis in high glucose environment via DUSP1/ZFP36/SIK1 axis. Kaohsiung J Med Sci 2023; 39:254-265. [PMID: 36524461 DOI: 10.1002/kjm2.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperglycemia is the most important factor leading to the complications of type 2 diabetes mellitus (T2DM). The primary condition for the treatment of T2DM is to change the glucose and lipid metabolism disorders in the liver and other insulin-sensitive tissues. The current study aims to unearth the potential molecular mechanism of inhibiting liver gluconeogenesis to provide a new theoretical basis for the treatment of T2DM. High glucose (HG) induction of HepG2 cells followed by treatment with sequence-similar family 3 member D (FAM3D). Dual specificity phosphatases 1 (DUSP1), zinc finger protein 36 (ZFP36), salt-induced kinase 1 (SIK1), p-SIK1, posphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) gene and protein expression level were detected by quantitative real-time polymerase chain reaction and western blot. The PEPCK and G6Pase activities were detected by enzyme linked immunosorbent assay. Glucose production assay to determine glucose content. The RNA binding protein immunoprecipitation assay was used to detect the binding of ZFP36 to SIK1. FAM3D facilitated the expression of DUSP1 but suppressed the expression of gluconeogenesis-related factors in an HG environment. The expression of ZFP36 was up-regulated in an HG environment. ZFP36 could reverse the inhibition of gluconeogenesis caused by FAM3D. HG-induced upregulation of ZFP36 was downregulated by overexpression of DUSP1. ZFP36 bound to SIK1, and downregulation of ZFP36 promoted SIK1 expression and inhibits gluconeogenesis. Our study demonstrated FAM3D inhibited gluconeogenesis through the DUSP1/ZFP36/SIK1 axis in an HG environment, which provided a new theoretical basis for exploring the pathogenesis and treatment strategy of T2DM.
Collapse
Affiliation(s)
- Bin Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Yue-Ling Luo
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Jun-Ling Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Guang-Zhi Li
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Shi-Yuan Qiu
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| | - Chun-Chun Huang
- Department of General Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People's Republic of China
| |
Collapse
|
5
|
Song Q, Gao Q, Chen T, Wen T, Wu P, Luo X, Chen QY. FAM3A Ameliorates Brain Impairment Induced by Hypoxia-Ischemia in Neonatal Rat. Cell Mol Neurobiol 2023; 43:251-264. [PMID: 34853925 PMCID: PMC9813043 DOI: 10.1007/s10571-021-01172-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/14/2021] [Indexed: 01/12/2023]
Abstract
Hypoxia-ischemia (HI) during crucial periods of brain formation can lead to changes in brain morphology, propagation of neuronal stimuli, and permanent neurodevelopmental impairment, which can have profound effects on cognitive function later in life. FAM3A, a subgroup of family with sequence similarity 3 (FAM3) gene family, is ubiquitously expressed in almost all cells. Overexpression of FAM3A has been evidenced to reduce hyperglycemia via the PI3K/Akt signaling pathway and protect mitochondrial function in neuronal HT22 cells. This study aims to evaluate the protective role of FAM3A in HI-induced brain impairment. Experimentally, maternal rats underwent uterine artery bilateral ligation to induce neonatal HI on day 14 of gestation. At 6 weeks of age, cognitive development assessments including NSS, wire grip, and water maze were carried out. The animals were then sacrificed to assess cerebral mitochondrial function as well as levels of FAM3A, TNF-α and IFN-γ. Results suggest that HI significantly reduced FAM3A expression in rat brain tissues, and that overexpression of FAM3A through lentiviral transduction effectively improved cognitive and motor functions in HI rats as reflected by improved NSS evaluation, cerebral water content, limb strength, as well as spatial learning and memory. At the molecular level, overexpression of FAM3A was able to promote ATP production, balance mitochondrial membrane potential, and reduce levels of pro-inflammatory cytokines TNF-α and IFN-γ. We conclude that FAM3A overexpression may have a protective effect on neuron morphology, cerebral mitochondrial as well as cognitive function. Created with Biorender.com.
