1
|
Tu Z, Wang Y, Liang J, Liu J. Helicobacter pylori-targeted AI-driven vaccines: a paradigm shift in gastric cancer prevention. Front Immunol 2024; 15:1500921. [PMID: 39669583 PMCID: PMC11634812 DOI: 10.3389/fimmu.2024.1500921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024] Open
Abstract
Helicobacter pylori (H. pylori), a globally prevalent pathogen Group I carcinogen, presents a formidable challenge in gastric cancer prevention due to its increasing antimicrobial resistance and strain diversity. This comprehensive review critically analyzes the limitations of conventional antibiotic-based therapies and explores cutting-edge approaches to combat H. pylori infections and associated gastric carcinogenesis. We emphasize the pressing need for innovative therapeutic strategies, with a particular focus on precision medicine and tailored vaccine development. Despite promising advancements in enhancing host immunity, current Helicobacter pylori vaccine clinical trials have yet to achieve long-term efficacy or gain approval regulatory approval. We propose a paradigm-shifting approach leveraging artificial intelligence (AI) to design precision-targeted, multiepitope vaccines tailored to multiple H. pylori subtypes. This AI-driven strategy has the potential to revolutionize antigen selection and optimize vaccine efficacy, addressing the critical need for personalized interventions in H. pylori eradication efforts. By leveraging AI in vaccine design, we propose a revolutionary approach to precision therapy that could significantly reduce H. pylori -associated gastric cancer burden.
Collapse
Affiliation(s)
| | | | | | - Jinping Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
2
|
Capuano A, Vescovo M, Canesi S, Pivetta E, Doliana R, Nadin MG, Yamamoto M, Tsukamoto T, Nomura S, Pilozzi E, Palumbo A, Canzonieri V, Cannizzaro R, Scanziani E, Baldassarre G, Mongiat M, Spessotto P. The extracellular matrix protein EMILIN-1 impacts on the microenvironment by hampering gastric cancer development and progression. Gastric Cancer 2024; 27:1016-1030. [PMID: 38941035 PMCID: PMC11335817 DOI: 10.1007/s10120-024-01528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND The contribution of the tumor microenvironment and extracellular matrix to the aggressive biology of Gastric Cancer (GC) has been recently characterized; however, the role of EMILIN-1 in this context is unknown. EMILIN-1 is an essential structural element for the maintenance of lymphatic vessel (LV) integrity and displays anti-proliferative properties as demonstrated in skin and colon cancer. Given the key role of LVs in GC progression, the aim of this study was to investigate the role of EMILIN-1 in GC mouse models. METHODS We used the syngeneic YTN16 cells which were injected subcutaneously and intraperitoneally in genetically modified EMILIN-1 mice. In alternative, carcinogenesis was induced using N-Methyl-N-nitrosourea (MNU). Mouse-derived samples and human biopsies were analyzed by IHC and IF to the possible correlation between EMILIN-1 expression and LV pattern. RESULTS Transgenic mice developed tumors earlier compared to WT animals. 20 days post-injection tumors developed in EMILIN-1 mutant mice were larger and displayed a significant increase of lymphangiogenesis. Treatment of transgenic mice with MNU associated with an increased number of tumors, exacerbated aggressive lesions and higher levels of LV abnormalities. A significant correlation between the levels of EMILIN-1 and podoplanin was detected also in human samples, confirming the results obtained with the pre-clinical models. CONCLUSIONS This study demonstrates for the first time that loss of EMILIN-1 in GC leads to lymphatic dysfunction and proliferative advantages that sustain tumorigenesis, and assess the use of our animal model as a valuable tool to verify the fate of GC upon loss of EMILIN-1.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maddalena Vescovo
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Simone Canesi
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Eliana Pivetta
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
- Clinical Pathology Unit, Ospedale Santa Maria Degli Angeli, Pordenone, Italy
| | - Roberto Doliana
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maria Grazia Nadin
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Masami Yamamoto
- Laboratory of Physiological Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Pathology, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Sachiyo Nomura
- Department of Clinical Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
| | - Emanuela Pilozzi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Azienda Ospedaliero-Universitaria Sant'Andrea, Rome, Italy
| | - Antonio Palumbo
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Eugenio Scanziani
- Dipartimento di Medicina Veterinaria e Scienze Animali (DIVAS), Università Degli Studi di Milano, Milan, Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Maurizio Mongiat
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy
| | - Paola Spessotto
- Molecular Oncology Unit, Centro di Riferimento Oncologico Aviano, (CRO) IRCCS, Via Franco Gallini 2, 33081, Aviano, PN, Italy.
| |
Collapse
|
3
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
4
|
Brackman LC, Jung MS, Green EH, Joshi N, Revetta FL, McClain MS, Markham NO, Piazuelo MB, Scott Algood HM. IL-17 signaling protects against Helicobacter pylori-induced gastric cancer. Gut Microbes 2024; 16:2430421. [PMID: 39588838 PMCID: PMC11639209 DOI: 10.1080/19490976.2024.2430421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Helicobacter pylori infection is the predominant risk factor for the development of gastric cancer. Risk is enhanced by specific H. pylori virulence factors, diet, and the inflammatory response. Chronic activation of T helper (Th) 1 and Th17 pathways contributes to prolonged inflammation; yet, higher expression of IL-17 receptor (IL-17RA) is a favorable prognostic marker for survival after gastric cancer diagnosis. The protective impact of IL-17RA signaling is not understood. To investigate if IL-17RA signaling protects during H. pylori-induced carcinogenesis, the transgenic InsGAStg/tg mouse, which is prone to H. pylori-induced gastric cancer, was utilized. InsGAStg/tg mice and InsGAStg/tgIl17ra-/- mice were infected with a cag type 4 secretion system (T4SS) positive H. pylori strain for up to 6 months. Six weeks post-infection, IL-17RA deficiency led to increased bacterial burden, increased gastritis, and development of lymphoid follicles. Increased inflammation was associated with heightened cellular proliferation and earlier loss of parietal and chief cells in InsGAStg/tgIl17ra-/- mice. Gastric cancers developed more frequently by 3- and 6-months post-infection in H. pylori-infected InsGAStg/tgIl17ra-/- mice compared to InsGAStg/tg mice. Chronic inflammation was exacerbated with IL-17RA deficiency, characterized by elevated Th1/Th17 cytokines, increased B cell infiltration, and enhanced IgA production, despite reduced expression of the polymeric immunoglobulin receptor. Further, paragastric lymph nodes of InsGAStg/tgIl17ra-/- mice were enlarged relative to controls and displayed altered gene expression profiles. Increased inflammation was accompanied by a significant increase in Cybb expression, which encodes NADPH oxidase 2, suggesting that increased oxidative damage may occur in the absence of IL-17RA. Further, there is increased phosphorylation of histone 2AX in IL-17RA deficient mice, indicating that the DNA damage response is highly activated. These data suggest that IL-17RA signaling activates a protective pathway to prevent excessive inflammation which otherwise can lead to increased oxidative stress, DNA damage, and drive gastric carcinogenesis after H. pylori infection.
