1
|
Dong YJ, Zhang YP, Jiang XF, Xie ZY, Li B, Jiang NH, Chen SH, Lv GY. Beneficial effects of Dendrobium officinale National Herbal Drink on metabolic immune crosstalk via regulate SCFAs-Th17/Treg. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155816. [PMID: 38964158 DOI: 10.1016/j.phymed.2024.155816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 06/08/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The development of gut-liver axis metabolic immune crosstalk is intimately associated with intestinal barrier disorder, intestinal SCFAs-Th17/Treg immunological imbalance, and disorders of the gut microbiota. Prior research has discovered that Dendrobium officinale National Herbal Drink (NHD), a traditional Chinese medicine drink with enhanced immunity, may enhance the immunological response in animals with impaired immune systems brought on by cyclophosphamide by repairing intestinal barrier function and controlling turbulence in the gut microbiota. However, whether NHD can further improve the gut-liver axis metabolic immune crosstalk and its related mechanisms need to be systematically studied. OBJECTIVES The purpose of this study is to clarify the function and mechanism of NHD in enhancing the gut-liver axis metabolic immunological crosstalk brought on by excessive alcohol intake. METHODS In this work, we set up a mouse model to analyze the metabolic and immunological crosstalk involving the gut-liver axis across 7 weeks of continuous, excessive drinking. At the same time, high and low doses (20,10 ml/kg) of NHD were given by gavage. The effect of NHD on improving the metabolism of gut-liver axis was evaluated by blood lipid, liver lipid deposition, liver function and intestinal pathophysiology. By measuring serum immunological indices, intestinal barrier, and intestinal immune barrier, the impact of NHD on enhancing immune and intestinal barrier function was assessed. Furthermore, immunohistochemistry, immunofluorescence, 16S rRNA, Western blot, q-PCR and other methods were used to detect gut microbiota, SCFAs-GPR41/43 pathway, intestinal Th17/Treg immune cells and PPAR-α-NPC1L1/SREBP1 pathway to elucidate the mechanism by which NHD enhances the gut-liver axis' metabolic immune crosstalk. RESULTS Our study demonstrated that NHD has the potential to improve the pathophysiological damage caused by gut-liver axis in model mice. NHD also ameliorated the disorder of lipid metabolism. In addition, it regulated the levels of peripheral blood T cell immunity and serum immune factors. And NHD can restore intestinal mechanical and immune barrier damage. NHD has a favorable impact on the quantity of beneficial bacteria, including uncultured_bacterium_g__norank_f__muribaculacea and uncultured_bacterium_g__Turicibacter. Additionally, it raised the model mice's levels of SCFAs (n-butyric acid, isovaleric acid, etc.). This resulted in the promotion of intestinal GPR41/43-ERK1/2 expression and the reshaping of intestinal CD4+T cell Th17/Treg homeostasis. As a consequence, colon IL-22 and IL-10 levels increased, while colon IL-17A levels decreased. Lastly, NHD raised the amount of intestinal IAP/LPS, regulated the development of PPAR-α-NPC1L1/SREBP1 pathway in gut-liver axis, and improve lipid metabolism disorder. CONCLUSIONS Our study found that NHD can improve the gut-liver axis metabolic immune crosstalk in model mice caused by excessive drinking. The mechanism might be connected to how NHD controls gut microbiota disorders in model mice, the activation of intestinal SCFAs-GPR41/43 pathway, the remodeling of Th17/Treg immune homeostasis of intestinal CD4+T cells, the improvement of IAP/LPS abnormality, and further mediating the PPAR-α-NPC1L1/SREBP1 pathway of lipid metabolism in gut-liver axis.
Collapse
Affiliation(s)
- Ying-Jie Dong
- College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Yi-Piao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Zhi-Yi Xie
- College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China
| | - Ning-Hua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China.
