1
|
Sourianarayanane A, Salemi MR, Phinney BS, McCullough AJ. Liver Tissue Proteins Improve the Accuracy of Plasma Proteins as Biomarkers in Diagnosing Metabolic Dysfunction-Associated Steatohepatitis. Proteomics Clin Appl 2024:e202300236. [PMID: 39073724 DOI: 10.1002/prca.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Biomarkers for metabolic dysfunction-associated steatohepatitis (MASH) have been considered based on proteomic and lipidomic data from plasma and liver tissue without clinical benefits. This study evaluated proteomics-based plasma and liver tissue biomarkers collected simultaneously from patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Liver tissue and plasma samples were collected during liver biopsy to diagnose MASLD. Untargeted proteomics was performed on 64 patients. RESULTS Twenty plasma proteins were up- or downregulated in patients with MASH compared with those without MASH. The potential biomarkers utilizing the best combinations of these plasma proteins had an area under the receiver operating curve (AUROC) of 0.671 for detecting those with MASH compared with those without it. However, none of the 20 plasma proteins were represented among the significantly regulated liver tissue proteins in patients with MASH. Ten of them displayed a trend and relevance in liver tissue with MASLD progression. These 10 plasma proteins had an AUROC of 0.793 for MASH identification and higher positive and negative predictive values. CONCLUSION The plasma and liver protein expressions of patients with MASH were not directly comparable. Plasma protein biomarkers that are also expressed in liver tissue can help improve MASH detection.
Collapse
Affiliation(s)
- Achuthan Sourianarayanane
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michelle R Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, California, USA
| | - Brett S Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, California, USA
| | | |
Collapse
|
2
|
Dyrkheeva NS, Zakharenko AL, Malakhova AA, Okorokova LS, Shtokalo DN, Medvedev SP, Tupikin AA, Kabilov MR, Lavrik OI. Transcriptomic analysis of HEK293A cells with a CRISPR/Cas9-mediated TDP1 knockout. Biochim Biophys Acta Gen Subj 2024; 1868:130616. [PMID: 38621596 DOI: 10.1016/j.bbagen.2024.130616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/21/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is a human DNA repair protein. It is a member of the phospholipase D family based on structural similarity. TDP1 is a key enzyme of the repair of stalled topoisomerase 1 (TOP1)-DNA complexes. Previously, with the CRISPR/Cas9 method, we obtained HEK293A cells with a homozygous knockout of the TDP1 gene and used the TDP1 knockout cells as a cellular model for studying mechanisms of action of an anticancer therapy. In the present work, we hypothesized that the TDP1 knockout would alter the expression of DNA repair-related genes. By transcriptomic analysis, we investigated for the first time the effect of the TDP1 gene knockout on genes' expression changes in the human HEK293A cell line. We obtained original data implying a role of TDP1 in other processes besides the repair of the DNA-TOP1 complex. Differentially expressed gene analysis revealed that TDP1 may participate in cell adhesion and communication, spermatogenesis, mitochondrial function, neurodegeneration, a cytokine response, and the MAPK signaling pathway.
Collapse
Affiliation(s)
- Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Alexandra L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Anastasia A Malakhova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; Federal research center Institute of Cytology and Genetics, SB RAS, 10 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | | | - Dmitry N Shtokalo
- AcademGene LLC, 6 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; A.P. Ershov Institute of Informatics Systems, SB RAS, 6 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Sergey P Medvedev
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia; Federal research center Institute of Cytology and Genetics, SB RAS, 10 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Alexey A Tupikin
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences (SB RAS), 8 Akad. Lavrentyeva Ave., Novosibirsk 630090, Russia.
| |
Collapse
|
3
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Taiwo M, Huang E, Pathak V, Bellar A, Welch N, Dasarathy J, Streem D, McClain CJ, Mitchell MC, Barton BA, Szabo G, Dasarathy S, Schaefer EA, Luther J, Z. Day L, Ouyang X, Suyavaran A, Mehal WZ, Jacobs JM, Goodman RP, Rotroff DM, Nagy LE. Proteomics identifies complement protein signatures in patients with alcohol-associated hepatitis. JCI Insight 2024; 9:e174127. [PMID: 38573776 PMCID: PMC11141929 DOI: 10.1172/jci.insight.174127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Diagnostic challenges continue to impede development of effective therapies for successful management of alcohol-associated hepatitis (AH), creating an unmet need to identify noninvasive biomarkers for AH. In murine models, complement contributes to ethanol-induced liver injury. Therefore, we hypothesized that complement proteins could be rational diagnostic/prognostic biomarkers in AH. Here, we performed a comparative analysis of data derived from human hepatic and serum proteome to identify and characterize complement protein signatures in severe AH (sAH). The quantity of multiple complement proteins was perturbed in liver and serum proteome of patients with sAH. Multiple complement proteins differentiated patients with sAH from those with alcohol cirrhosis (AC) or alcohol use disorder (AUD) and healthy controls (HCs). Serum collectin 11 and C1q binding protein were strongly associated with sAH and exhibited good discriminatory performance among patients with sAH, AC, or AUD and HCs. Furthermore, complement component receptor 1-like protein was negatively associated with pro-inflammatory cytokines. Additionally, lower serum MBL associated serine protease 1 and coagulation factor II independently predicted 90-day mortality. In summary, meta-analysis of proteomic profiles from liver and circulation revealed complement protein signatures of sAH, highlighting a complex perturbation of complement and identifying potential diagnostic and prognostic biomarkers for patients with sAH.
Collapse
Affiliation(s)
| | | | - Vai Pathak
- Department of Quantitative Health Sciences, and
| | | | - Nicole Welch
- Department of Inflammation and Immunity
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jaividhya Dasarathy
- Department of Family Medicine, Metro Health Medical Center, Cleveland, Ohio, USA
| | - David Streem
- Department of Psychiatry and Psychology, Cleveland Clinic Lutheran Hospital, Cleveland, Ohio, USA
| | - Craig J. McClain
- Department of Medicine, University of Louisville, Louisville, Kentucky, USA
| | - Mack C. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bruce A. Barton
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Gyongyi Szabo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Esperance A. Schaefer
- Alcohol Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jay Luther
- Alcohol Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Le Z. Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Xinshou Ouyang
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Arumugam Suyavaran
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wajahat Z. Mehal
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
- West Haven VA Medical Center, West Haven, Connecticut, USA
| | - Jon M. Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Russell P. Goodman
- Alcohol Liver Center, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Endocrine Unit, Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, and
- Endocrine and Metabolism Institute and
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Laura E. Nagy
- Department of Inflammation and Immunity
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- See Supplemental Acknowledgments for information on the AlcHepNet Consortium
| |
Collapse
|
5
|
Fu L, Guldiken N, Remih K, Karl AS, Preisinger C, Strnad P. Serum/Plasma Proteome in Non-Malignant Liver Disease. Int J Mol Sci 2024; 25:2008. [PMID: 38396688 PMCID: PMC10889128 DOI: 10.3390/ijms25042008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The liver is the central metabolic organ and produces 85-90% of the proteins found in plasma. Accordingly, the plasma proteome is an attractive source of liver disease biomarkers that reflects the different cell types present in this organ, as well as the processes such as responses to acute and chronic injury or the formation of an extracellular matrix. In the first part, we summarize the biomarkers routinely used in clinical evaluations and their biological relevance in the different stages of non-malignant liver disease. Later, we describe the current proteomic approaches, including mass spectrometry and affinity-based techniques, that allow a more comprehensive assessment of the liver function but also require complex data processing. The many approaches of analysis and interpretation and their potential caveats are delineated. While these advances hold the promise to transform our understanding of liver diseases and support the development and validation of new liver-related drugs, an interdisciplinary collaboration is needed.