Collapse
Affiliation(s)
- Lee C. Brackman
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew S. Jung
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Emily H. Green
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nikhita Joshi
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- School of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Frank L. Revetta
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark S. McClain
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nicholas O. Markham
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Holly M. Scott Algood
- Department of Medicine, Division of Infectious Disease, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, USA
- Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN, USA
| |
Collapse
|
5
|
Feng W, Ma C, Rao H, Zhang W, Liu C, Xu Y, Aji R, Wang Z, Xu J, Gao WQ, Li L. Setd2 deficiency promotes gastric tumorigenesis through inhibiting the SIRT1/FOXO pathway. Cancer Lett 2023; 579:216470. [PMID: 37914019 DOI: 10.1016/j.canlet.2023.216470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Gastric cancer (GC) is the fifth most common cancer and the second leading cause of cancer death globally. SETD2 is a histone methyltransferase catalyzing tri-methylation of H3K36 (H3K36me3) and has been shown to participate in diverse biological processes and human tumors. However, the mechanism of SETD2 in GC remains unclear. Here, we reported that Setd2 deficiency predicts poor prognosis of gastric cancer. SETD2 loss facilitated H. felis/MNU and c-Myc-induced gastric tumorigenesis, respectively. The mouse model of stomach-specific Setd2 depletion together with c-MYC overexpression (AMS) developed high-grade epithelial defects, intestinal metaplasia and dysplasia at only 10-12 weeks of age. Mechanistically, Setd2 depletion resulted in impaired epigenetic regulation of Sirt1, thus inhibiting the SIRT1/FOXO pathway. Moreover, the agonists of FOXO signaling or overexpression of SIRT1 significantly rescued the enhanced cell proliferation and migration caused by Setd2 deficiency in SGC7901 cells. Together, our findings highlight an epigenetic mechanism by which SETD2 regulates gastric tumorigenesis through SIRT1/FOXO pathway. It may also pave the way for the development of targeted, patient-tailored therapies for GC patients with Setd2 deficiency.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Rebiguli Aji
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Pan Z, Yun H, Xiao Y, Tong F, Liu G, Zhang G, Han J. MiR-934 Exacerbates Malignancy of Gastric Cancer Cells by Targeting ZFP36. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:1720-1729. [PMID: 37744530 PMCID: PMC10512137 DOI: 10.18502/ijph.v52i8.13411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/24/2023] [Indexed: 09/26/2023]
Abstract
Background In order to explore new targets for the treatment of gastric cancer (GC), we investigated the regulatory mechanism of miR-934 in the malignant phenotype of gastric cancer. Methods The miRNA and mRNA expressions were determined by RT-qPCR, and protein levels were quantified by western blotting assay. Malignancy of AGS cell line was evaluated by MTT, flow cytometry, wound healing and Transwell assays. The putative binding site between miR-934 and ZFP36 was validated using luciferase reporter assay. Immunohistochemistry (IHC) assay was used to visualize the ZFP36-positive cells in the xenograft sections. All experiments were conducted in General Surgery Laboratory of Nanjing Red Cross Hospital Jiangsu Province, China from June 2019 to June 2021. Results GC tissues and cell lines showed notably higher levels of miR-934. Overexpression of miR-934 promoted cell viability, migration and invasion, while inhibited cell apoptosis of GC cells. ZFP36 was predicted and verified to be the target of miR-934 and low protein levels of ZFP36 were observed in GC tissues. The ZFP36 protein expressions were suppressed by miR-934 overexpression, while were facilitated by miR-934 inhibition. Furthermore, the carcinogenic functions of miR-934 were partially reversed after ZFP36 overexpression. The results of in vivo experiments further demonstrated that miR-934 promoted tumor growth and repressed the protein expression of ZFP36. Conclusion miR-934 served as a tumor promoter in GC via targeting ZFP36, and ZFP36 overexpression could efficiently relieve malignant phenotypes caused by miR-934, which prompted an exploitable molecular target for GC treatment.
Collapse
Affiliation(s)
- Zhicheng Pan
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Huazhong Yun
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Yun Xiao
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Fei Tong
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Guodong Liu
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Ge Zhang
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| | - Jianbo Han
- General Surgery Department, Nanjing Red Cross Hospital, Nanjing City, Jiangsu Province, 210000, China
| |
Collapse
|
7
|
Amalia R, Panenggak NSR, Doohan D, Rezkitha YAA, Waskito LA, Syam AF, Lubis M, Yamaoka Y, Miftahussurur M. A comprehensive evaluation of an animal model for Helicobacter pylori-associated stomach cancer: Fact and controversy. Helicobacter 2023; 28:e12943. [PMID: 36627714 DOI: 10.1111/hel.12943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
Even though Helicobacter pylori infection was the most causative factor of gastric cancer, numerous in vivo studies failed to induce gastric cancer using H. pylori infection only. The utilization of established animal studies in cancer research is crucial as they aim to investigate the coincidental association between suspected oncogenes and pathogenesis as well as generate models for the development and testing of potential treatments. The methods to establish gastric cancer using infected animal models remain limited, diverse in methods, and showed different results. This study investigates the differences in animal models, which highlight different pathological results in gaster by literature research. Electronic databases searched were performed in PubMed, Science Direct, and Cochrane, without a period filter. A total of 135 articles were used in this study after a full-text assessment was conducted. The most frequent animal models used for gastric cancer were Mice, while Mongolian gerbils and Transgenic mice were the most susceptible model for gastric cancer associated with H. pylori infection. Additionally, transgenic mice showed that the susceptibility to gastric cancer progression was due to genetic and epigenetic factors. These studies showed that in Mongolian gerbil models, H. pylori could function as a single agent to trigger stomach cancer. However, most gastric cancer susceptibilities were not solely relying on H. pylori infection, and numerous factors are involved in cancer progression. Further study using Mongolian gerbils and Transgenic mice is crucial to conduct and establish the best models for gastric cancer associated H. pylori.