Collapse
Affiliation(s)
- Qing Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| | - Qingying Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- The Third Affiliated Hospital of Xi'an Medical University, Xi'an, 710049, Shaanxi, China
| | - Taotao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Ting Wen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Peng Wu
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| | - Qiao Yi Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
6
|
Lee J, Hong SW, Kim MJ, Moon SJ, Kwon H, Park SE, Rhee EJ, Lee WY. Dulaglutide Ameliorates Palmitic Acid-Induced Hepatic Steatosis by Activating FAM3A Signaling Pathway. Endocrinol Metab (Seoul) 2022; 37:74-83. [PMID: 35144334 PMCID: PMC8901965 DOI: 10.3803/enm.2021.1293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Dulaglutide, a long-acting glucagon-like peptide-1 receptor agonist (GLP-1RA), has been shown to reduce body weight and liver fat content in patients with type 2 diabetes. Family with sequence similarity 3 member A (FAM3A) plays a vital role in regulating glucose and lipid metabolism. The aim of this study was to determine the mechanisms by which dulaglutide protects against hepatic steatosis in HepG2 cells treated with palmitic acid (PA). METHODS HepG2 cells were pretreated with 400 μM PA for 24 hours, followed by treatment with or without 100 nM dulaglutide for 24 hours. Hepatic lipid accumulation was determined using Oil red O staining and triglyceride (TG) assay, and the expression of lipid metabolism-associated factor was analyzed using quantitative real time polymerase chain reaction and Western blotting. RESULTS Dulaglutide significantly decreased hepatic lipid accumulation and reduced the expression of genes associated with lipid droplet binding proteins, de novo lipogenesis, and TG synthesis in PA-treated HepG2 cells. Dulaglutide also increased the expression of proteins associated with lipolysis and fatty acid oxidation and FAM3A in PA-treated cells. However, exendin-(9-39), a GLP-1R antagonist, reversed the expression of FAM3A, and fatty acid oxidation-associated factors increased due to dulaglutide. In addition, inhibition of FAM3A by siRNA attenuated the reducing effect of dulaglutide on TG content and its increasing effect on regulation of fatty acid oxidation. CONCLUSION These results suggest that dulaglutide could be used therapeutically for improving nonalcoholic fatty liver disease, and its effect could be mediated in part via upregulation of FAM3A expression through a GLP-1R-dependent pathway.
Collapse
Affiliation(s)
- Jinmi Lee
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok-Woo Hong
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Jeong Kim
- Institute of Medical Research, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyemi Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Eun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
7
|
Salehi S, Tavabie OD, Villanueva A, Watson J, Darling D, Quaglia A, Farzaneh F, Aluvihare VR. Regeneration linked miRNA modify tumor phenotype and can enforce multi-lineage growth arrest in vivo. Sci Rep 2021; 11:10538. [PMID: 34006907 PMCID: PMC8131690 DOI: 10.1038/s41598-021-90009-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/20/2021] [Indexed: 01/11/2023] Open
Abstract
Regulated cell proliferation is an effector mechanism of regeneration, whilst dysregulated cell proliferation is a feature of cancer. We have previously identified microRNA (miRNA) that regulate successful and failed human liver regeneration. We hypothesized that these regulators may directly modify tumor behavior. Here we show that inhibition of miRNAs -503 and -23a, alone or in combination, enhances tumor proliferation in hepatocyte and non-hepatocyte derived cancers in vitro, driving more aggressive tumor behavior in vivo. Inhibition of miRNA-152 caused induction of DNMT1, site-specific methylation with associated changes in gene expression and in vitro and in vivo growth inhibition. Enforced changes in expression of two miRNA recapitulating changes observed in failed regeneration led to complete growth inhibition of multi-lineage cancers in vivo. Our results indicate that regulation of regeneration and tumor aggressiveness are concordant and that miRNA-based inhibitors of regeneration may constitute a novel treatment strategy for human cancers.
Collapse
Affiliation(s)
- Siamak Salehi
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | - Oliver D Tavabie
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | - Augusto Villanueva
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | - Julie Watson
- MRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, Guy's Hospital, London, UK
| | - David Darling
- School of Cancer & Pharmaceutical Sciences, King's College London, Molecular Medicine Group, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Alberto Quaglia
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK
| | - Farzin Farzaneh
- School of Cancer & Pharmaceutical Sciences, King's College London, Molecular Medicine Group, The Rayne Institute, 123 Coldharbour Lane, London, SE5 9NU, UK
| | - Varuna R Aluvihare
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, UK.