Collapse
Affiliation(s)
- Lei Fu
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Nurdan Guldiken
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Katharina Remih
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Anna Sophie Karl
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| | - Christian Preisinger
- Proteomics Facility, Interdisciplinary Centre for Clinical Research (IZKF), Medical School, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Pavel Strnad
- Department of Internal Medicine III, Gastroenterology, Metabolic Diseases and Intensive Care, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (L.F.); (N.G.); (K.R.); (A.S.K.)
| |
Collapse
|
6
|
Samarelli AV, Tonelli R, Raineri G, Bruzzi G, Andrisani D, Gozzi F, Marchioni A, Costantini M, Fabbiani L, Genovese F, Pinetti D, Manicardi L, Castaniere I, Masciale V, Aramini B, Tabbì L, Rizzato S, Bettelli S, Manfredini S, Dominici M, Clini E, Cerri S. Proteomic profiling of formalin-fixed paraffine-embedded tissue reveals key proteins related to lung dysfunction in idiopathic pulmonary fibrosis. Front Oncol 2024; 13:1275346. [PMID: 38322285 PMCID: PMC10844556 DOI: 10.3389/fonc.2023.1275346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/29/2023] [Indexed: 02/08/2024] Open
Abstract
Introduction Idiopathic pulmonary fibrosis (IPF) severely affects the lung leading to aberrant deposition of extracellular matrix and parenchymal stiffness with progressive functional derangement. The limited availability of fresh tissues represents one of the major limitations to study the molecular profiling of IPF lung tissue. The primary aim of this study was to explore the proteomic profiling yield of archived formalin-fixed paraffin-embedded (FFPE) specimens of IPF lung tissues. Methods We further determined the protein expression according to respiratory functional decline at the time of biopsy. The total proteins isolated from 11 FFPE samples of IPF patients compared to 3 FFPE samples from a non-fibrotic lung defined as controls, were subjected to label-free quantitative proteomic analysis by liquid chromatography-mass spectrometry (LC-MS/MS) and resulted in the detection of about 400 proteins. Results After the pairwise comparison between controls and IPF, functional enrichment analysis identified differentially expressed proteins that were involved in extracellular matrix signaling pathways, focal adhesion and transforming growth factor β (TGF-β) signaling pathways strongly associated with IPF onset and progression. Five proteins were significantly over- expressed in the lung of IPF patients with either advanced disease stage (Stage II) or impaired pulmonary function (FVC<75, DLCO<55) compared to controls; these were lymphocyte cytosolic protein 1 (LCP1), peroxiredoxin-2 (PRDX2), transgelin 2 (TAGLN2), lumican (LUM) and mimecan (OGN) that might play a key role in the fibrogenic processes. Discussion Our work showed that the analysis of FFPE samples was able to identify key proteins that might be crucial for the IPF pathogenesis. These proteins are correlated with lung carcinogenesis or involved in the immune landscape of lung cancer, thus making possible common mechanisms between lung carcinogenesis and fibrosis progression, two pathological conditions at risk for each other in the real life.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Matteo Costantini
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Luca Fabbiani
- Pathology Institute, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
- Immunohistochemistry Lab, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Filippo Genovese
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti (C.I.G.S.), University of Modena and Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Valentina Masciale
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences-Diagnostic and Specialty Medicine (DIMEC) of the Alma Mater Studiorum, University of Bologna G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Luca Tabbì
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Simone Rizzato
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Bettelli
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Samantha Manfredini
- Molecular Pathology and Predictive Medicine Unit, Modena Cancer Center, University Hospital of Modena, Modena, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
- Oncology Unit, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
- Respiratory Disease Unit, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
7
|
Jiang Y, Zhuang X, Zhang J, Li M, Du S, Tian J, Yuan Y, Ji G, Hu C. Clinical characterization and proteomic profiling of lean nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2023; 14:1171397. [PMID: 38034020 PMCID: PMC10687542 DOI: 10.3389/fendo.2023.1171397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/06/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Obesity has been historically associated with nonalcoholic fatty liver disease (NAFLD), but it can also occur in lean individuals. However, limited data is available on this special group. To investigate the clinical and proteomic characteristics of lean subjects with NAFLD, and to identify potential clinical variables and plasma proteins for diagnosing NAFLD in lean individuals, we collected clinical data from a large cohort of 2,236 subjects. Methods Diagnosis of NAFLD relied on detecting pronounced hepatic steatosis through abdominal ultrasonography. Participants were categorized into four groups based on body mass index: overweight NAFLD, overweight control, lean NAFLD, and lean control. Plasma proteomic profiling was performed on samples from 20 subjects in each group. The lean NAFLD group was compared to both lean healthy and obese NAFLD groups across all data. Results and discussion The results indicated that the lean NAFLD group exhibited intermediate metabolic profiles, falling between those of the lean healthy and overweight NAFLD groups. Proteomic profiling of plasma in lean subjects with or without NAFLD revealed 45 statistically significant changes in proteins, of which 37 showed high diagnostic value (AUC > 0.7) for lean NAFLD. These potential biomarkers primarily involved lipid metabolism, the immune and complement systems, and platelet degranulation. Furthermore, AFM, GSN, CFH, HGFAC, MMP2, and MMP9 have been previously associated with NAFLD or NAFLD-related factors such as liver damage, insulin resistance, metabolic syndromes, and extracellular homeostasis. Overall, lean individuals with NAFLD exhibit distinct clinical profiles compared to overweight individuals with NAFLD. Despite having worse metabolic profiles than their healthy counterparts, lean NAFLD patients generally experience milder systemic metabolic disturbances compared to obese NAFLD patients. Additionally, the plasma proteomic profile is significantly altered in lean NAFLD, highlighting the potential of differentially expressed proteins as valuable biomarkers or therapeutic targets for diagnosing and treating NAFLD in this population.
Collapse
Affiliation(s)
- Yuanye Jiang
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Zhuang
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengnan Du
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiyun Tian
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifu Yuan
- Department of Gastroenterology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Hu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
8
|
Qiu YY, Zhang J, Zeng FY, Zhu YZ. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Pharmacol Res 2023; 192:106786. [PMID: 37146924 DOI: 10.1016/j.phrs.2023.106786] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease phenotypes which start with simple steatosis and lipid accumulation in the hepatocytes - a typical histological lesions characteristic. It may progress to non-alcoholic steatohepatitis (NASH) that is characterized by hepatic inflammation and/or fibrosis and subsequent onset of NAFLD-related cirrhosis and hepatocellular carcinoma (HCC). Due to the central role of the liver in metabolism, NAFLD is regarded as a result of and contribution to the metabolic abnormalities seen in the metabolic syndrome. Peroxisome proliferator-activated receptors (PPARs) has three subtypes, which govern the expression of genes responsible for energy metabolism, cellular development, inflammation, and differentiation. The agonists of PPARα, such as fenofibrate and clofibrate, have been used as lipid-lowering drugs in clinical practice. Thiazolidinediones (TZDs) - ligands of PPARγ, such as rosiglitazone and pioglitazone, are also used in the treatment of type 2 diabetes (T2D) with insulin resistance (IR). Increasing evidence suggests that PPARβ/δ agonists have potential therapeutic effects in improving insulin sensitivity and lipid metabolism disorders. In addition, PPARs ligands have been considered as potential therapeutic drugs for hypertension, atherosclerosis (AS) or diabetic nephropathy. Their crucial biological roles dictate the significance of PPARs-targeting in medical research and drug discovery. Here, it reviews the biological activities, ligand selectivity and biological functions of the PPARs family, and discusses the relationship between PPARs and the pathogenesis of NAFLD and metabolic syndrome. This will open new possibilities for PPARs application in medicine, and provide a new idea for the treatment of fatty liver and related diseases.
Collapse
Affiliation(s)
- Yuan-Ye Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Jing Zhang
- University International College, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| | - Fan-Yi Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University, 24/1400 West Beijing Road, Shanghai, 200040, China.
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China; School of Pharmacy, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macau, China.
| |
Collapse
|
9
|
Zhang JJ, Shen Y, Chen XY, Jiang ML, Yuan FH, Xie SL, Zhang J, Xu F. Integrative network-based analysis on multiple Gene Expression Omnibus datasets identifies novel immune molecular markers implicated in non-alcoholic steatohepatitis. Front Endocrinol (Lausanne) 2023; 14:1115890. [PMID: 37008925 PMCID: PMC10061151 DOI: 10.3389/fendo.2023.1115890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Introduction Non-alcoholic steatohepatitis (NASH), an advanced subtype of non-alcoholic fatty liver disease (NAFLD), has becoming the most important aetiology for end-stage liver disease, such as cirrhosis and hepatocellular carcinoma. This study were designed to explore novel genes associated with NASH. Methods Here, five independent Gene Expression Omnibus (GEO) datasets were combined into a single cohort and analyzed using network biology approaches. Results 11 modules identified by weighted gene co-expression network analysis (WGCNA) showed significant association with the status of NASH. Further characterization of four gene modules of interest demonstrated that molecular pathology of NASH involves the upregulation of hub genes related to immune response, cholesterol and lipid metabolic process, extracellular matrix organization, and the downregulation of hub genes related to cellular amino acid catabolic, respectively. After DEGs enrichment analysis and module preservation analysis, the Turquoise module associated with immune response displayed a remarkably correlation with NASH status. Hub genes with high degree of connectivity in the module, including CD53, LCP1, LAPTM5, NCKAP1L, C3AR1, PLEK, FCER1G, HLA-DRA and SRGN were further verified in clinical samples and mouse model of NASH. Moreover, single-cell RNA-seq analysis showed that those key genes were expressed by distinct immune cells such as microphages, natural killer, dendritic, T and B cells. Finally, the potential transcription factors of Turquoise module were characterized, including NFKB1, STAT3, RFX5, ILF3, ELF1, SPI1, ETS1 and CEBPA, the expression of which increased with NASH progression. Discussion In conclusion, our integrative analysis will contribute to the understanding of NASH and may enable the development of potential biomarkers for NASH therapy.