Collapse
Affiliation(s)
- Rizki Amalia
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Nur Syahadati Retno Panenggak
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - Dalla Doohan
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Anatomy, Histology and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Langgeng Agung Waskito
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Masrul Lubis
- Department of Internal Medicine, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan.,Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Texas, Houston, USA
| | - Muhammad Miftahussurur
- Helicobacter pylori and Microbiota Study Group, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia.,Division of Gastroentero-Hepatology, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Morrow RJ, Allam AH, Konecnik J, Baloyan D, Dijkstra C, Eissmann MF, Jacob SP, O’Brien M, Poh AR, Ernst M. Tumor Growth Remains Refractory to Myc Ablation in Host Macrophages. Cells 2022; 11:cells11244104. [PMID: 36552868 PMCID: PMC9777527 DOI: 10.3390/cells11244104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Aberrant expression of the oncoprotein c-Myc (Myc) is frequently observed in solid tumors and is associated with reduced overall survival. In addition to well-recognized cancer cell-intrinsic roles of Myc, studies have also suggested tumor-promoting roles for Myc in cells of the tumor microenvironment, including macrophages and other myeloid cells. Here, we benchmark Myc inactivation in tumor cells against the contribution of its expression in myeloid cells of murine hosts that harbor endogenous or allograft tumors. Surprisingly, we observe that LysMCre-mediated Myc ablation in host macrophages does not attenuate tumor growth regardless of immunogenicity, the cellular origin of the tumor, the site it develops, or the stage along the tumor progression cascade. Likewise, we find no evidence for Myc ablation to revert or antagonize the polarization of alternatively activated immunosuppressive macrophages. Thus, we surmise that systemic targeting of Myc activity may confer therapeutic benefits primarily through limiting Myc activity in tumor cells rather than reinvigorating the anti-tumor activity of macrophages.
Collapse
|
9
|
Zeng Y, Jin RU. Molecular pathogenesis, targeted therapies, and future perspectives for gastric cancer. Semin Cancer Biol 2022; 86:566-582. [PMID: 34933124 DOI: 10.1016/j.semcancer.2021.12.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/29/2021] [Accepted: 12/11/2021] [Indexed: 01/27/2023]
Abstract
Gastric cancer is a major source of global cancer mortality with limited treatment options and poor patient survival. As our molecular understanding of gastric cancer improves, we are now beginning to recognize that these cancers are a heterogeneous group of diseases with incredibly unique pathogeneses and active oncogenic pathways. It is this molecular diversity and oftentimes lack of common oncogenic driver mutations that bestow the poor treatment responses that oncologists often face when treating gastric cancer. In this review, we will examine the treatments for gastric cancer including up-to-date molecularly targeted therapies and immunotherapies. We will then review the molecular subtypes of gastric cancer to highlight the diversity seen in this disease. We will then shift our discussion to basic science and gastric cancer mouse models as tools to study gastric cancer molecular heterogeneity. Furthermore, we will elaborate on a molecular process termed paligenosis and the cyclical hit model as key events during gastric cancer initiation that impart nondividing mature differentiated cells the ability to re-enter the cell cycle and accumulate disparate genomic mutations during years of chronic inflammation and injury. As our basic science understanding of gastric cancer advances, so too must our translational and clinical efforts. We will end with a discussion regarding single-cell molecular analyses and cancer organoid technologies as future translational avenues to advance our understanding of gastric cancer heterogeneity and to design precision-based gastric cancer treatments. Elucidation of interpatient and intratumor heterogeneity is the only way to advance future cancer prevention, diagnoses and treatment.
Collapse
Affiliation(s)
- Yongji Zeng
- Section of Gastroenterology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Ramon U Jin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
10
|
Fu S, Tan R, Feng Y, Yu P, Mo Y, Xiao W, Wang S, Zhang J. N-methyl-N-nitrosourea induces zebrafish anomalous angiogenesis through Wnt/β-catenin pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113674. [PMID: 35623148 DOI: 10.1016/j.ecoenv.2022.113674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
N-methyl-N-nitrosourea (MNU) is a prevalent environmental carcinogen, which leads to tumors in various organs in animal models, while the mechanisms involved were still not fully understood. It is well known that anomalous angiogenesis is a key step in tumorigenesis and progression. In this study, we found that MNU induced abnormal angiogenesis which was accompanied by upregulation of rspo1, p53 and vegfaa in zebrafish embryos. Moreover, it revealed that MNU-induced ectopic sprouting of blood vessels was significantly reduced in rspo1-knockdown but not p53-knockdown embryos, indicating that rspo1 was necessary for MNU-induced abnormal angiogenesis. Additionally, pharmaceutical activation or inhibition of Wnt/β-catenin signaling pathway using (2'Z,3'E)- 6-bromoindirubin-3'-oxime or CCT036477 significantly increased or inhibited the pro-angiogenic effect of MNU on developing zebrafish embryos, which was confirmed by the effect of proliferation and migration in MNU-treated bEnd.3 cells. These data together indicated that rspo1/Wnt/β-catenin/vegfaa axis is involved in the modulation of MNU-induced anomalous angiogenesis.
Collapse
Affiliation(s)
- Saifang Fu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Rongbang Tan
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yufei Feng
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Ping Yu
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuqian Mo
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China
| | - Wei Xiao
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease of Guangdong Medical University, Zhanjiang 524001, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
11
|
Ni Y, Low JT, Silke J, O’Reilly LA. Digesting the Role of JAK-STAT and Cytokine Signaling in Oral and Gastric Cancers. Front Immunol 2022; 13:835997. [PMID: 35844493 PMCID: PMC9277720 DOI: 10.3389/fimmu.2022.835997] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
When small proteins such as cytokines bind to their associated receptors on the plasma membrane, they can activate multiple internal signaling cascades allowing information from one cell to affect another. Frequently the signaling cascade leads to a change in gene expression that can affect cell functions such as proliferation, differentiation and homeostasis. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) and the tumor necrosis factor receptor (TNFR) are the pivotal mechanisms employed for such communication. When deregulated, the JAK-STAT and the TNF receptor signaling pathways can induce chronic inflammatory phenotypes by promoting more cytokine production. Furthermore, these signaling pathways can promote replication, survival and metastasis of cancer cells. This review will summarize the essentials of the JAK/STAT and TNF signaling pathways and their regulation and the molecular mechanisms that lead to the dysregulation of the JAK-STAT pathway. The consequences of dysregulation, as ascertained from founding work in haematopoietic malignancies to more recent research in solid oral-gastrointestinal cancers, will also be discussed. Finally, this review will highlight the development and future of therapeutic applications which modulate the JAK-STAT or the TNF signaling pathways in cancers.