| |
Collapse
|
8
|
Manigandan S, Mukherjee S, Yun JW. Loss of family with sequence similarity 107, member A (FAM107A) induces browning in 3T3-L1 adipocytes. Arch Biochem Biophys 2021; 704:108885. [PMID: 33878327 DOI: 10.1016/j.abb.2021.108885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022]
Abstract
Induction of white fat browning (beiging) and activation of brown fat has been considered a promising strategy to treat obesity and associated metabolic complications. However, the molecular mechanisms regulating brown and beige fat-mediated thermogenesis remains unclear. Our study aimed to identify genes with a hitherto unknown mechanism in the metabolic functions of adipocytes and identified family with sequence similarity 107, member A (FAM107A) as a factor that interferes with fat browning in white adipocytes. We explored physiological roles of FAM107A in cultured 3T3-L1 white adipocytes and HIB1B brown adipocytes by using FAM107A-deficient adipocytes. Significant loss in FAM107A gene functionality induced fat browning was evidenced by evaluating the gene and protein expression level of brown fat-associated markers through real-time qRT-PCR and immunoblot analysis, respectively. Deficiency of FAM107A promoted mitochondrial biogenesis and significantly upregulated core fat-browning marker proteins (PGC-1α, PRDM16, and UCP1) and beige-specific genes (Cd137, Cited1, Tbx1, and Tmem26). Furthermore, FAM107A increased adipogenesis and negatively regulated lipid metabolism in 3T3-L1 adipocytes. In addition, in-silico analysis revealed a strong interaction between FAM107A and β3-AR based on their energy binding score. Next, mechanistic study revealed that specific knockdown of FAM107A induces browning in white adipocytes via activation of β3-AR, AMPK and p38 MAPK-dependent signaling pathways. Our data unveiled a previously unknown mechanism of FAM107A in the regulation of lipid metabolism and identified its significant role in metabolic homeostasis. This highlighted the potential of FAM107A as a pharmacotherapeutic target in treating obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Subramani Manigandan
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Sulagna Mukherjee
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
9
|
Song Q, Song J, Li C, Wang Y, Qi L, Wang H. Genetic variants in the FAM3C gene are associated with lipid traits in Chinese children. Pediatr Res 2021; 89:673-678. [PMID: 32316026 DOI: 10.1038/s41390-020-0897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/12/2020] [Accepted: 04/01/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Previous studies have related FAM3C gene with childhood bone health, and the regulation of lipid metabolism in hepatocytes. The present case-control study aimed to analyze the association of FAM3C genetic variants with overweight/obesity and lipid traits among Chinese children. METHODS Two genetic variants (rs7776725 and rs7793554) within the FAM3C gene were genotyped in 3305 Chinese children aged 6-18 years. RESULTS In the whole study population, the T-allele of rs7776725 and A-allele of rs7793554 within the FAM3C gene were associated with 40.2% (95% CI: 11.6-76.1%; P = 0.004) and 29.1% (6.9-56.0%; P = 0.008) increased risk of dyslipidemia, higher triglyceride (P = 0.014 and P = 0.001) and lower HDL-C (P = 0.015 and P = 0.003). In addition, we found that rs7776725 interacted with sex on dyslipidemia (Pfor interaction = 0.004), and sex-stratified analyses showed that it was significantly associated with dyslipidemia only in girls (P = 8.78 × 10-5). The variant also showed nominally significant interactions with sex on total cholesterol and LDL-C (Pfor interaction = 0.012 and 0.008). CONCLUSION We found that FAM3C genetic variants were associated with dyslipidemia and lipid traits among Chinese children. In addition, we found significant gene-by-sex interactions. Our findings provided evidence supporting the role of FAM3C gene in regulating lipid metabolism in humans. IMPACT FAM3C genetic variants were associated with dyslipidemia and lipid traits among Chinese children. In addition, we found significant gene-by-sex interactions. FAM3C/rs7776725 was associated with dyslipidemia and lipid traits only in girls. Our findings provided evidence supporting the role of FAM3C gene in regulating lipid metabolism in humans.
Collapse
Affiliation(s)
- Qiying Song
- Department of Maternal and Child Health, School of Public Health, Peking University, 100191, Beijing, China
| | - Jieyun Song
- Institute of Child and Adolescent Health, School of Public Health, Peking University, 100191, Beijing, China
| | - Chenxiong Li
- Department of Maternal and Child Health, School of Public Health, Peking University, 100191, Beijing, China
| | - Yang Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, 100191, Beijing, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Haijun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, 100191, Beijing, China.