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products. Huzhou 313200, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, No. 548, Binwen Road, Binjiang District, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
2
|
Xu X, Wang Q, Tong P, Li X, Meng X, Wu Y, Yuan J, Chen H, Gao J. Effects of medicine food homologous materials on food allergy-associated factors: intestinal oxidative stress, intestinal inflammation and Th2 immune response. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3936-3946. [PMID: 38268027 DOI: 10.1002/jsfa.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/17/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Food allergies could be regulated via Th1/Th2 balance, intestinal oxidative stress and inflammation, which were considered as food allergy-associated factors. Medicine-food homologous materials (MFHM) were considered as a significant factor with respect to preventing human diseases. To evaluate the associations between MFHM and food allergy-associated factors, two types of MFHM with the remarkable function of anti-oxidation and anti-inflammation, Gardeniae fructus (Gar) and Sophorae glos (Sop), were chosen. RESULTS By constructing an H2O2-induced oxidative stress model of Caco-2 cells and an intestinal inflammatory cell model of Caco-2 cells with tumor necrosis factor-α and interleukin (IL)-13, the contents of anti-oxidative enzymes (SOD and GSH), inflammatory factor (IL-8) and tight junction proteins (zonula occludens-1, occludin and claudin-1) in Caco-2 cells were determined. Moreover, the anti-allergic effects of digestive Sop and Gar were evaluated by measuring the levels of Th1/Th2/Treg cytokines in the spleen cells of sensitized mice. The results showed that the SOD and GSH were obviously increased and the gene and protein expression of IL-8 and claudin-1 were improved with the incubation of digested Sop. Th2 cytokine was reduced and Th1/Th2 balance was promoted on coincubation with ovalbumin (OVA) and digested Sop in the splenocytes. However, the digested Gar had no effect. CONCLUSION The digested Sop not only had suppressive effects on intestinal oxidative stress and inflammation, but also had regulative effects on Th1/Th2 balance. This finding demonstrated that not all of the MFHM with anti-oxidant and anti-inflammatory effects have anti-allergic activities. The present study may be contributing toward establishing a screening model to identify the anti-allergic MFHM. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoqian Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science& Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
| | - Qian Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science& Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
| | - Ping Tong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
| | - Xin Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- College of Food Science& Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
| | - Xuanyi Meng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Yong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Juanli Yuan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
- College of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Hongbing Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jinyan Gao
- College of Food Science& Technology, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Food Allergy, Nanchang, China
| |
Collapse
|
3
|
Lee TY, Farah N, Chin VK, Lim CW, Chong PP, Basir R, Lim WF, Loo YS. Medicinal benefits, biological, and nanoencapsulation functions of riboflavin with its toxicity profile: A narrative review. Nutr Res 2023; 119:1-20. [PMID: 37708600 DOI: 10.1016/j.nutres.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Riboflavin is a precursor of the essential coenzymes flavin mononucleotide and flavin adenine dinucleotide. Both possess antioxidant properties and are involved in oxidation-reduction reactions, which have a significant impact on energy metabolism. Also, the coenzymes participate in metabolism of pyridoxine, niacin, folate, and iron. Humans must obtain riboflavin through their daily diet because of the lack of programmed enzymatic machineries for de novo riboflavin synthesis. Because of its physiological nature and fast elimination from the human body when in excess, riboflavin consumed is unlikely to induce any negative effects or develop toxicity in humans. The use of riboflavin in pharmaceutical and clinical contexts has been previously explored, including for preventing and treating oxidative stress and reperfusion oxidative damage, creating synergistic compounds to mitigate colorectal cancer, modulating blood pressure, improving diabetes mellitus comorbidities, as well as neuroprotective agents and potent photosensitizer in killing bloodborne pathogens. Thus, the goal of this review is to provide a comprehensive understanding of riboflavin's biological applications in medicine, key considerations of riboflavin safety and toxicity, and a brief overview on the nanoencapsulation of riboflavin for various functions including the treatment of a range of diseases, photodynamic therapy, and cellular imaging.
Collapse
Affiliation(s)
- Tze Yan Lee
- Perdana University School of Liberal Arts, Science and Technology (PUScLST), Wisma Chase Perdana, Changkat Semantan, Damansara Heights, 50490 Kuala Lumpur, Malaysia.
| | - Nuratiqah Farah
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Voon Kin Chin
- Faculty of Medicine, Nursing, and Health Sciences, SEGi University, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
| | - Chee Woei Lim
- Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor's University, No. 1, Jalan Taylor's, 47500 Subang Jaya, Selangor, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Wai Feng Lim
- Sunway Medical Centre, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yan Shan Loo
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
4
|
Hosomi K, Kunisawa J. Impact of the intestinal environment on the immune responses to vaccination. Vaccine 2020; 38:6959-6965. [PMID: 32933791 DOI: 10.1016/j.vaccine.2020.08.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022]
Abstract
Vaccination has contributed greatly to the control of infectious diseases; however, regional and individual differences are occasionally observed in the efficacy of vaccination. As one explanation for these differences, much attention has focused on the intestinal environment constructed by the interaction of diet and the gut microbiota. The intestinal environment has several physiological effects on the host immune system, both locally and systemically, and consequently influences the efficacy of vaccination. In this review, we discuss the impact of the gut microbiota and dietary nutrients on systemic and oral vaccination as well as their applications in various strategies for immunoregulation, including use as vaccine adjuvants. This information could contribute to establishing methods of personalized vaccination that would optimize host immunity by changing the gut environment to maximize vaccine effects.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Japan.