Collapse
Affiliation(s)
- Yanhong Ni
- Central Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jun T. Low
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Lorraine A. O’Reilly
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Ansari S, Yamaoka Y. Animal Models and Helicobacter pylori Infection. J Clin Med 2022; 11:jcm11113141. [PMID: 35683528 PMCID: PMC9181647 DOI: 10.3390/jcm11113141] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori colonize the gastric mucosa of at least half of the world’s population. Persistent infection is associated with the development of gastritis, peptic ulcer disease, and an increased risk of gastric cancer and gastric-mucosa-associated lymphoid tissue (MALT) lymphoma. In vivo studies using several animal models have provided crucial evidence for understanding the pathophysiology of H. pylori-associated complications. Numerous animal models, such as Mongolian gerbils, transgenic mouse models, guinea pigs, and other animals, including non-human primates, are being widely used due to their persistent association in causing gastric complications. However, finding suitable animal models for in vivo experimentation to understand the pathophysiology of gastric cancer and MALT lymphoma is a complicated task. In this review, we summarized the most appropriate and latest information in the scientific literature to understand the role and importance of H. pylori infection animal models.
Collapse
Affiliation(s)
- Shamshul Ansari
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX 77030, USA
- Institute of Tropical Disease, Universitas Airlangga, Surabaya 60115, Indonesia
- Correspondence: ; Tel.: +81-97-586-5740
| |
Collapse
|
13
|
High Mobility Group A 1 Expression as a Poor Prognostic Marker Associated with Tumor Invasiveness in Gastric Cancer. Life (Basel) 2022; 12:life12050709. [PMID: 35629376 PMCID: PMC9146826 DOI: 10.3390/life12050709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 01/05/2023] Open
Abstract
The prognosis of advanced gastric cancer remains poor. Overexpression of high mobility group A 1 (HMGA1) in breast cancer and neuroblastoma indicates a poor prognosis. However, the relationship between HMGA1 expression and gastric cancer development remains unclear. Treatment strategies can be developed by identifying potential markers associated with gastric cancer. We used a constructed tissue array and performed hematoxylin and eosin and immunohistochemical staining. We quantified the staining results and performed statistical analysis to evaluate the relationship between HMGA1 expression and prognosis. HMGA1 expression was related to the expression of Ki-67, caspase3, CD31, N-cadherin, fibronectin, pAkt, and pErk. In the Kaplan–Meier graph, higher HMGA1 expression levels were associated with a relatively poor survival rate (p = 0.04). High expression of HMGA1 leads to a low survival rate, which is associated with HMGA1, proliferation, apoptosis, angiogenesis, epithelial-mesenchymal transition, and tyrosine kinase.
Collapse
|
14
|
Bai F, He Z, Zhou H, Gan W. Kinesin family member 2A links with advanced tumor stage, reduced chemosensitivity and worse prognosis in gastric cancer. J Clin Lab Anal 2022; 36:e24313. [PMID: 35313389 PMCID: PMC9102491 DOI: 10.1002/jcla.24313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/19/2022] Open
Abstract
Background Kinesin family member 2A (KIF2A) induces gastric cancer (GC) growth and invasion, while its clinical relevance in GC patients is not reported. This study aimed to investigate the linkage of KIF2A with clinicopathological features, prognosis, and chemosensitivity of GC. Methods A total of 160 surgical GC patients were reviewed, with their tumor and adjacent tissues acquired for immunohistochemical (IHC) assay to measure KIF2A expression, then scored by a semi‐quantitative method (IHC score: 0–12). KIF2A siRNA or nonsense‐siRNA were transfected into HGC‐27 and NCI‐N87 cells underwent various concentrations of capecitabine or oxaliplatin treatment followed by chemosensitivity assessment. Results Kinesin family member 2A expression was elevated in the tumor tissue compared to the adjacent tissue (IHC score: 5.6 ± 3.1 vs. 2.9 ± 1.7, p < 0.001). Besides, tumor KIF2A expression was related to larger tumor size (p = 0.014), higher N stage (p = 0.004) and TNM stage (p = 0.011); however, it was not linked with other clinicopathological features (all p > 0.05). Signally, tumor KIF2A high expression predicted poor overall survival (p = 0.037). After adjustment via multivariate Cox's regression, tumor KIF2A high expression independently linked with worse disease‐free survival (p = 0.033). Finally, KIF2A knockdown improved the oxaliplatin chemosensitivity vastly but only slightly affected capecitabine chemosensitivity in HGC‐27 and NCI‐N87 cells. Conclusion Kinesin family member 2A reflects larger tumor size, advanced TNM stage, improved chemosensitivity, and predicts unfavorable survival in GC.
Collapse
Affiliation(s)
- Fei Bai
- Department of Gastroduodenal Pancreas Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhuo He
- Department of Gastroduodenal Pancreas Surgery, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, Hunan Cancer Hospital & The Affiliated Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wei Gan
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
15
|
Cui X, Shan T, Qiao L. Collagen type Ⅳ alpha 1 (COL4A1) silence hampers the invasion, migration and epithelial-mesenchymal transition (EMT) of gastric cancer cells through blocking Hedgehog signaling pathway. Bioengineered 2022; 13:8972-8981. [PMID: 35297303 PMCID: PMC9161915 DOI: 10.1080/21655979.2022.2053799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gastric cancer (GC), which features high prevalence and mortality rate, remains the third most lethal cancer worldwide. The paper was designed to explore the impacts of collagen type Ⅳ alpha 1 (COL4A1) on GC, along with its potential mechanism. The mRNA and protein expressions of COL4A1 in GC cells were assessed by RT-qPCR and western blot. After depleting COL4A1, RT-qPCR and western blot were conducted again to check the transfection efficacy. With the application of CCK-8, wound healing and transwell, the capabilities of cells to proliferate, migrate and invade were appraised, respectively. Moreover, western blot tested the protein levels of factors involved in migration, proliferation, epithelial mesenchymal transition (EMT) and Hedgehog signaling. As a result, COL4A1 displayed elevated expression in GC tissues and cells while its knockdown inhibited the cell viability, migration, invasion and EMT in GC. According to Gene Set Enrichment Analysis (GSEA), COL4A1 was involved in the regulation of Hedgehog signaling pathway, which was then further verified by the detection of Hedgehog-related proteins. To figure out the relationship between COL4A1 and Hedgehog signaling pathway, we used purmorphamine, an agonist of Hedgehog, to treat GC cells, finding that COL4A1 blocked Hedgehog signaling to inhibit the aggressive phenotypes of GC cells. In short, COL4A1 silence was testified to exhibit suppressive effects on the malignant process of GC, suggesting that COL4A1 might be a potent hallmark for GC therapy.