| |
Collapse
|
10
|
Xu W, Liang M, Zhang Y, Huang K, Wang C. Endothelial FAM3A positively regulates post-ischaemic angiogenesis. EBioMedicine 2019; 43:32-42. [PMID: 31000420 PMCID: PMC6562148 DOI: 10.1016/j.ebiom.2019.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/03/2019] [Accepted: 03/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Angiogenesis improves reperfusion to the ischaemic tissue after vascular obstruction. The underlying molecular mechanisms of post-ischaemic angiogenesis are not clear. FAM3A belongs to the family with sequence similarity 3 (FAM3) genes, but its biological function in endothelial cells in regards to vascular diseases is not well understood. Methods Gain- and loss-of-function methods by adenovirus or associated-adenovirus (AAV) in different models were applied to investigate the effects of FAM3A on endothelial angiogenesis. Endothelial angiogenesis was analysed by tube formation, migration and proliferation in vitro, and the blood flow and capillary density in a hind limb ischaemic model in vivo. Findings Endothelial FAM3A expression is downregulated under hypoxic conditions. Overexpression of FAM3A promotes, but depletion of FAM3A suppresses, endothelial tube formation, proliferation and migration. Utilizing the mouse hind limb ischaemia model, we also observe that FAM3A overexpression can improve blood perfusion and increase capillary density, whereas FAM3A knockdown has the opposite effects. Mechanistically, mitochondrial FAM3A increases adenosine triphosphate (ATP) production and secretion; ATP binds to P2 receptors and then upregulates cytosolic free Ca2+ levels. Increased intracellular Ca2+ levels enhance phosphorylation of the transcriptional factor cAMP response element binding protein (CREB) and its recruitment to the VEGFA promoter, thus activating VEGFA transcription and the final endothelial angiogenesis. Interpretation In summary, our data demonstrate that FAM3A positively regulates angiogenesis through activation of VEGFA transcription, suggesting that FAM3A may constitute a novel molecular therapeutic target for ischaemic vascular disease.
Collapse
Affiliation(s)
- Wenjing Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Rheumatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Zhang X, Yang W, Wang J, Meng Y, Guan Y, Yang J. FAM3 gene family: A promising therapeutical target for NAFLD and type 2 diabetes. Metabolism 2018; 81:71-82. [PMID: 29221790 DOI: 10.1016/j.metabol.2017.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/08/2017] [Accepted: 12/01/2017] [Indexed: 12/15/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and diabetes are severe public health issues worldwide. The Family with sequence similarity 3 (FAM3) gene family consists of four members designated as FAM3A, FAM3B, FAM3C and FAM3D, respectively. Recently, there had been increasing evidence that FAM3A, FAM3B and FAM3C are important regulators of glucose and lipid metabolism. FAM3A expression is reduced in the livers of diabetic rodents and NAFLD patients. Hepatic FAM3A restoration activates ATP-P2 receptor-Akt and AMPK pathways to attenuate steatosis and hyperglycemia in obese diabetic mice. FAM3C expression is also reduced in the liver under diabetic condition. FAM3C is a new hepatokine that activates HSF1-CaM-Akt pathway and represses mTOR-SREBP1-FAS pathway to suppress hepatic gluconeogenesis and lipogenesis. In contrast, hepatic expression of FAM3B, also called PANDER, is increased under obese state. FAM3B promotes hepatic lipogenesis and gluconeogenesis by repressing Akt and AMPK activities, and activating lipogenic pathway. Under obese state, the imbalance among hepatic FAM3A, FAM3B and FAM3C signaling networks plays important roles in the pathogenesis of NAFLD and type 2 diabetes. This review briefly discussed the latest research progress on the roles and mechanisms of FAM3A, FAM3B and FAM3C in the regulation of hepatic glucose and lipid metabolism.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, Center for Noncoding RNA Medicine, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
12
|
MarElia CB, Kuehl MN, Shemwell TA, Alman AC, Burkhardt BR. Circulating PANDER concentration is associated with increased HbA1c and fasting blood glucose in Type 2 diabetic subjects. JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 11:26-30. [PMID: 29686968 PMCID: PMC5910510 DOI: 10.1016/j.jcte.2018.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 01/05/2023]
Abstract
PANcreatic-DERived factor (PANDER) is a novel hormone regulating glucose levels. Fasting PANDER levels were measured in T2D and non-T2D matched subjects from U.S. Associations between PANDER and other hormones or metabolic parameters were examined. PANDER was associated with increased HbA1c and fasting blood glucose in T2D subjects. PANDER was not associated with adiponectin, HOMA-β and HOMA-IR.