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Japan; International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Japan; Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Density, Osaka University, Japan; Graduate School of Medicine, Kobe University, Japan; Research Organization for Nano & Life Innovation, Waseda University, Japan.
| |
Collapse
|
5
|
The Role of Vitamins on the Prevention and/or Treatment of COVID-19 Infection; a Systematic Review. ACTA ACUST UNITED AC 2020. [DOI: 10.5812/modernc.104740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Vitamins had been reported repeatedly as important micronutrients, on immune system. Objectives: In this study roles of vitamins on immune system were discussed in detail, as well as their probable roles on the prevention/treatment of viral infections including COVID-19 infection. Method: Totally, 57 articles had been extracted from common indexing databases/websites, which were then classified to different main groups and subgroups. The roles of Vitamins on the prevention and/or treatment of COVID-19 infection had been also reviewed, and finally their contents had been purified and listed into different categorizations. Moreover, differential percentages of each vitamin related studies, differential percentages of studies on the association with COVID-19, and mechanisms of the vitamins effects on immune system had been reviewed for each vitamin. Results: In this study, the reviewed articles had been categorized into 5 main vitamin groups and 7 subgroups for vitamin B family groups. The most studied vitamin group was identified to be the B vitamins group followed by the vitamins A, D, and E groups that were ranked in next steps, respectively. However, in individual comparison of vitamins, vitamin A had been identified as the vitamin with maximum number of studies. Accordingly, more than half of these studies (66.66%) had focused on the immune-modulatory effects of vitamin D on the prevention and/or treatment of COVID-19 infection. Conclusions: Briefly, this study showed that, among all vitamins, roles of vitamin A, C, D, and E are more defined and maybe more effective on immune system, which emphasizes on the importance of vitamins in prevention of several viral infections like COVID-19. Therefore, sufficient vitamin intake can be recommended to prevent viral infections like COVID-19 infection.
Collapse
|
6
|
Hosomi K, Kiyono H, Kunisawa J. Fatty acid metabolism in the host and commensal bacteria for the control of intestinal immune responses and diseases. Gut Microbes 2020; 11:276-284. [PMID: 31120334 PMCID: PMC7524326 DOI: 10.1080/19490976.2019.1612662] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intestinal tissue has a specialized immune system that exhibits an exquisite balance between active and suppressive responses important for the maintenance of health. Intestinal immunity is functionally affected by both diet and gut commensal bacteria. Here, we review the effects of fatty acids on the regulation of intestinal immunity and immunological diseases, revealing that dietary fatty acids and their metabolites play an important role in the regulation of allergy, inflammation, and immunosurveillance in the intestine. Several lines of evidence have revealed that some dietary fatty acids are converted to biologically active metabolites by enzymes not only in the host but also in the commensal bacteria. Thus, biological interaction between diet and commensal bacteria could form the basis of a new era in the control of host immunity and its associated diseases.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,IMSUT Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Chiba University, Chiba, Japan,Department of Medicine, School of Medicine and CU-UCSD Center for Mucosal Immunology, Allergy and Vaccine, University of California, California, USA
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), Osaka, Japan,International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan,Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka, Japan,Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo, Japan,CONTACT Jun Kunisawa Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki City, Osaka567-0085, Japan
| |
Collapse
|
7
|
BLT1 mediates commensal bacteria-dependent innate immune signals to enhance antigen-specific intestinal IgA responses. Mucosal Immunol 2019; 12:1082-1091. [PMID: 31142830 DOI: 10.1038/s41385-019-0175-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023]
Abstract
Leukotriene B4 receptor 1 (BLT1) triggers the migration of granulocytes and activated T cells; however, its role in B-cell function remains unclear. Here we report that BLT1 is required to induce the production of antigen-specific IgA against oral vaccine through mediating innate immune signals from commensal bacteria. B cells acquire BLT1 expression during their differentiation to IgA+ B cells and plasma cells in Peyer's patches and the small intestinal lamina propria, respectively. BLT1 KO mice exhibited impaired production of antigen-specific fecal IgA to oral vaccine despite normal IgG responses to systemically immunized antigen. Expression of MyD88 was decreased in BLT1 KO gut B cells and consequently led to diminished proliferation of commensal bacteria-dependent plasma cells. These results indicate that BLT1 enhances the proliferation of commensal bacteria-dependent IgA+ plasma cells through the induction of MyD88 and thereby plays a key role in the production of antigen-specific intestinal IgA.