Collapse
Affiliation(s)
- Xijuan Cui
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, Shaanxi 710061, P.R. China
| | - Tao Shan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, Shaanxi 710061, P.R. China
| | - Lina Qiao
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi 'an, Shaanxi 710061, P.R. China
| |
Collapse
|
16
|
Abstract
Gastric cancer (GC) is a leading contributor to global cancer incidence and mortality. Pioneering genomic studies, focusing largely on primary GCs, revealed driver alterations in genes such as ERBB2, FGFR2, TP53 and ARID1A as well as multiple molecular subtypes. However, clinical efforts targeting these alterations have produced variable results, hampered by complex co-alteration patterns in molecular profiles and intra-patient genomic heterogeneity. In this Review, we highlight foundational and translational advances in dissecting the genomic cartography of GC, including non-coding variants, epigenomic aberrations and transcriptomic alterations, and describe how these alterations interplay with environmental influences, germline factors and the tumour microenvironment. Mapping of these alterations over the GC life cycle in normal gastric tissues, metaplasia, primary carcinoma and distant metastasis will improve our understanding of biological mechanisms driving GC development and promoting cancer hallmarks. On the translational front, integrative genomic approaches are identifying diverse mechanisms of GC therapy resistance and emerging preclinical targets, enabled by technologies such as single-cell sequencing and liquid biopsies. Validating these insights will require specifically designed GC cohorts, converging multi-modal genomic data with longitudinal data on therapeutic challenges and patient outcomes. Genomic findings from these studies will facilitate 'next-generation' clinical initiatives in GC precision oncology and prevention.
Collapse
Affiliation(s)
- Khay Guan Yeoh
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Gastroenterology and Hepatology, National University Health System, Singapore, Singapore
- Singapore Gastric Cancer Consortium, Singapore, Singapore
| | - Patrick Tan
- Singapore Gastric Cancer Consortium, Singapore, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School Singapore, Singapore, Singapore.
- Genome Institute of Singapore, Singapore, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Yamasaki J, Hirata Y, Otsuki Y, Suina K, Saito Y, Masuda K, Okazaki S, Ishimoto T, Saya H, Nagano O. MEK Inhibition Suppresses Metastatic Progression of KRAS-Mutated Gastric Cancer. Cancer Sci 2021; 113:916-925. [PMID: 34931404 PMCID: PMC8898706 DOI: 10.1111/cas.15244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Metastatic progression of tumors is driven by genetic alterations and tumor‐stroma interaction. To elucidate the mechanism underlying the oncogene‐induced gastric tumor progression, we have developed an organoid‐based model of gastric cancer from GAstric Neoplasia (GAN) mice, which express Wnt1 and the enzymes COX2 and microsomal prostaglandin E synthase 1 in the stomach. Both p53 knockout (GAN‐p53KO) organoids and KRASG12V‐expressing GAN‐p53KO (GAN‐KP) organoids were generated by genetic manipulation of GAN mouse‐derived tumor (GAN wild‐type [WT]) organoids. In contrast with GAN‐WT and GAN‐p53KO organoids, which manifested Wnt addiction, GAN‐KP organoids showed a Wnt‐independent phenotype and the ability to proliferate without formation of a Wnt‐regulated three‐dimensional epithelial architecture. After transplantation in syngeneic mouse stomach, GAN‐p53KO cells formed only small tumors, whereas GAN‐KP cells gave rise to invasive tumors associated with the development of hypoxia as well as to liver metastasis. Spatial transcriptomics analysis suggested that hypoxia signaling contributes to the metastatic progression of GAN‐KP tumors. In particular, such analysis identified a cluster of stromal cells located at the tumor invasive front that expressed genes related to hypoxia signaling, angiogenesis, and cell migration. These cells were also positive for phosphorylated extracellular signal‐regulated kinase (ERK), suggesting that mitogen‐activated protein kinase (MAPK) signaling promotes development of both tumor and microenvironment. The MEK (MAPK kinase) inhibitor trametinib suppressed the development of GAN‐KP gastric tumors, formation of a hypoxic microenvironment, tumor angiogenesis, and liver metastasis. Our findings therefore establish a rationale for application of trametinib to suppress metastatic progression of KRAS‐mutated gastric cancer.
Collapse
Affiliation(s)
- Juntaro Yamasaki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yuki Hirata
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Kentaro Suina
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Yoshiyuki Saito
- Department of Surgery, School of Medicine, Keio University, Tokyo, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan
| | - Shogo Okazaki
- Division of Development and Aging, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Takatsugu Ishimoto
- Gastrointestinal Cancer Biology, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Osamu Nagano
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
18
|
Kang SK, Bae HJ, Kwon WS, Kim TS, Kim KH, Park S, Yu SY, Hwang J, Park J, Chung HC, Rha SY. Inhibition of the bromodomain and extra-terminal family of epigenetic regulators as a promising therapeutic approach for gastric cancer. Cell Oncol (Dordr) 2021; 44:1387-1403. [PMID: 34791636 DOI: 10.1007/s13402-021-00647-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Epigenetic dysregulation is a common characteristic of cancers, including gastric cancer (GC), and contributes to cancer development and progression. Although the efficacy of BET (an epigenetic regulator) inhibition has been demonstrated in various cancer types, predictive genetic markers of its efficacy in GC are currently lacking. Therefore, we aimed to identify markers that predict the response of BET inhibition in GC and, suggest an effective treatment regimen through combined therapy. METHODS The effect of BET inhibition was evaluated using iBET-151, a small-molecule inhibitor of BET proteins, in a large panel (n = 49) of GC cell lines and xenograft mouse models. Comprehensive genetic information was used to identify cell lines sensitive to iBET-151. Flow cytometry, Western blotting, and colony-formation and migration assays were used to evaluate the effects of iBET-151 and/or paclitaxel. The synergistic effect of iBET-151 and paclitaxel was evaluated using an organoid model. RESULTS We found that iBET-151 showed a modest growth-inhibitory effect in GC cells (73%, 36/49). iBET-151 inhibited tumorigenicity in vitro and significantly promoted cell cycle arrest and apoptosis. Based on comprehensive genetic information analysis in relation to BET family expression, we found that BRD4 was highly expressed in the iBET-151-sensitive cell lines. We also identified WNT5B and IRS2 as potential biomarkers that are predictive for sensitivity to iBET-151. In GC xenograft model mice, iBET-151 significantly decreased tumor volumes and Ki-67 and BRD4 expression. Combination treatment showed that iBET-151 increased the sensitivity of GC cells to paclitaxel in approximately 70% of the cell lines (34/49) tested. iBET-151 plus paclitaxel significantly promoted cell cycle arrest and apoptosis and suppressed c-Myc, Bcl-2 and Bcl-xL expression. In GC organoids, iBET-151 and paclitaxel showed a synergistic effect. CONCLUSIONS Collectively, our data suggest that iBET-151 is a potential therapeutic agent for GC, especially in combination with paclitaxel, and that WNT5B and IRS2 may predict iBET-151 sensitivity.