Aim PANcreatic-DERived factor (PANDER, FAM3B) is a novel hormone that regulates glucose levels via interaction with both the endocrine pancreas and liver. Prior studies examining PANDER were primarily conducted in murine models or in vitro but little is known regarding the circulating concentration of PANDER in humans, especially with regard to the association of type 2 diabetes (T2D) or overall glycemic regulation. To address this limitation, we performed a cross-sectional analysis of circulating serum PANDER concentration in association with other hormones that serve as either markers of insulin resistance (insulin and adiponectin) or to metabolic parameters of glycemic control such as fasting HbA1c and blood glucose (FBG). Methods Fasting serum was obtained from a commercial biorepository from 300 de-identified adult subjects with 150 T2D and non-T2D adult subjects collected from a population within the United States, respectively, matched on gender, age group and race/ethnicity. Concentration of PANDER, insulin and adiponectin were measured for all samples as determined by commercial ELISA. Metadata was provided for each subject including demography, anthropometry, and cigarette and alcohol use. In addition, fasting blood glucose (FBG) and HbA1c were available on T2D subjects. Results Multiple linear regression analyses were performed to examine the relationships between circulating log PANDER concentration on HbA1c, fasting glucose, log insulin, log HOMA-β and log HOMA-IR among T2D subjects and for insulin and adiponectin in non-T2D subjects. A significant linear association was identified between PANDER with fasting HbA1c (β 0.832 ± SE 0.22, p = 0.0003) and FBG (β 20.66 ± SE 7.43, p = 0.006) within T2D subjects. However, insulin, HOMA-β, HOMA-IR and adiponectin (p > 0.05) were not found to be linearly associated with PANDER concentration. Conclusion Within T2D subjects, PANDER is modestly linearly associated with increased HbA1c and FBG in a US population. In addition, highest circulating PANDER levels were measured in T2D subjects with HbA1c above 9.9. No association was identified with PANDER and insulin resistance or pancreatic β-cell function in T2D subjects.
Collapse
Affiliation(s)
- Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Tiffany A Shemwell
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| | - Amy C Alman
- Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL 33612, United States
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, United States
| |
Collapse
|
13
|
Chen Z, Wang J, Yang W, Chen J, Meng Y, Feng B, Chi Y, Geng B, Zhou Y, Cui Q, Yang J. FAM3C activates HSF1 to suppress hepatic gluconeogenesis and attenuate hyperglycemia of type 1 diabetic mice. Oncotarget 2017; 8:106038-106049. [PMID: 29285313 PMCID: PMC5739700 DOI: 10.18632/oncotarget.22524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/30/2017] [Indexed: 12/17/2022] Open
Abstract
FAM3C, a member of FAM3 gene family, has been shown to improve insulin resistance and hyperglycemia in obese mice. This study further determined whether FAM3C functions as a hepatokine to suppress hepatic gluconeogenesis of type 1 diabetic mice. In STZ-induced type 1 diabetic mouse liver, the FAM3C-HSF1-CaM signaling axis was repressed. Hepatic FAM3C overexpression activated HSF1-CaM-Akt pathway to repress gluconeogenic gene expression and ameliorate hyperglycemia of type 1 diabetic mice. Moreover, hepatic HSF1 overexpression also activated CaM-Akt pathway to repress gluconeogenic gene expression and improve hyperglycemia of type 1 diabetic mice. Hepatic FAM3C and HSF1 overexpression had little effect on serum insulin levels in type 1 diabetic mice. In cultured hepatocytes, conditioned medium of Ad-FAM3C-infected cells induced Akt phosphorylation. Moreover, Akt activation and gluconeogenesis repression induced by FAM3C overexpression were reversed by the treatment with anti-FAM3C antibodies. Treatment with recombinant FAM3C protein induced Akt activation in a HSF1- and CaM-dependent manner in cultured hepatocytes. Furthermore, recombinant FAM3C protein repressed gluconeogenic gene expression and gluconeogenesis by inactivating FOXO1 in a HSF1-dependent manner in cultured hepatocytes. In conclusion, FAM3C is a new hepatokine that suppresses hepatic gluconeogenic gene expression and gluconeogenesis independent of insulin by activating HSF1-CaM-Akt pathway.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Junpei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Weili Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ji Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yuhong Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Biaoqi Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Bin Geng
- Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Beijing 100037, China
| | - Yong Zhou
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China.,Department of Biomedical Informatics, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education, Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science of The Ministry of Education Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
14
|
Athanason MG, Ratliff WA, Chaput D, MarElia CB, Kuehl MN, Stevens SM, Burkhardt BR. Quantitative proteomic profiling reveals hepatic lipogenesis and liver X receptor activation in the PANDER transgenic model. Mol Cell Endocrinol 2016; 436:41-9. [PMID: 27394190 PMCID: PMC5789791 DOI: 10.1016/j.mce.2016.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
PANcreatic-DERived factor (PANDER) is a member of a superfamily of FAM3 proteins modulating glycemic levels by metabolic regulation of the liver and pancreas. The precise PANDER-induced hepatic signaling mechanism is still being elucidated and has been very complex due to the pleiotropic nature of this novel hormone. Our PANDER transgenic (PANTG) mouse displays a selective hepatic insulin resistant (SHIR) phenotype whereby insulin signaling is blunted yet lipogenesis is increased, a phenomena observed in type 2 diabetes. To examine the complex PANDER-induced mechanism of SHIR, we utilized quantitative mass spectrometry-based proteomic analysis using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) to reveal the global hepatic proteome differences within the PANTG under the metabolic states of fasting, fed and insulin-stimulated conditions. Proteomic analysis identified lipid metabolism as one of the top cellular functions differentially altered in all metabolic states. Differentially expressed proteins within the PANTG having a lipid metabolic role included ACC, ACLY, CD36, CYP7A1, FASN and SCD1. Central to the differentially expressed proteins involved in lipid metabolism was the predicted activation of the liver X receptor (LXR) pathway. Western analysis validated the increased hepatic expression of LXRα along with LXR-directed targets such as FASN and CYP7A1 within the PANTG liver. Furthermore, recombinant PANDER was capable of inducing LXR promoter activity in-vitro as determined by luciferase reporter assays. Taken together, PANDER strongly impacts hepatic lipid metabolism across metabolic states and may induce a SHIR phenotype via the LXR pathway.