Collapse
Affiliation(s)
- Jun-jie Zhang
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Man-lei Jiang
- Department of Hepatology, The Affiliated Fifth People’s Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Feng-hua Yuan
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Shui-lian Xie
- Center for Molecular Pathology, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jie Zhang
- Department of Hepatology, The Affiliated Fifth People’s Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Fei Xu
- Department of Hepatology, The Affiliated Fifth People’s Hospital of Ganzhou, Gannan Medical University, Ganzhou, China
| |
Collapse
|
10
|
Dar MA, Arafah A, Bhat KA, Khan A, Khan MS, Ali A, Ahmad SM, Rashid SM, Rehman MU. Multiomics technologies: role in disease biomarker discoveries and therapeutics. Brief Funct Genomics 2022; 22:76-96. [PMID: 35809340 DOI: 10.1093/bfgp/elac017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/21/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Medical research has been revolutionized after the publication of the full human genome. This was the major landmark that paved the way for understanding the biological functions of different macro and micro molecules. With the advent of different high-throughput technologies, biomedical research was further revolutionized. These technologies constitute genomics, transcriptomics, proteomics, metabolomics, etc. Collectively, these high-throughputs are referred to as multi-omics technologies. In the biomedical field, these omics technologies act as efficient and effective tools for disease diagnosis, management, monitoring, treatment and discovery of certain novel disease biomarkers. Genotyping arrays and other transcriptomic studies have helped us to elucidate the gene expression patterns in different biological states, i.e. healthy and diseased states. Further omics technologies such as proteomics and metabolomics have an important role in predicting the role of different biological molecules in an organism. It is because of these high throughput omics technologies that we have been able to fully understand the role of different genes, proteins, metabolites and biological pathways in a diseased condition. To understand a complex biological process, it is important to apply an integrative approach that analyses the multi-omics data in order to highlight the possible interrelationships of the involved biomolecules and their functions. Furthermore, these omics technologies offer an important opportunity to understand the information that underlies disease. In the current review, we will discuss the importance of omics technologies as promising tools to understand the role of different biomolecules in diseases such as cancer, cardiovascular diseases, neurodegenerative diseases and diabetes. SUMMARY POINTS
Collapse
|
11
|
Zhang X, Li J, Liu T, Zhao M, Liang B, Chen H, Zhang Z. Identification of Key Biomarkers and Immune Infiltration in Liver Tissue after Bariatric Surgery. DISEASE MARKERS 2022; 2022:4369329. [PMID: 35789605 PMCID: PMC9250435 DOI: 10.1155/2022/4369329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Background Few drugs are clearly available for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH); nevertheless, mounting studies have provided sufficient evidence that bariatric surgery is efficient for multiple metabolic diseases, including NAFLD and NASH, while the molecular mechanisms are still poorly understood. Methods The mRNA expression profiling of GSE48452 and GSE83452 were retrieved and obtained from the Gene Expression Omnibus (GEO) database. The limma package was employed for identifying differentially expressed genes (DEGs), followed by clusterProfiler for performing Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and GSEA software for performing GSEA analyses. The PPI network analyses were constructed using Metascape online analyses. WGCNA was also utilized to identify and verify the hub genes. CIBERSORT tools contributed to the analysis of immune cell infiltration of liver diseases. Results We identify coexpressed differential genes including 10 upregulated and 55 downregulated genes in liver tissue after bariatric surgery. GO and KEGG enrichment analyses indicated that DEGs were remarkably involved in the immune response. GSEA demonstrated that DEGs were markedly enriched in the immune response before surgery, while most were enriched in metabolism after surgery. Seven genes were screened through the MCC algorithm and KME values, including SRGN, CD53, EVI2B, MPEG1, NCKAP1L, LCP1, and TYROBP. The mRNA levels of these genes were verified in the Attie Lab Diabetes Database, and only LCP1 was found to have significant differences and correlation with certain immune cells. Conclusion Our knowledge of the mechanisms by which bariatric surgery benefits the liver and the discovery of LCP1 is expected to serve as potential biomarkers or therapeutic targets for NAFLD and NASH.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Pediatrics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingxin Li
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Institute of Antibody Engineering, Southern Medical University, Guangzhou, China
| | - Min Zhao
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Baozhu Liang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hong Chen
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhen Zhang
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
13
|
Rosso N, Stephenson AM, Giraudi PJ, Tiribelli C. Diagnostic management of nonalcoholic fatty liver disease: a transformational period in the development of diagnostic and predictive tools-a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:727. [PMID: 33987425 PMCID: PMC8106012 DOI: 10.21037/atm-20-4723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
NAFLD is an emerging healthcare epidemic that is causing predictable adverse consequences for healthcare systems, societies and individuals. Whilst NAFLD is recognized as a multi-system disease with compound pathways that are both benign and pernicious in their unfolding; NASH is generally understood as a deleterious follow-on condition with path-specific tendencies that progress to cirrhosis, HCC and liver transplantation. Recent evidence is beginning to challenge this interpretation demanding more attention to the personalized nature of the disease and its pathogenesis across multiple different cohorts. This means that we need better diagnostic and prognostic tools not only to capture those 'at risk' disease phenotypes; but for better stratification and monitoring of patients according to their treatment strategies. With the advent of pipeline therapies for NASH underway, the medical profession looks to adopt more accurate non-invasive diagnostic tools that can help to delineate and eliminate NASH histology. This review looks at the search for the killer application revealing this particular moment in time as a transformational period; one that is pushing the boundaries of technology to integrate diverse panels of species through sensitive profiling and multi-omics approaches that cast wide, yet powerful diagnostic nets that have the potential to elucidate pathway specific biomarkers that are personalized and predictable.
Collapse
Affiliation(s)
- Natalia Rosso
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| | - Adam M Stephenson
- Helena Biosciences, Queensway South, Team Valley Trading Estate, Gateshead, UK
| | - Pablo J Giraudi
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, ONLUS Area Science Park Basovizza, Trieste, Italy
| |
Collapse
|
14
|
Kurdiova T, Balaz M, Kovanicova Z, Zemkova E, Kuzma M, Belan V, Payer J, Gasperikova D, Dieplinger H, Ukropcova B, Ukropec J. Serum Afamin a Novel Marker of Increased Hepatic Lipid Content. Front Endocrinol (Lausanne) 2021; 12:670425. [PMID: 34603196 PMCID: PMC8481912 DOI: 10.3389/fendo.2021.670425] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 08/20/2021] [Indexed: 12/26/2022] Open
Abstract
AIM Afamin is a liver-produced glycoprotein, a potential early marker of metabolic syndrome. Here we investigated regulation of afamin in a course of the metabolic disease development and in response to 3-month exercise intervention. METHODS We measured whole-body insulin sensitivity (euglycemic hyperinsulinemic clamp), glucose tolerance, abdominal adiposity, hepatic lipid content (magnetic resonance imaging/spectroscopy), habitual physical activity (accelerometers) and serum afamin (enzyme-linked immunosorbent assay) in 71 middle-aged men with obesity, prediabetes and newly diagnosed type 2 diabetes. Effects of 3-month exercise were investigated in 22 overweight-to-obese middle-aged individuals (16M/6F). RESULTS Prediabetes and type 2 diabetes, but not obesity, were associated with increased serum afamin (p<0.001). Afamin correlated positively with hepatic lipids, fatty liver index and liver damage markers; with parameters of adiposity (waist circumference, %body fat, adipocyte diameter) and insulin resistance (fasting insulin, C-peptide, HOMA-IR; p<0.001 all). Moreover, afamin negatively correlated with whole-body insulin sensitivity (M-value/Insulin, p<0.001). Hepatic lipids and fasting insulinemia were the most important predictors of serum afamin, explaining >63% of its variability. Exercise-related changes in afamin were paralleled by reciprocal changes in insulinemia, insulin resistance and visceral adiposity. No significant change in hepatic lipid content was observed. CONCLUSIONS Subjects with prediabetes and type 2 diabetes had the highest serum afamin levels. Afamin was more tightly related to hepatic lipid accumulation, liver damage and insulin resistance than to obesity.