Collapse
Affiliation(s)
- Sun Kyoung Kang
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- MD Biolab Co., Ltd, Seoul, Republic of Korea
| | - Hyun Joo Bae
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Sun Kwon
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Soo Kim
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoo Hyun Kim
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sejung Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Biostatistics and Computing, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seo Young Yu
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Hwang
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Juin Park
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Cheol Chung
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sun Young Rha
- Songdang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
19
|
Li WW, Jiao J, Wang ZY, Wei YN, Zhang YF. Clinical efficacy of immunotherapy combined with chemotherapy in patients with advanced gastric cancer, its effect on nutritional status and Changes of peripheral blood T lymphocyte subsets. Pak J Med Sci 2021; 37:1902-1907. [PMID: 34912415 PMCID: PMC8613044 DOI: 10.12669/pjms.37.7.4347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 07/04/2021] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES To evaluate the clinical efficacy of immunotherapy combined with chemotherapy in patients with advanced gastric cancer and its effect on nutritional status and changes of peripheral blood T lymphocyte subsets. METHODS Sixty patients with locally advanced gastric cancer who were admitted by Affiliated Hospital of Hebei University from March 2020 to February 2021 were enrolled and randomly divided into two groups, with 30 cases in each group. The control group was treated with FOLFOX4 chemotherapy, while the experimental group was additively treated with cindilizumab on the basis of control group. The incidence of adverse reactions, clinical efficacy, improvement of nutritional and physical status, and changes in the levels of T lymphocyte subgroups in the two groups were compared and analyzed. RESULTS The total effective rate was 70% in the experimental group, which was better than 43.3% of the control group (p=0.04). The improvement rate of performance status (ECOG) score and nutritional indicators in the experimental group was significantly better than that in the control group (p<0.05). Moreover, the indicators of CD3+, CD4+, CD4+/CD8+ in the experimental group were significantly higher than those in the control group after treatment, with statistically significant differences (CD3+, p=0.01; CD4 +, p= 0.02; CD4+/CD8+, p=0.01). CONCLUSION Immunotherapy combined with chemotherapy has a significant effect on locally advanced gastric cancer patients, with significant improvement in physical strength and nutritional status, significant improvement in T lymphocyte function, and no obvious adverse reactions. It is worth promoting in clinical application.
Collapse
Affiliation(s)
- Wen-wen Li
- Wen-wen Li, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Jin Jiao
- Jin Jiao, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhi-yu Wang
- Zhi-yu Wang, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ya-ning Wei
- Ya-ning Wei, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yuan-fang Zhang
- Yuan-fang Zhang, Department of Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
20
|
Liu R, Yang X. LncRNA LINC00342 promotes gastric cancer progression by targeting the miR-545-5p/CNPY2 axis. BMC Cancer 2021; 21:1163. [PMID: 34715819 PMCID: PMC8556989 DOI: 10.1186/s12885-021-08829-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Background This study aimed to explore the role and underlying molecular mechanisms of long non-coding RNA (lncRNA) LINC00342 in gastric cancer (GC). Methods The expression of LINC00342 in GC tissues was evaluated by Quantitative reverse transcription polymerase chain reaction (qRT-PCR). Silencing of LINC00342 was conducted to investigate the effect of LINC00342 in vitro and in vivo. The underlying molecular mechanisms of LINC00342 were determined by dual luciferase reporter assay, Western blotting analysis and rescue experiments. Biological functions of LINC00342 were evaluated by cell counting kit-8 (CCK-8) assay, colony formation assay, wound healing assay and Transwell assays. In addition, a tumor model was used to verify the effect of LINC00342 in tumorigenesis in vivo. Results LINC00342 was significantly upregulated in GC tissues and cell lines. Silencing of LINC00342 efficiently inhibited proliferation, migration and invasion of AGS cells in vitro, and also suppressed the tumorigenesis of GC in vivo. Functional experiments showed that LINC00342 regulated the expression of canopy fibroblast growth factor signaling regulator 2 (CNPY2) by competitively sponging miR-545-5p. Rescue experiments showed that inhibition of miR-545-5p and overexpression of CNPY2 significantly reversed cell phenotypes caused by silencing of LINC00342. Conclusion LINC00342 plays a potential oncogenic role in GC by targeting the miR545-5p/CNPY2 axis, and might act as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Run Liu
- Department of Gastroenterology, The Shijiazhuang People's Hospital, 365 Jianhuanan street, Yuhua District, Shijiazhuang, 050000, Hebei, China
| | - Xianwu Yang
- Department of Gastroenterology, The Shijiazhuang People's Hospital, 365 Jianhuanan street, Yuhua District, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
21
|
Liu J, Feng W, Liu M, Rao H, Li X, Teng Y, Yang X, Xu J, Gao W, Li L. Stomach-specific c-Myc overexpression drives gastric adenoma in mice through AKT/mammalian target of rapamycin signaling. Bosn J Basic Med Sci 2021; 21:434-446. [PMID: 33259779 PMCID: PMC8292868 DOI: 10.17305/bjbms.2020.4978] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant cancers in the world. c-Myc, a well-known oncogene, is commonly amplified in many cancers, including gastric cancer. However, it is still not completely understood how c-Myc functions in GC. Here, we generated a stomach-specific c-Myc transgenic mouse model to investigate its role in GC. We found that overexpression of c-Myc in Atp4b+ gastric parietal cells could induce gastric adenoma in mice. Mechanistically, c-Myc promoted tumorigenesis via the AKT/mTOR pathway. Furthermore, AKT inhibitor (MK-2206) or mTOR inhibitor (Rapamycin) inhibited the proliferation of c-Myc overexpressing gastric cancer cell lines. Thus, our findings highlight that gastric tumorigenesis can be induced by c-Myc overexpression through activation of the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wenxin Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Liu
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyu Rao
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxue Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Jin Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Weiqiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, Renji Med-X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Lam B, Wendland M, Godines K, Shin SH, Vandsburger M. Accelerated multi-target chemical exchange saturation transfer magnetic resonance imaging of the mouse heart. Phys Med Biol 2021; 66. [PMID: 34167100 DOI: 10.1088/1361-6560/ac0e78] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/24/2021] [Indexed: 12/21/2022]
Abstract
Cardiac chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) has been used to probe levels of various metabolites that provide insight into myocardial structure and function. However, imaging of the heart using CEST-MRI is prolonged by the need to repeatedly acquire multiple images for a full Z-spectrum and to perform saturation and acquisition around cardiac and respiratory cycles. Compressed sensing (CS) reconstruction of sparse data enables accelerated acquisition, but reconstruction artifacts may bias subsequently derived measures of CEST contrast. In this study, we examine the impact of CS reconstruction of increasingly under-sampled cardiac CEST-MRI data on subsequent CEST contrasts of amine-containing metabolites and amide-containing proteins. Cardiac CEST-MRI data sets were acquired in six mice using low and high RF saturation for single and dual contrast generation, respectively. CEST-weighted images were reconstructed using CS methods at 2-5× levels of under-sampling. CEST contrasts were derived from corresponding Z-spectra and the impact of accelerated imaging on accuracy was assessed via analysis of variance. CS reconstruction preserved myocardial signal to noise ratio as compared to conventional reconstruction. However, greater absolute error and distribution of derived contrasts was observed with increasing acceleration factors. The results from this study indicate that acquisition of radial cardiac CEST-MRI data can be modestly, but meaningfully, accelerated via CS reconstructions with little error in CEST contrast quantification.