Collapse
Affiliation(s)
- Mark G Athanason
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Whitney A Ratliff
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Dale Chaput
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Stanley M Stevens
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, FL 33620, USA.
| |
Collapse
|
15
|
FAM3A attenuates ER stress-induced mitochondrial dysfunction and apoptosis via CHOP-Wnt pathway. Neurochem Int 2016; 94:82-9. [DOI: 10.1016/j.neuint.2016.02.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 12/13/2022]
|
16
|
Peng X, Xu E, Liang W, Pei X, Chen D, Zheng D, Zhang Y, Zheng C, Wang P, She S, Zhang Y, Ma J, Mo X, Zhang Y, Ma D, Wang Y. Identification of FAM3D as a novel endogenous chemotaxis agonist for the FPRs (formyl peptide receptors). J Cell Sci 2016; 129:1831-42. [DOI: 10.1242/jcs.183053] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 03/01/2016] [Indexed: 01/13/2023] Open
Abstract
The family with sequence similarity 3 (FAM3) gene family is a cytokine-like gene family with four members FAM3A, FAM3B, FAM3C, and FAM3D. In this study, we found that FAM3D strongly chemoattracted human peripheral blood neutrophils and monocytes. To identify FAM3D receptor, we used chemotaxis, receptor internalization, calcium flux and radioligand-binding assays in FAM3D-stimulated HEK293 cells that transiently expressed FPR1 or FPR2 to show that FAM3D was a high affinity ligand of formyl peptide receptors (FPR1 and FPR2), both of which were highly expressed on the surface of neutrophils and monocytes/macrophages. After being injected into the mouse peritoneal cavity, FAM3D chemoattracted CD11b+Ly6G+ neutrophils in a short time. In response to FAM3D stimulation, p-ERK and p-p38 were up-regulated in the mouse neutrophils, which could be inhibited by an inhibitor of FPR1 or FPR2. FAM3D was reported to be constitutively expressed in the gastrointestinal tract. We found that FAM3D expression increased significantly in dextran sulfate sodium-induced colitis. Taken together, we propose that FAM3D plays a role in gastrointestinal homeostasis and inflammation through its receptors FPR1 and FPR2.
Collapse
Affiliation(s)
- Xinjian Peng
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Enquan Xu
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Weiwei Liang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xiaolei Pei
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Dixin Chen
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Danfeng Zheng
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Yang Zhang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Can Zheng
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
- Center for Human Disease Genomics, Peking University, Beijing 100191, China
| | - Shaoping She
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Yan Zhang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Jing Ma
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoning Mo
- Center for Human Disease Genomics, Peking University, Beijing 100191, China
| | - Yingmei Zhang
- Center for Human Disease Genomics, Peking University, Beijing 100191, China
| | - Dalong Ma
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
- Center for Human Disease Genomics, Peking University, Beijing 100191, China
| | - Ying Wang
- Department of Immunology, School of Basic Medical Sciences, and Key Laboratory of Medical Immunology of Ministry of Health, Peking University Health Science Center, Beijing 100191, China
- Center for Human Disease Genomics, Peking University, Beijing 100191, China
| |
Collapse
|
17
|
Ratliff WA, Athanason MG, Chechele AC, Kuehl MN, Fernandez AM, MarElia CB, Burkhardt BR. Hepatic nutrient and hormonal regulation of the PANcreatic-DERived factor (PANDER) promoter. Mol Cell Endocrinol 2015; 413:101-12. [PMID: 26123584 DOI: 10.1016/j.mce.2015.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/29/2015] [Accepted: 05/28/2015] [Indexed: 11/24/2022]
Abstract