Collapse
Affiliation(s)
- Timea Kurdiova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Balaz
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Kovanicova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Erika Zemkova
- Department of Biological and Medical Sciences, Faculty of Physical Education and Sports, Comenius University, Bratislava, Slovakia
| | - Martin Kuzma
- 5 Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | | | - Juraj Payer
- 5 Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Daniela Gasperikova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Hans Dieplinger
- Department of Genetics and Pharmacology, Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Jozef Ukropec, ; Hans Dieplinger,
| | - Barbara Ukropcova
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Clinical Pathophysiology, Faculty of Medicine, Institute of Pathophysiology, Comenius University, Bratislava, Slovakia
| | - Jozef Ukropec
- Department of Metabolic Disease Research, Biomedical Research Center, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- *Correspondence: Jozef Ukropec, ; Hans Dieplinger,
| |
Collapse
|
15
|
Friesen CS, Hosey-Cojocari C, Chan SS, Csanaky IL, Wagner JB, Sweeney BR, Friesen A, Fraser JD, Shakhnovich V. Efficacy of Weight Reduction on Pediatric Nonalcoholic Fatty Liver Disease: Opportunities to Improve Treatment Outcomes Through Pharmacotherapy. Front Endocrinol (Lausanne) 2021; 12:663351. [PMID: 33927697 PMCID: PMC8076784 DOI: 10.3389/fendo.2021.663351] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is the single greatest risk factor for nonalcoholic fatty liver disease (NAFLD). Without intervention, most pediatric patients with NAFLD continue to gain excessive weight, making early, effective weight loss intervention key for disease treatment and prevention of NAFLD progression. Unfortunately, outside of a closely monitored research setting, which is not representative of the real world, lifestyle modification success for weight loss in children is low. Bariatric surgery, though effective, is invasive and can worsen NAFLD postoperatively. Thus, there is an evolving and underutilized role for pharmacotherapy in children, both for weight reduction and NAFLD management. In this perspective article, we provide an overview of the efficacy of weight reduction on pediatric NAFLD treatment, discuss the pros and cons of currently approved pharmacotherapy options, as well as drugs commonly used off-label for weight reduction in children and adolescents. We also highlight gaps in, and opportunities for, streamlining obesity trials to include NAFLD assessment as a valuable, secondary, therapeutic outcome measure, which may aid drug repurposing. Finally, we describe the already available, and emerging, minimally-invasive biomarkers of NAFLD that could offer a safe and convenient alternative to liver biopsy in pediatric obesity and NAFLD trials.
Collapse
Affiliation(s)
- Chance S. Friesen
- University of Kansas School of Medicine, Kansas City, KS, United States
| | | | - Sherwin S. Chan
- Children’s Mercy Kansas City, Kansas City, MO, United States
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Iván L. Csanaky
- Children’s Mercy Kansas City, Kansas City, MO, United States
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- University of Kansas Medical Center, Kansas City, KS, United States
| | - Jonathan B. Wagner
- Children’s Mercy Kansas City, Kansas City, MO, United States
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Brooke R. Sweeney
- Children’s Mercy Kansas City, Kansas City, MO, United States
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- Center for Children’s Healthy Lifestyles & Nutrition, Kansas City, MO, United States
| | - Alec Friesen
- University of Kansas School of Medicine, Kansas City, KS, United States
| | - Jason D. Fraser
- Children’s Mercy Kansas City, Kansas City, MO, United States
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
| | - Valentina Shakhnovich
- Children’s Mercy Kansas City, Kansas City, MO, United States
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, United States
- University of Kansas Medical Center, Kansas City, KS, United States
- Center for Children’s Healthy Lifestyles & Nutrition, Kansas City, MO, United States
- *Correspondence: Valentina Shakhnovich,
| |
Collapse
|
16
|
Rosique-Oramas D, Martínez-Castillo M, Raya A, Medina-Ávila Z, Aragón F, Limón-Castillo J, Hernández-Barragán A, Santoyo A, Montalvo-Javé E, Pérez-Hernández J, Higuera-de la Tijera F, Torre A, Kershenobich D, Gutiérrez-Reyes G. Production of insulin-like growth factor-binding proteins during the development of hepatic fibrosis due to chronic hepatitis C. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2020. [DOI: 10.1016/j.rgmxen.2019.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
17
|
Perakakis N, Stefanakis K, Mantzoros CS. The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease. Metabolism 2020; 111S:154320. [PMID: 32712221 PMCID: PMC7377759 DOI: 10.1016/j.metabol.2020.154320] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA..
| | - Konstantinos Stefanakis
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Christos S Mantzoros
- Department of Internal Medicine, Boston VA Healthcare system and Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
18
|
Małecki P, Tracz J, Łuczak M, Figlerowicz M, Mazur-Melewska K, Służewski W, Mania A. Serum proteome assessment in nonalcoholic fatty liver disease in children: a preliminary study. Expert Rev Proteomics 2020; 17:623-632. [PMID: 32921203 DOI: 10.1080/14789450.2020.1810020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Nonalcoholic fatty disease (NAFLD) affects 3-10% of the pediatric population, making it the most common chronic liver disease among children. The aim of the study is to identify potential biomarkers enabling the diagnosis of NAFLD and monitoring the course of the disease. METHODS Proteome analysis was performed in a group of 30 patients (19 boys and 11 girls) in total, of whom 16 children had previously diagnosed NAFLD based on the abdominal ultrasound after excluding other diseases of this organ. RESULTS A total of 297 proteins have been identified. Thirty-seven proteins (responsible for inflammation, stress response, and regulation of this process) differentiating both experimental groups were identified. Up-regulated proteins included afamin, retinol-binding protein-4, complement components, and hemopexin; while serum protease inhibitors, clusterin, immunoglobulin chains, and vitamin D binding protein were found in the down-regulated group. The correlation between selected proteins and indicators of noninvasive assessment of liver fibrosis (APRI, FIB-4) as well as differences between the serum proteome of patients with normal weight, overweight, and obesity were also assessed. CONCLUSION The plasma protein profile is significantly altered in nonalcoholic liver disease in children and may prove to be a valuable source of biomarkers to evaluate the extent of liver disease.
Collapse
Affiliation(s)
- Paweł Małecki
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| | - Joanna Tracz
- Institute of Bioorganic Chemistry Polish Academy of Sciences , Poznań, Poland
| | - Magdalena Łuczak
- Institute of Bioorganic Chemistry Polish Academy of Sciences , Poznań, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| | | | - Wojciech Służewski
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| | - Anna Mania
- Department of Infectious Diseases, Poznan University of Medical Sciences , Poznan, Poland
| |
Collapse
|
19
|
Polyzos SA, Perakakis N, Boutari C, Kountouras J, Ghaly W, Anastasilakis AD, Karagiannis A, Mantzoros CS. Targeted Analysis of Three Hormonal Systems Identifies Molecules Associated with the Presence and Severity of NAFLD. J Clin Endocrinol Metab 2020; 105:5613670. [PMID: 31690932 PMCID: PMC7112980 DOI: 10.1210/clinem/dgz172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/05/2019] [Indexed: 01/22/2023]
Abstract
AIMS To investigate circulating levels and liver gene expression of 3 hormonal pathways associated with obesity, insulin resistance, and inflammation to identify leads towards potential diagnostic markers and therapeutic targets in patients with nonalcoholic fatty liver disease (NAFLD). METHODS We compared circulating levels of (1) proglucagon-derived hormones (glucagon-like peptide [GLP]-1, GLP-2, glicentin, oxyntomodulin, glucagon, major proglucagon fragment [MPGF]), (2) follistatins-activins (follistatin-like [FSTL]3, activin B), (3) IGF axis (insulin-like growth factor [IGF]-1, total and intact IGF binding protein [IGFBP]-3 and IGFBP-4, and pregnancy-associated plasma protein [PAPP]-A) in 2 studies: (1) 18 individuals with early stage NAFLD versus 14 controls (study 1; early NAFLD study) and in (2) 31 individuals with biopsy proven NAFLD (15 with simple steatosis [SS] and 16 with nonalcoholic steatohepatitis [NASH]), vs 50 controls (24 lean and 26 obese) (study 2). Liver gene expression was assessed in 22 subjects (12 controls, 5 NASH, 5 NASH-related cirrhosis). RESULTS Patients in early stages of NAFLD demonstrate higher fasting MPGF and lower incremental increase of glicentin during oral glucose tolerance test than controls. In more advanced stages, FSTL3 levels are higher in NASH than simple steatosis and, within NAFLD patients, in those with more severe lobular and portal inflammation. The IGF-1/intact IGFBP-3 ratio is lower in patients with liver fibrosis. Genes encoding follistatin, activin A, activin B, and the IGF-1 receptor are higher in NASH. CONCLUSION MPGF and glicentin may be involved in early stages of NAFLD, whereas FSTL3 and IGF-1/intact IGFBP3 in the progression to NASH and liver fibrosis respectively, suggesting potential as diagnostic markers or therapeutic targets.