Collapse
|
8
|
Abstract
The prevalence of food allergy is raising in industrialized countries, but the mechanisms behind this increased incidence are not fully understood. Environmental factors are believed to play a role in allergic diseases, including lifestyle influences, such as diet. There is a close relationship between allergens and lipids, with many allergenic proteins having the ability to bind lipids. Dietary lipids exert pro-inflammatory or anti-inflammatory functions on cells of the innate immunity and influence antigen presentation to cells of the adaptive immunity. In addition to modifying the immunostimulating properties of proteins, lipids also alter their digestibility and intestinal absorption, changing allergen bioavailability. This study provides an overview of the role of dietary lipids in food allergy, taking into account epidemiological information, as well as results of mechanistic investigations using in vivo, ex vivo and in vitro models. The emerging link among high-fat diets, obesity, and allergy is also discussed.
Collapse
Affiliation(s)
- Rosina López-Fandiño
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
9
|
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front Nutr 2019; 6:48. [PMID: 31058161 PMCID: PMC6478888 DOI: 10.3389/fnut.2019.00048] [Citation(s) in RCA: 306] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Vitamins are micronutrients that have physiological effects on various biological responses, including host immunity. Therefore, vitamin deficiency leads to increased risk of developing infectious, allergic, and inflammatory diseases. Since B vitamins are synthesized by plants, yeasts, and bacteria, but not by mammals, mammals must acquire B vitamins from dietary or microbial sources, such as the intestinal microbiota. Similarly, some intestinal bacteria are unable to synthesize B vitamins and must acquire them from the host diet or from other intestinal bacteria for their growth and survival. This suggests that the composition and function of the intestinal microbiota may affect host B vitamin usage and, by extension, host immunity. Here, we review the immunological functions of B vitamins and their metabolism by intestinal bacteria with respect to the control of host immunity.
Collapse
Affiliation(s)
- Ken Yoshii
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kento Sawane
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd., Atsugi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, Center for Vaccine and Adjuvant Research, and Laboratory of Gut Environmental System, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Graduate School of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- Department of Microbiology and Immunology, Graduate School of Medicine, Kobe University, Hyogo, Japan
- Division of Mucosal Vaccines, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Hussain M, Umair Ijaz M, Ahmad MI, Khan IA, Brohi SA, Shah AU, Shinwari KI, Zhao D, Xu X, Zhou G, Li C. Meat proteins in a high-fat diet have a substantial impact on intestinal barriers through mucus layer and tight junction protein suppression in C57BL/6J mice. Food Funct 2019; 10:6903-6914. [DOI: 10.1039/c9fo01760g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein diets are well known for body maintenance and weight loss.
Collapse
|
11
|
Kunisawa J. Metabolic changes during B cell differentiation for the production of intestinal IgA antibody. Cell Mol Life Sci 2017; 74:1503-1509. [PMID: 27838744 PMCID: PMC11107571 DOI: 10.1007/s00018-016-2414-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/19/2016] [Accepted: 11/08/2016] [Indexed: 01/12/2023]
Abstract
To sustain the bio-energetic demands of growth, proliferation, and effector functions, the metabolism of immune cells changes dramatically in response to immunologic stimuli. In this review, I focus on B cell metabolism, especially regarding the production of intestinal IgA antibody. Accumulating evidence has implicated not only host-derived factors (e.g., cytokines) but also gut environmental factors, including the possible involvement of commensal bacteria and diet, in the control of B cell metabolism during intestinal IgA antibody production. These findings yield new insights into the regulation of immunosurveillance and homeostasis in the gut.
Collapse
Affiliation(s)
- Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka, 565-0871, Japan.
- Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
12
|
Hosomi K, Kunisawa J. The Specific Roles of Vitamins in the Regulation of Immunosurveillance and Maintenance of Immunologic Homeostasis in the Gut. Immune Netw 2017; 17:13-19. [PMID: 28261016 PMCID: PMC5334118 DOI: 10.4110/in.2017.17.1.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/25/2017] [Accepted: 02/01/2017] [Indexed: 12/19/2022] Open
Abstract
Vitamins are micronutrients which are essential for the maintenance of biological responses including immune system. Hence, vitamin deficiency increases a risk of infectious, allergic, and inflammatory diseases. Accumulating evidence has recently revealed the molecular and cellular mechanisms of vitamin-mediated regulation in the active and quiescent immune responses. In this review, we focus on the immunologic roles of vitamins in the regulation of homeostasis and surveillance in the gut.