PANcreatic-DERived factor (PANDER, FAM3B) has been shown to regulate glycemic levels via interactions with both pancreatic islets and the liver. Although PANDER is predominantly expressed from the endocrine pancreas, recent work has provided sufficient evidence that the liver may also be an additional tissue source of PANDER production. At physiological levels, PANDER is capable of disrupting insulin signaling and promoting increased hepatic glucose production. As shown in some animal models, strong expression of PANDER, induced by viral delivery within the liver, induces hepatic steatosis. However, no studies to date have explicitly characterized the transcriptional regulation of PANDER from the liver. Therefore, our investigation elucidated the nutrient and hormonal regulation of the hepatic PANDER promoter. Initial RNA-ligated rapid amplification of cDNA ends identified a novel transcription start site (TSS) approximately 26 bp upstream of the PANDER translational start codon not previously revealed in pancreatic β-cell lines. Western evaluation of various murine tissues demonstrated robust expression in the liver and brain. Promoter analysis identified strong tissue-specific activity of the PANDER promoter in both human and murine liver-derived cell lines. The minimal element responsible for maximal promoter activity within hepatic cell lines was located between -293 and -3 of the identified TSS. PANDER promoter activity was inhibited by both insulin and palmitate, whereas glucose strongly increased expression. The minimal element was responsible for maximal glucose-responsive and basal activity. Co-transfection reporter assays, chromatin-immunoprecipitation (ChIP) and site-directed mutagenesis revealed that the carbohydrate-responsive element binding protein (ChREBP) increased PANDER promoter activity and interacted with the PANDER promoter. E-box 3 was shown to be critical for basal and glucose responsive expression. In summary, in-vitro and in-vivo glucose is a potent stimulator of the PANDER promoter within the liver and this response may be facilitated by ChREBP.
Collapse
Affiliation(s)
- Whitney A Ratliff
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Mark G Athanason
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Alicia C Chechele
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Amanda M Fernandez
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
18
|
Moak SL, Dougan GC, MarElia CB, Danse WA, Fernandez AM, Kuehl MN, Athanason MG, Burkhardt BR. Enhanced glucose tolerance in pancreatic-derived factor (PANDER) knockout C57BL/6 mice. Dis Model Mech 2014; 7:1307-15. [PMID: 25217499 PMCID: PMC4213734 DOI: 10.1242/dmm.016402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Pancreatic-derived factor (PANDER; also known as FAM3B) is a uniquely structured protein strongly expressed within and secreted from the endocrine pancreas. PANDER has been hypothesized to regulate fasting and fed glucose homeostasis, hepatic lipogenesis and insulin signaling, and to serve a potential role in the onset or progression of type 2 diabetes (T2D). Despite having potentially pivotal pleiotropic roles in glycemic regulation and T2D, there has been limited generation of stable animal models for the investigation of PANDER function, and there are no models on well-established genetic murine backgrounds for T2D. Our aim was to generate an enhanced murine model to further elucidate the biological function of PANDER. Therefore, a pure-bred PANDER knockout C57BL/6 (PANKO-C57) model was created and phenotypically characterized with respect to glycemic regulation and hepatic insulin signaling. The PANKO-C57 model exhibited an enhanced metabolic phenotype, particularly with regard to enhanced glucose tolerance. Male PANKO-C57 mice displayed decreased fasting plasma insulin and C-peptide levels, whereas leptin levels were increased as compared with matched C57BL/6J wild-type mice. Despite similar peripheral insulin sensitivity between both groups, hepatic insulin signaling was significantly increased during fasting conditions, as demonstrated by increased phosphorylation of hepatic PKB/Akt and AMPK, along with mature SREBP-1 expression. Insulin stimulation of PANKO-C57 mice resulted in increased hepatic triglyceride and glycogen content as compared with wild-type C57BL/6 mice. In summary, the PANKO-C57 mouse represents a suitable model for the investigation of PANDER in multiple metabolic states and provides an additional tool to elucidate the biological function and potential role in T2D.
Collapse
Affiliation(s)
- Shari L Moak
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Grace C Dougan
- Department of Pediatrics, University of South Florida, 12901 Bruce B. Downs Boulevard MDC 62, Tampa, FL 33612, USA
| | - Catherine B MarElia
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Whitney A Danse
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Amanda M Fernandez
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Melanie N Kuehl
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Mark G Athanason
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Brant R Burkhardt
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA.