Collapse
Affiliation(s)
- Stergios A Polyzos
- First Department of Pharmacology, Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Chrysoula Boutari
- Second Propaedeutic Department of Internal Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki Greece
| | - Jannis Kountouras
- Second Medical Clinic, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Wael Ghaly
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Physiology, Fayoum University, Fayoum, Egypt
| | | | - Asterios Karagiannis
- Second Propaedeutic Department of Internal Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki Greece
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Correspondence and Reprint Requests: Christos S. Mantzoros, 330 Brookline Avenue, East campus, Beth Israel Deaconess Medical Center, Stoneman Building, ST-820 Boston, MA 02215, USA. E-mail:
| |
Collapse
|
20
|
Yuan X, Sun Y, Cheng Q, Hu K, Ye J, Zhao Y, Wu J, Shao X, Fang L, Ding Y, Sun X, Shi X, Xue B. Proteomic analysis to identify differentially expressed proteins between subjects with metabolic healthy obesity and non-alcoholic fatty liver disease. J Proteomics 2020; 221:103683. [PMID: 32058041 DOI: 10.1016/j.jprot.2020.103683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/22/2020] [Accepted: 02/08/2020] [Indexed: 12/26/2022]
Abstract
Obese subjects with non-alcoholic fatty liver disease (NAFLD) and considered metabolically healthy have not been well differentiated. In this study, obese subjects were divided into metabolic healthy obesity (MHO) and NAFLD groups. Liver tissues were sampled from these two types of subjects undergoing bariatric surgery, and proteins in the liver tissues that expressed differently between the two groups of subjects were identified by Tandem Mass Tags (TMT) assay. Compared with the MHO group, 132 proteins were found to be upregulated and 84 proteins were found to be downregulated (mainly localized in mitochondria) in NAFLD group. The KEGG pathway analysis showed that significantly upregulated metabolic pathways include PPAR signaling, ECM-receptor interaction and oxidative phosphorylation was significantly downregulated. The GO analysis revealed that upregulated proteins were involved in extracellular structure organization, extracellular matrix organization and downregulated proteins took part in the oxidation-reduction process and so on. FBLN5 and DHRS2 were further validated by Western blot, immunohistochemistry and ELISA. All results demonstrate that FBLN5 expression was significantly upregulated but DHRS2 was significantly downregulated. SIGNIFICANCE: The variation between MHO and NAFLD was studied by mass spectroscopy to evaluate the mechanism with which MHO subjects resist the harmful effects induced by obesity.
Collapse
Affiliation(s)
- Xianwen Yuan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Sun
- Medical School of Southeast University, Nanjing Drum Tower Hospital, Nanjing, China
| | - Qi Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, China
| | - Kai Hu
- Department of Ophthalmology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Juan Ye
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yinjuan Zhao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xitai Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Patel K, Sebastiani G. Limitations of non-invasive tests for assessment of liver fibrosis. JHEP Rep 2020; 2:100067. [PMID: 32118201 PMCID: PMC7047178 DOI: 10.1016/j.jhepr.2020.100067] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023] Open
Abstract
The diagnostic assessment of liver injury is an important step in the management of patients with chronic liver disease (CLD). Although liver biopsy is the reference standard for the assessment of necroinflammation and fibrosis, the inherent limitations of an invasive procedure, and need for repeat sampling, have led to the development of several non-invasive tests (NITs) as alternatives to liver biopsy. Such non-invasive approaches mostly include biological (serum biomarker algorithms) or physical (imaging assessment of tissue stiffness) assessments. However, currently available NITs have several limitations, such as variability, inadequate accuracy and risk factors for error, while the development of a newer generation of biomarkers for fibrosis may be limited by the sampling error inherent to the reference standard. Many of the current NITs were initially developed to diagnose significant fibrosis in chronic hepatitis C, subsequently refined for the diagnosis of advanced fibrosis in patients with non-alcoholic fatty liver disease, and further adapted for prognostication in CLD. An important consideration is that despite their increased use in clinical practice, these NITs were not designed to reflect the dynamic process of fibrogenesis, differentiate between adjacent disease stages, diagnose non-alcoholic steatohepatitis, or follow longitudinal changes in fibrosis or disease activity caused by natural history or therapeutic intervention. Understanding the strengths and limitations of these NITs will allow for more judicious interpretation in the clinical context, where NITs should be viewed as complementary to, rather than as a replacement for, liver biopsy.
Collapse
Key Words
- AGA, American Gastroenterology Association
- ALT, alanine aminotransferase
- APRI, AST-platelet ratio index
- AST, aspartate aminotransferase
- AUC, area under the curve
- BMI, body mass index
- Biomarkers
- CAP, controlled attenuation parameter
- CHB, chronic hepatitis B
- CHC, chronic hepatitis C
- CLD, chronic liver disease
- CPA, collagen proportionate area
- DAA, direct-acting antiviral
- ELF, enhanced liver fibrosis
- Elastography
- FIB-4, fibrosis-4
- FLIP, fatty liver inhibition of progression
- HCC, hepatocellular carcinoma
- IFN, interferon
- LSM, liver stiffness measure
- Liver biopsy
- MR, magnetic resonance
- MRE, magnetic resonance elastography
- NAFLD, non-alcoholic fatty liver disease
- NFS, NAFLD fibrosis score
- NITs, non-invasive tests
- Non-alcoholic fatty liver disease
- SVR, sustained virologic response
- US, ultrasound
- VCTE, vibration-controlled transient elastography
- Viral hepatitis
Collapse
Affiliation(s)
- Keyur Patel
- Division of Gastroenterology, University Health Network Toronto, Toronto General Hospital, Toronto, ON, Canada
- Corresponding author. Address: Division of Gastroenterology, University of Toronto Health Network, Toronto General Hospital, 200 Elizabeth Street, 9EN, Toronto, ON M5G 2C4.
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
22
|
Rosique-Oramas D, Martínez-Castillo M, Raya A, Medina-Ávila Z, Aragón F, Limón-Castillo J, Hernández-Barragán A, Santoyo A, Montalvo-Javé E, Pérez-Hernández JL, Higuera-de la Tijera F, Torre A, Kershenobich D, Gutiérrez-Reyes G. Production of insulin-like growth factor-binding proteins during the development of hepatic fibrosis due to chronic hepatitis C. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2019; 85:390-398. [PMID: 31740166 DOI: 10.1016/j.rgmx.2019.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/10/2019] [Indexed: 02/05/2023]
Abstract
INTRODUCTION AND AIMS Insulin-like growth factor 1 is modulated by the insulin-like growth factor-binding proteins (IGFBPs) that are synthesized in the liver. The aim of the present study was to evaluate the concentrations of IGFBPs 1-7 in patients with chronic hepatitis C and study their association with fibrosis stage. PATIENTS AND METHODS A prospective, cross-sectional study was conducted that included patients with chronic hepatitis C. The stages of fibrosis were determined through FibroTest and FibroScan and the patients were compared with a control group. Serum levels of IGFBPs 1-7 were quantified through multiple suspension arrays. The Kruskal-Wallis test, Mann-Whitney U test, Spearman's correlation, and ROC curves were used for the statistical analysis. RESULTS Upon comparing the patients and controls, the highest concentrations were found in IGFBPs 1, 2, 4, and 7 (p=0.02, p=0.002, p=0.008, and p<0.001, respectively). IGFBP-3 levels had a tendency to be lower in the patients (p=0.066), whereas values were similar between patients and controls for IGFBP-5 and 6 (p=0.786 and p=0.244, respectively). Of the seven IGFBPs, IGFBP-3 concentrations were the highest. There were significant differences between fibrosis stages for IGFBP-5 and IGFBP-7. CONCLUSION IGFBPs play a relevant role in the fibrotic process in liver damage. IGFBP-7, in particular, differentiates fibrosis stages, making it a potential serum biomarker.