Collapse
Affiliation(s)
- Koji Hosomi
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka 567-0085, Japan.; Graduate School of Medicine, Graduate School of Pharmaceutical Sciences, Graduate School of Dentistry, Osaka University, Osaka 565-0871, Japan.; Division of Mucosal Immunology, Department of Microbiology and Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan.; Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Hyogo 650-0017, Japan
| |
Collapse
|
13
|
Kunisawa J, Kiyono H. Sphingolipids and Epoxidized Lipid Metabolites in the Control of Gut Immunosurveillance and Allergy. Front Nutr 2016; 3:3. [PMID: 26858949 PMCID: PMC4728802 DOI: 10.3389/fnut.2016.00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
The intestinal immune system ingeniously balances the distinct responses of elimination and tolerance of non-self-substances for the creation and maintenance of homeostatic environments. Accumulating evidence has recently shown that various lipids, including dietary one, are involved in the regulation of intestinal immunity and are associated with biophylaxis and immune disorders. Recent advances in the lipidomics allow the identification of novel pathways of lipid metabolism and lipid metabolites for the control of intestinal immunity. In this paper, we describe the effects and functions of lipids, especially sphingolipids and new lipid metabolites originated from dietary oil on the immunomodulation and on the development and pathogenesis of allergic diseases in the intestine.
Collapse
Affiliation(s)
- Jun Kunisawa
- Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan; Graduate School of Medicine, Osaka University, Suita, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan; Graduate School of Dentistry, Osaka University, Suita, Japan; Graduate School of Medicine, Kobe University, Kobe, Japan; Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kiyono
- Division of Mucosal Immunology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
14
|
Dietary ω3 fatty acid exerts anti-allergic effect through the conversion to 17,18-epoxyeicosatetraenoic acid in the gut. Sci Rep 2015; 5:9750. [PMID: 26065911 PMCID: PMC4464255 DOI: 10.1038/srep09750] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/16/2015] [Indexed: 01/01/2023] Open
Abstract
ω3 polyunsaturated fatty acids (PUFAs) have anti-allergic and anti-inflammatory properties, but the immune-metabolic progression from dietary oil remains to be investigated. Here we identified 17,18-epoxyeicostetraenoic acid (17,18-EpETE) as an anti-allergic metabolite generated in the gut from dietary ω3 α-linolenic acid (ALA). Biochemical and imaging mass spectrometry analyses revealed increased ALA and its metabolites, especially eicosapentaenoic acid (EPA), in the intestines of mice receiving ALA-rich linseed oil (Lin-mice). In murine food allergy model, the decreased incidence of allergic diarrhea in Lin-mice was due to impairment of mast cell degranulation without affecting allergen-specific serum IgE. Liquid chromatography–tandem mass spectrometry-based mediator lipidomics identified 17,18-EpETE as a major ω3 EPA-derived metabolite generated from dietary ALA in the gut, and 17,18-EpETE exhibits anti-allergic function when administered in vivo. These findings suggest that metabolizing dietary ω3 PUFAs generates 17,18-EpETE, which is an endogenous anti-allergic metabolite and potentially is a therapeutic target to control intestinal allergies.
Collapse
|
15
|
Kunisawa J. Vitamin B9 and ATP in the control and development of intestinal inflammation. Inflamm Regen 2015. [DOI: 10.2492/inflammregen.35.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jun Kunisawa
- Department of Microbiology and Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
- Graduate School of Pharmaceutical Sciences and Graduate School of Dentistry, Osaka University, Osaka, Japan
- Division of Mucosal Immunology and International Research and Development Center for Mucosal Vaccines, The Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
- Laboratory of Vaccine Materials, National Institute of Biomedical Innovation, Osaka, Japan
| |
Collapse
|
16
|
Kayama H, Takeda K. Regulation of intestinal inflammation through interaction of intestinal environmental factors and innate immune cells. Inflamm Regen 2015. [DOI: 10.2492/inflammregen.35.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hisako Kayama
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Mucosal Immunology, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Khalifeh M, Awaisheh S, Alameri O, Hananeh W. Small intestine mucosal immune system response to high-fat-high-cholesterol dietary supplementation in male rats. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2014.914467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|