| |
Collapse
|
19
|
Jia S, Chen Z, Li J, Chi Y, Wang J, Li S, Luo Y, Geng B, Wang C, Cui Q, Guan Y, Yang J. FAM3A promotes vascular smooth muscle cell proliferation and migration and exacerbates neointima formation in rat artery after balloon injury. J Mol Cell Cardiol 2014; 74:173-82. [PMID: 24857820 DOI: 10.1016/j.yjmcc.2014.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/07/2014] [Accepted: 05/14/2014] [Indexed: 11/17/2022]
Abstract
The biological function of FAM3A, the first member of family with sequence similarity 3 (FAM3) gene family, remains largely unknown. This study aimed to determine its role in the proliferation and migration of vascular smooth muscle cells (VSMCs). Immunohistochemical staining revealed that FAM3A protein is expressed in the tunica media of rodent arteries, and its expression is reduced with an increase in prostaglandin E receptor 2 (EP2) expression after injury. In vitro, FAM3A overexpression promotes proliferation and migration of VSMCs, whereas FAM3A silencing inhibits these processes. In vivo, FAM3A overexpression results in exaggerated neointima formation of rat carotid artery after balloon injury. FAM3A activates Akt in a PI3K-dependent manner. In contrast, FAM3A induces ERK1/2 activation independent of PI3K. FAM3A protein is subcellularly located in mitochondria, where it affects ATP production and release. Activation of EP2 represses FAM3A expression, leading to impaired ATP production and release in VSMCs. FAM3A-induced activation of Akt and ERK1/2 pathways, proliferation and migration of VSMCs are inhibited by P2 receptor antagonist suramin. Furthermore, inhibition or knockdown of P2Y1 receptor inihibits FAM3A-induced proliferation and migration of VSMCs. In conclusion, FAM3A promotes proliferation and migration of VSMCs via P2Y1 receptor-mediated activation of Akt and ERK1/2 pathways. In injured vessels, FAM3A was repressed by upregulated EP2 expression, leading to the attenuation of ATP-P2Y1 receptor signaling, which is beneficial for preventing excessive proliferation and migration of VSMCs.
Collapse
MESH Headings
- Animals
- Balloon Occlusion
- Carotid Arteries/metabolism
- Carotid Arteries/pathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cell Proliferation
- Cytokines/genetics
- Cytokines/metabolism
- Gene Expression Regulation
- Male
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/genetics
- Neointima/metabolism
- Neointima/pathology
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Purinergic P2Y1/genetics
- Receptors, Purinergic P2Y1/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Shi Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Zhenzhen Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology & Central Laboratory, Peking University People's Hospital, Beijing 100044, China
| | - Jinyu Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Sha Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yanjin Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Bin Geng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Youfei Guan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing 100191, China.
| |
Collapse
|
20
|
Robert-Cooperman CE, Dougan GC, Moak SL, Athanason MG, Kuehl MN, Bell-Temin H, Stevens SM, Burkhardt BR. PANDER transgenic mice display fasting hyperglycemia and hepatic insulin resistance. J Endocrinol 2014; 220:219-31. [PMID: 24468680 DOI: 10.1530/joe-13-0338] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PANcreatic-DERived factor (PANDER, FAM3B) is a novel protein that is highly expressed within the endocrine pancreas and to a lesser degree in other tissues. Under glucose stimulation, PANDER is co-secreted with insulin from the β-cell. Despite prior creation and characterization of acute hepatic PANDER animal models, the physiologic function remains to be elucidated from pancreas-secreted PANDER. To determine this, in this study, a transgenic mouse exclusively overexpressing PANDER from the endocrine pancreas was generated. PANDER was selectively expressed by the pancreatic-duodenal homeobox-1 (PDX1) promoter. The PANDER transgenic (PANTG) mice were metabolically and proteomically characterized to evaluate effects on glucose homeostasis, insulin sensitivity, and lipid metabolism. Fasting glucose, insulin and C-peptide levels were elevated in the PANTG compared with matched WT mice. Younger PANTG mice also displayed glucose intolerance in the absence of peripheral insulin sensitivity. Hyperinsulinemic-euglycemic clamp studies revealed that hepatic glucose production and insulin resistance were significantly increased in the PANTG with no difference in either glucose infusion rate or rate of disappearance. Fasting glucagon, corticosterones, resistin and leptin levels were also similar between PANTG and WT. Stable isotope labeling of amino acids in cell culture revealed increased gluconeogenic and lipogenic proteomic profiles within the liver of the PANTG with phosphoenol-pyruvate carboxykinase demonstrating a 3.5-fold increase in expression. This was matched with increased hepatic triglyceride content and decreased p-AMPK and p-acetyl coenzyme A carboxylase-1 signaling in the PANTG. Overall, our findings support a role of pancreatic β-cell-secreted PANDER in the regulation of hepatic insulin and lipogenenic signaling with subsequent impact on overall glycemia.
Collapse
Affiliation(s)
- Claudia E Robert-Cooperman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, BSF 206, Tampa, Florida 33620, USA Department of Pediatrics, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 62, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Prakash P, Singh V, Jain M, Rana M, Khanna V, Barthwal MK, Dikshit M. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat. Eur J Pharmacol 2014; 727:15-28. [DOI: 10.1016/j.ejphar.2014.01.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 01/14/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
|