Collapse
Affiliation(s)
- D Rosique-Oramas
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - M Martínez-Castillo
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - A Raya
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - Z Medina-Ávila
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - F Aragón
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - J Limón-Castillo
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - A Hernández-Barragán
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - A Santoyo
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México
| | - E Montalvo-Javé
- Clínica Hepato-Pancreato-Biliar, Servicio de Cirugía General, Hospital General de México Dr. Eduardo Liceaga, Departamento de Cirugía, Facultad de Medicina, UNAM, Ciudad de México, México
| | - J L Pérez-Hernández
- Departamento de Gastroenterología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - F Higuera-de la Tijera
- Departamento de Gastroenterología, Hospital General de México Dr. Eduardo Liceaga, Ciudad de México, México
| | - A Torre
- Unidad de Hepatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - D Kershenobich
- Unidad de Hepatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - G Gutiérrez-Reyes
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM), Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM, Ciudad de México, México.
| |
Collapse
|
23
|
Younossi ZM, Karrar A, Pierobon M, Birerdinc A, Stepanova M, Abdelatif D, Younoszai Z, Jeffers T, Felix S, Jeiran K, Hodge A, Zhou W, Monge F, Alaparthi L, Chandhoke V, Goodman ZD, Petricoin EF. An exploratory study examining how nano-liquid chromatography-mass spectrometry and phosphoproteomics can differentiate patients with advanced fibrosis and higher percentage collagen in non-alcoholic fatty liver disease. BMC Med 2018; 16:170. [PMID: 30205811 PMCID: PMC6134795 DOI: 10.1186/s12916-018-1136-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is among the leading causes of liver disease worldwide. It is increasingly recognized that the phenotype of NASH may involve a number of different pathways, of which each could become important therapeutic targets. The aim of this study is to use high resolution mass spectrometry (MS) and phosphoproteomics techniques to assess the serum proteome and hepatic phosphoproteome in subjects with NASH-related fibrosis. METHODS Sixty-seven biopsy-proven NAFLD subjects with frozen sera and liver tissue were included. Reverse phase protein microarray was used to quantify the phosphorylation of key signaling proteins in liver and nano-liquid chromatography (LC)-MS was used to sequence target biomarkers in the serum. An image analysis algorithm was used to quantify the percentage of collagen (% collagen) using computer-assisted morphometry. Using multiple regression models, serum proteomes and phosphorylated hepatic proteins that were independently (p ≤ 0.05) associated with advanced fibrosis (stage ≥ 2) and higher % collagen were assessed. RESULTS Phosphorylated signaling pathways in the liver revealed that apoptosis signal-regulating kinase 1, mitogen-activated protein kinase (ASK1-MAPK pathway involving ASK1 S38 (p < 0.02) and p38 MAPK (p = 0.0002)) activated by the inflammatory cytokine interleukin (IL-10) (p < 0.001), were independently associated with higher % collagen. LC-MS data revealed that serum alpha-2 macroglobulin (α2M) (p = 0.0004) and coagulation factor V (p = 0.0127) were independently associated with higher % hepatic collagen. CONCLUSIONS Simultaneous profiling of serum proteome and hepatic phosphoproteome reveals that the activation of ASK1 S38, p38 MAPK in the liver, and serum α2M and coagulation factor V are independently associated with hepatic collagen deposition in patients with NASH. These data suggest the role of these pathways in the pathogenesis of NASH-related fibrosis as a potential therapeutic target.
Collapse
Affiliation(s)
- Zobair M Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA. .,Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA. .,Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA.
| | - Azza Karrar
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA.,Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aybike Birerdinc
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA
| | - Maria Stepanova
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA.,Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Dinan Abdelatif
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA.,Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Zahra Younoszai
- Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Thomas Jeffers
- Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Sean Felix
- Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Kianoush Jeiran
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Alex Hodge
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Fanny Monge
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA.,Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Lakshmi Alaparthi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA.,Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Vikas Chandhoke
- Department of Medicine, Inova Fairfax Hospital, Falls Church, VA, USA.,Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Zachary D Goodman
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, 3300 Gallows Rd., Falls Church, VA, USA.,Center for Liver Diseases, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University, Manassas, VA, USA
| |
Collapse
|
24
|
Yoshida Y, Furukawa JI, Naito S, Higashino K, Numata Y, Shinohara Y. Identification of unique glycoisoforms of vitamin D-binding protein and haptoglobin as biomarker candidates in hepatocarcinogenesis of STAM mice. Glycoconj J 2018; 35:467-476. [DOI: 10.1007/s10719-018-9838-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/02/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
|
25
|
Moulder R, Bhosale SD, Goodlett DR, Lahesmaa R. Analysis of the plasma proteome using iTRAQ and TMT-based Isobaric labeling. MASS SPECTROMETRY REVIEWS 2018; 37:583-606. [PMID: 29120501 DOI: 10.1002/mas.21550] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/26/2017] [Indexed: 05/23/2023]
Abstract
Over the past decade, chemical labeling with isobaric tandem mass tags, such as isobaric tags for relative and absolute quantification reagents (iTRAQ) and tandem mass tag (TMT) reagents, has been employed in a wide range of different clinically orientated serum and plasma proteomics studies. In this review the scope of these works is presented with attention to the areas of research, methods employed and performance limitations. These applications have covered a wide range of diseases, disorders and infections, and have implemented a variety of different preparative and mass spectrometric approaches. In contrast to earlier works, which struggled to quantify more than a few hundred proteins, increasingly these studies have provided deeper insight into the plasma proteome extending the numbers of quantified proteins to over a thousand.
Collapse
Affiliation(s)
- Robert Moulder
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Santosh D Bhosale
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
26
|
Chu X, Jin Q, Chen H, Wood GC, Petrick A, Strodel W, Gabrielsen J, Benotti P, Mirshahi T, Carey DJ, Still CD, DiStefano JK, Gerhard GS. CCL20 is up-regulated in non-alcoholic fatty liver disease fibrosis and is produced by hepatic stellate cells in response to fatty acid loading. J Transl Med 2018; 16:108. [PMID: 29690903 PMCID: PMC5937820 DOI: 10.1186/s12967-018-1490-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 04/18/2018] [Indexed: 02/06/2023] Open
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) is a prevalent complication of extreme obesity. Loading of the liver with fat can progress to inflammation and fibrosis including cirrhosis. The molecular factors involved in the progression from simple steatosis to fibrosis remain poorly understood. Methods Gene expression profiling using microarray, PCR array, and RNA sequencing was performed on RNA from liver biopsy tissue from patients with extreme obesity. Patients were grouped based on histological findings including normal liver histology with no steatosis, lobular inflammation, or fibrosis, and grades 1, 2, 3, and 4 fibrosis with coexistent steatosis and lobular inflammation. Validation of expression was conducted using quantitative PCR. Serum analysis was performed using ELISA. Expression analysis of hepatocytes and hepatic stellate cells in response to lipid loading were conducted in vitro using quantitative PCR and ELISA. Results Three orthogonal methods to profile human liver biopsy RNA each identified the chemokine CCL20 (CC chemokine ligand 20 or MIP-3 alpha) gene as one of the most up-regulated transcripts in NAFLD fibrosis relative to normal histology, validated in a replication group. CCL20 protein levels in serum measured in 224 NAFLD patients were increased in severe fibrosis (p < 0.001), with moderate correlation of hepatic transcript levels and serum levels. Expression of CCL20, but not its cognate receptor CC chemokine receptor 6, was significantly (p < 0.001) increased in response to fatty acid loading in LX-2 hepatic stellate cells, with relative increases greater than those in HepG2 hepatocyte cells. Conclusions These results suggest that expression of CCL20, an important inflammatory mediator, is increased in NAFLD fibrosis. CCL20 serves as a chemoattractant molecule for immature dendritic cells, which have been shown to produce many of the inflammatory molecules that mediate liver fibrosis. These data also point to hepatic stellate cells as a key cell type that may respond to lipid loading of the liver. Electronic supplementary material The online version of this article (10.1186/s12967-018-1490-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Chu
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Qunyan Jin
- Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Hui Chen
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - G Craig Wood
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Anthony Petrick
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - William Strodel
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Jon Gabrielsen
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Peter Benotti
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Tooraj Mirshahi
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - David J Carey
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | - Christopher D Still
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA
| | | | - Glenn S Gerhard
- Geisinger Obesity Research Institute, Geisinger Clinic, Danville, PA, 17822, USA. .,Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine at Temple University, 960 Medical Education and Research Building (MERB), 3500 N. Broad Street, Philadelphia, PA, 19140, USA.
| |
Collapse
|
27
|
Ilan Y. Analogy between non-alcoholic steatohepatitis (NASH) and hypertension: a stepwise patient-tailored approach for NASH treatment. Ann Gastroenterol 2018; 31:296-304. [PMID: 29720855 PMCID: PMC5924852 DOI: 10.20524/aog.2018.0248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/24/2018] [Indexed: 01/18/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a common liver disorder worldwide. Although there has been improvement in our understanding of the natural history and pathogenesis of the disease, there is still no approved therapy for NASH. NASH shares many similarities with primary hypertension, in that both are extremely common disorders that can easily lead to serious complications if left untreated. Both conditions are viewed as "silent killers", because the disease can progress over a period of time prior to the occurrence of potentially deadly outcomes. While attempts to find the "miracle pill" for NASH are unrealistic, we can make an analogy with the "stepwise combination" approach developed over the last few decades for the treatment of hypertension. In the present review, we summarize some of the similarities in the concepts that underlie NASH and hypertension. The development of a stepwise patient-tailored method for the treatment of NASH is presented.