Collapse
Affiliation(s)
- Bonnie Lam
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Michael Wendland
- Berkeley Pre-clinical Imaging Core, UC Berkeley, Berkeley CA, United States of America
| | - Kevin Godines
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Soo Hyun Shin
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| | - Moriel Vandsburger
- Department of Bioengineering, UC Berkeley, Berkeley CA, United States of America
| |
Collapse
|
23
|
Traulsen J, Zagami C, Daddi AA, Boccellato F. Molecular modelling of the gastric barrier response, from infection to carcinogenesis. Best Pract Res Clin Gastroenterol 2021; 50-51:101737. [PMID: 33975688 DOI: 10.1016/j.bpg.2021.101737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
The lining of the stomach is a tight monolayer of epithelial cells performing functions in digestion and a protective barrier against gastric acid, toxic metabolites and infectious agents, including Helicobacter pylori. The response of the epithelial barrier to infections underlies gastric pathologies, including gastric cancer. H. pylori has the unique capacity to colonise the gastric mucosa while evading the immune system. The colonised mucosa initiates an inflammatory response to fight the infection and a strong regenerative program to avoid barrier failure and ulceration. This response changes the morphology and cell composition of the gastric epithelium and in parallel it might contribute to the accumulation of somatic mutations leading to cellular transformation. Genetically modified mice, cell lines and human-derived organoids are the main biological models to study the gastric epithelial barrier. With these models it is possible to dissect the stepwise process of tissue adaptation to infection that places the epithelium at risk of malignant transformation.
Collapse
Affiliation(s)
- Jan Traulsen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| | - Claudia Zagami
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| | - Alice Anna Daddi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| | - Francesco Boccellato
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, United Kingdom.
| |
Collapse
|
24
|
Marini RP, Patterson MM, Muthupalani S, Feng Y, Holcombe H, Swennes AG, Ducore R, Whary MM, Shen Z, Fox JG. Helicobacter suis and Helicobacter pylori infection in a colony of research macaques: characterization and clinical correlates. J Med Microbiol 2021; 70. [PMID: 33475481 DOI: 10.1099/jmm.0.001315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction. Helicobacter suis (Helicobacter heilmannii type 1) commonly infects nonhuman primates but its clinical importance is in question.Aim. To characterize H. suis infection in a colony of rhesus macaques (Macaca mulatta) used in cognitive neuroscience research.Hypothesis/Gap Statement. Inquiries into the nature of Helicobacter suis in nonhuman primates are required to further define the organism's virulence and the experimental animal's gastric microbiome.Methodology. Animals with and without clinical signs of vomiting and abdominal pain (n=5 and n=16, respectively) were evaluated by histology, culture, PCR amplification and sequencing, fluorescent in situ hybridization (FISH) and serology. Three of the five animals with clinical signs, an index case and two others, were evaluated before and after antimicrobial therapy.Results. The index animal had endoscopically visible ulcers and multifocal, moderate, chronic lymphoplasmacytic gastritis with intraglandular and luminal spiral bacteria. Antimicrobial therapy in the index animal achieved histologic improvement, elimination of endoscopically visible ulcers, and evident eradication but clinical signs persisted. In the other treated animals, gastritis scores were not consistently altered, gastric bacteria persisted, but vomiting and abdominal discomfort abated.Nineteen of 21 animals were PCR positive for H. suis and five animals were also PCR positive for H. pylori. Organisms were detected by FISH in 17 of 21 animals: 16S rRNA sequences of two of these were shown to be H. suis. Mild to moderate lymphoplasmacytic gastritis was seen in antrum, body and cardia, with antral gastritis more likely to be moderate than that of the body.Conclusion. No clear association between the bacterial numbers of Helicobacter spp. and the degree of inflammation was observed. H. suis is prevalent in this colony of Macaca mulatta but its clinical importance remains unclear. This study corroborates many of the findings in earlier studies of H. suis infection in macaques but also identifies at least one animal in which gastritis and endoscopically visible gastric ulcers were strongly associated with H. suis infection. In this study, serology was an inadequate biomarker for endoscopic evaluation in diagnosis of H. suis infection.