Collapse
Affiliation(s)
- Yaron Ilan
- Gastroenterology and Liver Units, Department of Medicine, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
28
|
Giraudi PJ, Gambaro SE, Ornelas Arroyo S, Chackelevicius CM, Giuricin M, Silvestri M, Macor D, Crocé LS, Bonazza D, Soardo G, de Manzini N, Zanconati F, Tiribelli C, Palmisano S, Rosso N. A simple in silico strategy identifies candidate biomarkers for the diagnosis of liver fibrosis in morbidly obese subjects. Liver Int 2018. [PMID: 28650518 DOI: 10.1111/liv.13505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disorder, tightly associated with obesity. The histological spectrum of the disease ranges from simple steatosis to steatohepatitis, with different stages of fibrosis, and fibrosis stage is the most significant predictor of mortality in NAFLD. Liver biopsy continues to be the gold standard for its diagnosis and reliable non-invasive diagnostic tools are unavailable. We investigated the accuracy of candidate proteins, identified by an in silico approach, as biomarkers for diagnosis of fibrosis. METHODS Seventy-one morbidly obese (MO) subjects with biopsy-proven NAFLD were enrolled, and the cohort was subdivided according to minimal (F0/F1) or moderate (F2/F3) fibrosis. The plasmatic level of CD44 antigen (CD44), secreted protein acidic and rich in cysteine (SPARC), epidermal growth factor receptor (EGFR) and insulin-like growth factor 2 (IGF2) were determined by ELISA. Significant associations between plasmatic levels and histological fibrosis were determined by correlation analysis and the diagnostic accuracy by the area under receiver operating characteristic curves (AUROC). RESULTS Eighty-two percentage of the subjects had F0/F1 and 18% with F2/F3 fibrosis. Plasmatic levels of IGF2, EGFR and their ratio (EGFR/IGF2) were associated with liver fibrosis, correlating inversely for IGF2 (P < .006) and directly (P < .018; P < .0001) for EGFR and EGFR/IGF2 respectively. The IGF2 marker had the best diagnostic accuracy for moderate fibrosis (AUROC 0.83), followed by EGFR/IGF2 ratio (AUROC 0.79) and EGFR (AUROC 0.71). CONCLUSIONS Our study supports the potential utility of IGF2 and EGFR as non-invasive diagnostic biomarkers for liver fibrosis in morbidly obese subjects.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Fondazione Italiana Fegato, Centro Studi Fegato, Trieste, Italy
| | | | | | | | - Michela Giuricin
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy
| | - Marta Silvestri
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy.,Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy
| | - Daniele Macor
- Clinica Patologie del Fegato, Dip. Medicina Ospedale Cattinara, Università degli Studi di Trieste, Trieste, Italy
| | - Lory S Crocé
- Clinica Patologie del Fegato, Dip. Medicina Ospedale Cattinara, Università degli Studi di Trieste, Trieste, Italy
| | - Deborah Bonazza
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy.,School of Anatomic Pathology, University of Udine and Trieste, Trieste, Italy
| | - Giorgio Soardo
- Dipartimento di Scienze Mediche Sperimentali e Cliniche, Azienda Ospedaliero Universitaria Santa Maria della Misericordia di Udine, Trieste, Italy
| | - Nicolò de Manzini
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy.,Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy
| | - Fabrizio Zanconati
- Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy.,School of Anatomic Pathology, University of Udine and Trieste, Trieste, Italy
| | | | - Silvia Palmisano
- Chirurgia Generale, Ospedale di Cattinara, Università degli Studi di Trieste, Trieste, Italy.,Dipartimento Universitario Clinico di Scienze Mediche Chirurgiche e della Salute, Università degli Studi di Trieste, Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato, Centro Studi Fegato, Trieste, Italy
| |
Collapse
|
29
|
van Breda SG, Claessen SM, van Herwijnen M, Theunissen DH, Jennen DG, de Kok TM, Kleinjans JC. Integrative omics data analyses of repeated dose toxicity of valproic acid in vitro reveal new mechanisms of steatosis induction. Toxicology 2018; 393:160-170. [DOI: 10.1016/j.tox.2017.11.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/09/2017] [Indexed: 02/07/2023]
|
30
|
Luger M, Kruschitz R, Kienbacher C, Traussnigg S, Langer FB, Prager G, Schindler K, Kallay E, Hoppichler F, Trauner M, Krebs M, Marculescu R, Ludvik B. Vitamin D 3 Loading Is Superior to Conventional Supplementation After Weight Loss Surgery in Vitamin D-Deficient Morbidly Obese Patients: a Double-Blind Randomized Placebo-Controlled Trial. Obes Surg 2017; 27:1196-1207. [PMID: 27837387 PMCID: PMC5403855 DOI: 10.1007/s11695-016-2437-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Bariatric patients often suffer from vitamin D deficiency (VDD), and both, morbid obesity and VDD, are related to non-alcoholic fatty liver disease. However, limited data are available regarding best strategies for treating VDD, particularly, in bariatric patients undergoing omega-loop gastric bypass (OLGB). Therefore, we examined the efficacy and safety of a forced vitamin D dosing regimen and intervention effects in liver fibrotic patients. Methods In this double-blind, randomized, placebo-controlled trial, 50 vitamin D-deficient patients undergoing OLGB were randomly assigned to receive, in the first month postoperatively, oral vitamin D3 (≤3 doses of 100,000 IU; intervention group) or placebo as loading dose (control group) with subsequent maintenance dose (3420 IU/day) in both groups until 6-month visit. Results Compared with control group, higher increase of 25(OH)D (67.9 (21.1) vs. 55.7 nmol/L (21.1); p = 0.049) with lower prevalence of secondary hyperparathyroidism (10 vs. 24 %; p = 0.045) was observed in intervention group. No (serious) adverse events related to study medication were found. The loading dose regimen was more effective in increasing 25(OH)D in patients with significant liver fibrosis while this was not the case for conventional supplementation (placebo with maintenance dose) (71.5 (20.5) vs. 22.5 nmol/L (13.8); p = 0.022; n = 14). Conclusions Our findings indicate that a high vitamin D3 loading dose, in the first month postoperatively, with subsequent maintenance dose is effective and safe in achieving higher vitamin D concentrations in OLGB patients. Unexpectedly, it is more effective in patients with significant liver fibrosis which is of potentially high clinical relevance and requires further investigation. Electronic supplementary material The online version of this article (doi:10.1007/s11695-016-2437-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Luger
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Special Institute for Preventive Cardiology and Nutrition-SIPCAN Save Your Life, Salzburg, Austria
- Institute of Social Medicine, Centre for Public Health, Medical University of Vienna, Vienna, Austria
| | - Renate Kruschitz
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Medicine 1 and Karl Landsteiner Institute for Obesity and Metabolic Diseases, Rudolfstiftung Hospital, Juchgasse 25, 1030 Vienna, Austria
| | - Christian Kienbacher
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stefan Traussnigg
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Felix B. Langer
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Gerhard Prager
- Division of General Surgery, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Karin Schindler
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Enikö Kallay
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Friedrich Hoppichler
- Special Institute for Preventive Cardiology and Nutrition-SIPCAN Save Your Life, Salzburg, Austria
- Division of Internal Medicine, Krankenhaus der Barmherzigen Brüder Salzburg, Salzburg, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Bernhard Ludvik
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Medicine 1 and Karl Landsteiner Institute for Obesity and Metabolic Diseases, Rudolfstiftung Hospital, Juchgasse 25, 1030 Vienna, Austria
| |
Collapse
|
31
|
Wattacheril J, Rose KL, Hill S, Lanciault C, Murray CR, Washington K, Williams B, English W, Spann M, Clements R, Abumrad N, Flynn CR. Non-alcoholic fatty liver disease phosphoproteomics: A functional piece of the precision puzzle. Hepatol Res 2017; 47:1469-1483. [PMID: 28258704 PMCID: PMC5583035 DOI: 10.1111/hepr.12885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 02/28/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Molecular signaling events associated with the necroinflammatory changes in nonalcoholic steatohepatitis (NASH) are not well understood. AIMS To understand the molecular basis of NASH, we evaluated reversible phosphorylation events in hepatic tissue derived from Class III obese subjects by phosphoproteomic means with the aim of highlighting key regulatory pathways that distinguish NASH from non-alcoholic fatty liver disease (also known as simple steatosis; SS). MATERIALS & METHODS Class III obese subjects undergoing bariatric surgery underwent liver biopsy (eight normal patients, eight with simple steatosis, and eight NASH patients). Our strategy was unbiased, comparing global differences in liver protein reversible phosphorylation events across the 24 subjects. RESULTS Of the 3078 phosphorylation sites assigned (2465 phosphoserine, 445 phosphothreonine, 165 phosphotyrosine), 53 were altered by a factor of 2 among cohorts, and of those, 12 were significantly increased or decreased by ANOVA (P < 0.05). DISCUSSION Statistical analyses of canonical signaling pathways identified carbohydrate metabolism and RNA post-transcriptional modification among the most over-represented networks. CONCLUSION Collectively, these results raise the possibility of abnormalities in carbohydrate metabolism as an important trigger for the development of NASH, in parallel with already established abnormalities in lipid metabolism.
Collapse
Affiliation(s)
- Julia Wattacheril
- Center for Liver Disease and Transplantation, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, United States of America
| | - Kristie L. Rose
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Salisha Hill
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christian Lanciault
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Clark R. Murray
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brandon Williams
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Wayne English
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Matthew Spann
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Ronald Clements
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Naji Abumrad
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Charles Robb Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America,Corresponding author: Charles Flynn, PhD, Assistant Professor, Department of Surgery, Vanderbilt University, MRBIV Room 8465A, 2213 Garland Ave, Nashville, TN 37232,
| |
Collapse
|
32
|
Bedossa P, Patel K. Biopsy and Noninvasive Methods to Assess Progression of Nonalcoholic Fatty Liver Disease. Gastroenterology 2016; 150:1811-1822.e4. [PMID: 27003601 DOI: 10.1053/j.gastro.2016.03.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/24/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) comprises a spectrum of histopathologic features, ranging from isolated hepatic steatosis, to steatohepatitis with evidence of hepatocellular injury and fibrosis, to cirrhosis. The diagnosis and determination of NAFLD prognosis requires clinical and histopathologic assessments. Liver biopsy still is regarded as the reference for differentiating steatosis (NAFL) from nonalcoholic steatohepatitis, for staging hepatic fibrosis, and for identifying NAFLD in patients with other chronic liver disease. Standardized grading and staging histologic scoring systems, such as the NAFLD activity score and the steatosis, activity, and fibrosis score, can help guide clinical decisions and assess outcomes of clinical trials. Improved understanding of the pathophysiology of NAFLD and technologic advances have led to algorithms that can be used to assess serum biomarkers and imaging methods that are noninvasive alternatives to biopsy collection and analysis. We review the advantages and limitations of biopsy analysis and noninvasive tests as diagnostic and prognostic tools for patients with NAFLD. We also discuss techniques to improve dynamic histopathology assessment, and emerging blood and imaging biomarkers of fibrogenesis.
Collapse
Affiliation(s)
- Pierre Bedossa
- Department of Pathology, Physiology and Imaging, Hôpital Beaujon, Clichy, France
| | - Keyur Patel
- Division of Gastroenterology, University of Toronto Health Network, Toronto General Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Lădaru A, Bălănescu P, Stan M, Codreanu I, Anca IA. Candidate proteomic biomarkers for non-alcoholic fatty liver disease (steatosis and non-alcoholic steatohepatitis) discovered with mass-spectrometry: a systematic review. Biomarkers 2015; 21:102-14. [PMID: 26632636 DOI: 10.3109/1354750x.2015.1118542] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CONTEXT Non-alcoholic fatty liver disease (NAFLD) is characterized by lipid accumulation in the liver which is accompanied by a series of metabolic deregulations. There are sustained research efforts focusing upon biomarker discovery for NAFLD diagnosis and its prognosis in order investigate and follow-up patients as minimally invasive as possible. OBJECTIVE The objective of this study is to critically review proteomic studies that used mass spectrometry techniques and summarize relevant proteomic NAFLD candidate biomarkers. METHODS Medline and Embase databases were searched from inception to December 2014. RESULTS A final number of 22 records were included that identified 251 candidate proteomic biomarkers. Thirty-three biomarkers were confirmed - 14 were found in liver samples, 21 in serum samples, and two from both serum and liver samples. CONCLUSION Some of the biomarkers identified have already been extensively studied regarding their diagnostic and prognostic capacity. However, there are also more potential biomarkers that still need to be addressed in future studies.
Collapse
Affiliation(s)
- Anca Lădaru
- a University of Medicine and Pharmacy "Carol Davila" , Pediatrics Chair , Bucharest , Romania .,b Institute for Mother and Child Care "Alfred Rusescu" , Bucharest , Romania
| | - Paul Bălănescu
- c Department of Clinical Immunology , CDPC Colentina Clinical Hospital , Bucharest , Romania , and.,d Clinical Research Unit RECIF (Réseau D' Epidémiologie Clinique International Francophone) , Bucharest , Romania
| | - Mihaela Stan
- a University of Medicine and Pharmacy "Carol Davila" , Pediatrics Chair , Bucharest , Romania .,b Institute for Mother and Child Care "Alfred Rusescu" , Bucharest , Romania
| | - Ioana Codreanu
- a University of Medicine and Pharmacy "Carol Davila" , Pediatrics Chair , Bucharest , Romania .,b Institute for Mother and Child Care "Alfred Rusescu" , Bucharest , Romania
| | - Ioana Alina Anca
- a University of Medicine and Pharmacy "Carol Davila" , Pediatrics Chair , Bucharest , Romania .,b Institute for Mother and Child Care "Alfred Rusescu" , Bucharest , Romania
| |
Collapse
|
34
|
Torok N, Dranoff JA, Schuppan D, Friedman SL. Strategies and endpoints of antifibrotic drug trials: Summary and recommendations from the AASLD Emerging Trends Conference, Chicago, June 2014. Hepatology 2015; 62:627-34. [PMID: 25626988 PMCID: PMC4515973 DOI: 10.1002/hep.27720] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/21/2015] [Indexed: 12/21/2022]
Abstract
There is an urgent need to develop antifibrotic therapies for chronic liver disease, and clarify which endpoints in antifibrotic trials will be acceptable to regulatory agencies. The American Association for the Study of Liver Diseases sponsored an endpoints conference to help accelerate the efficient testing of antifibrotic agents and develop recommendations on clinical trial design for liver fibrosis. In this review, we summarize the salient and novel elements of this conference and provide directions for future clinical trial design. The article follows the structure of the conference and is organized into five areas: (1) antifibrotic trial design; (2) preclinical proof-of-concept studies; (3) pharmacological targets, including rationale and lessons to learn; (4) rational drug design and development; and (5) consensus and recommendations on design of clinical trials in liver fibrosis. Expert overviews and collaborative discussions helped to summarize the key unmet needs and directions for the future, including: (1) greater clarification of at-risk populations and study groups; (2) standardization of all elements of drug discovery and testing; (3) standardization of clinical trial approaches; (4) accelerated development of improved noninvasive markers; and (5) need for exploration of potential off-target toxicities of future antifibrotic drugs.
Collapse
Affiliation(s)
- Natalie Torok
- Department of Gastroenterology and Hepatology, UC Davis Medical Center, Sacramento, CA and VA Northern California Healthcare System, Mather CA
| | - Jonathan A. Dranoff
- Division of Gastroenterology and Hepatology, University of Arkansas for Medical Sciences, Little Rock, AR and Research Service, Central Arkansas VA Healthcare System, Little Rock AR
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center, Mainz, Germany, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
35
|
Sydor S, Canbay A, Bechmann LP. Identifying soluble mediators of nuclear receptor and insulin signaling may enhance noninvasive diagnosis of fibrosis in Fatty liver disease. Digestion 2015; 90:33-4. [PMID: 25139186 DOI: 10.1159/000365886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Svenja Sydor
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | | | | |
Collapse
|