Collapse
Affiliation(s)
- Robert P Marini
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Mary M Patterson
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Sureshkumar Muthupalani
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Yan Feng
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Hilda Holcombe
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Alton G Swennes
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Rebecca Ducore
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Mark M Whary
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - Zeli Shen
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| | - James G Fox
- The Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Ave, Bldg 16-825, Cambridge, MA, USA
| |
Collapse
|
25
|
Wang L, Zhang Y, Chen Y, Tan J, Wang L, Zhang J, Yang C, Ma Q, Ge Y, Xu Z, Pan Z, Du L, Yan F, Yao W, Zhang H. The Performance of a Dual-Energy CT Derived Radiomics Model in Differentiating Serosal Invasion for Advanced Gastric Cancer Patients After Neoadjuvant Chemotherapy: Iodine Map Combined With 120-kV Equivalent Mixed Images. Front Oncol 2021; 10:562945. [PMID: 33585186 PMCID: PMC7874026 DOI: 10.3389/fonc.2020.562945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022] Open
Abstract
Objectives The aim was to determine whether the dual-energy CT radiomics model derived from an iodine map (IM) has incremental diagnostic value for the model based on 120-kV equivalent mixed images (120 kVp) in preoperative restaging of serosal invasion with locally advanced gastric cancer (LAGC) after neoadjuvant chemotherapy (NAC). Methods A total of 155 patients (110 in the training cohort and 45 in the testing cohort) with LAGC who had standard NAC before surgery were retrospectively enrolled. All CT images were analyzed by two radiologists for manual classification. Volumes of interests (VOIs) were delineated semi-automatically, and 1,226 radiomics features were extracted from every segmented lesion in both IM and 120 kVp images, respectively. Spearman's correlation analysis and the least absolute shrinkage and selection operator (LASSO) penalized logistic regression were implemented for filtering unstable and redundant features and screening out vital features. Two predictive models (120 kVp and IM-120 kVp) based on 120 kVp selected features only and 120 kVp combined with IM selected features were established by multivariate logistic regression analysis. We then build a combination model (ComModel) developed with IM-120 kVp signature and ycT. The performance of these three models and manual classification were evaluated and compared. Result Three radiomics models showed great predictive accuracy and performance in both the training and testing cohorts (ComModel: AUC: training, 0.953, testing, 0.914; IM-120 kVp: AUC: training, 0.953, testing, 0.879; 120 kVp: AUC: training, 0.940, testing, 0.831). All these models showed higher diagnostic accuracy (ComModel: 88.9%, IM-120 kVp: 84.4%, 120 kVp: 80.0%) than manual classification (68.9%) in the testing group. ComModel and IM-120 kVp model had better performances than manual classification both in the training (both p<0.001) and testing cohorts (p<0.001 and p=0.034, respectively). Conclusions Dual-energy CT-based radiomics models demonstrated convincible diagnostic performance in differentiating serosal invasion in preoperative restaging for LAGC. The radiomics features derived from IM showed great potential for improving the diagnostic capability.
Collapse
Affiliation(s)
- Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Zhang
- Department of Radiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingwen Tan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxue Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchen Ma
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingqian Ge
- CHN DI CT Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Zhihan Xu
- CHN DI CT Collaboration, Siemens Healthineers Ltd, Shanghai, China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lianjun Du
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwu Yao
- Department of Radiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Jones DW, Zavros Y. In vivo and in vitro models of gastric cancer. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:157-184. [DOI: 10.1016/b978-0-323-85563-1.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
27
|
Owyang SY, Zhang M, El-Zaatari M, Eaton KA, Bishu S, Hou G, Grasberger H, Kao JY. Dendritic cell-derived TGF-β mediates the induction of mucosal regulatory T-cell response to Helicobacter infection essential for maintenance of immune tolerance in mice. Helicobacter 2020; 25:e12763. [PMID: 33025641 PMCID: PMC7885176 DOI: 10.1111/hel.12763] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori infection leads to regulatory T-cell (Treg) induction in infected mice, which contributes to H. pylori immune escape. However, the mechanisms responsible for H. pylori induction of Treg and immune tolerance remain unclear. We hypothesized DC-produced TGF-β may be responsible for Treg induction and immune tolerance. MATERIALS AND METHODS To test this hypothesis, we generated TGF-β∆DC mice (CD11c+ DC-specific TGF-β deletion) and assessed the impact of DC-specific TGF-β deletion on DC function during Helicobacter infection in vitro and in vivo. To examine the T cell-independent DC function, we crossed TGF-β∆DC mice onto Rag1KO background to generate TGF-β∆DC xRag1KO mice. RESULTS When stimulated with H. pylori, TGF-β∆DC BMDC/splenocyte cocultures showed increased levels of proinflammatory cytokines and decreased levels of anti-inflammatory cytokines compared to control, indicating a proinflammatory DC phenotype. Following 6 months of H. felis infection, TGF-β∆DC mice developed more severe gastritis and a trend toward more metaplasia compared to TGF-βfl/fl with increased levels of inflammatory Th1 cytokine mRNA and lower gastric H. felis colonization compared to infected TGF-βfl/fl mice. In a T cell-deficient background using TGF-β∆DC xRag1KO mice, H. felis colonization was significantly lower when DC-derived TGF-β was absent, revealing a direct, innate function of DC in controlling H. felis infection independent of Treg induction. CONCLUSIONS Our findings indicate that DC-derived TGF-β mediates Helicobacter-induced Treg response and attenuates the inflammatory Th1 response. We also demonstrated a previously unrecognized innate role of DC controlling Helicobacter colonization via a Treg-independent mechanism. DC TGF-β signaling may represent an important target in the management of H. pylori.
Collapse
Affiliation(s)
- Stephanie Y. Owyang
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Min Zhang
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Mohamad El-Zaatari
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Kathryn A. Eaton
- Unit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, 48109 USA
| | - Shrinivas Bishu
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Guoqing Hou
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - Helmut Grasberger
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| | - John Y. Kao
- Department of Internal Medicine (Division of Gastroenterology), University of Michigan Health System, Ann Arbor, Michigan, 48109 USA
| |
Collapse
|
28
|
Establishment of a Human Gastric Cancer Xenograft Model in Immunocompetent Mice Using the Microcarrier-6. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1893434. [PMID: 32337226 PMCID: PMC7165317 DOI: 10.1155/2020/1893434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/04/2023]
Abstract
Gastric cancer is among the most common malignant tumors of the digestive tract. Establishing a robust and reliable animal model is the foundation for studying the pathogenesis of cancer. The present study established a mouse model of gastric carcinoma by inoculating immunocompetent mice with MKN45 cells using microcarrier. Sixty male C57BL/6 mice were randomly divided into three groups: a 2D group, an empty carrier group, and a 3D group, according to the coculture system of MKN45 and the microcarrier. The mouse models were established by hypodermic injection. Time to develop tumor, rate of tumor formation, and pathological features were observed in each group. In the 3D group, the tumorigenesis time was short, while the rate of tumor formation was high (75%). There was no detectable tumor formation in either the 2D or the empty carrier group. Both H&E and immunohistochemical staining of the tumor xenograft showed characteristic evidence of human gastric neoplasms. The present study successfully established a human gastric carcinoma model in immunocompetent mice, which provides a novel and valuable animal model for the cancer research and development of anticancer drugs.
Collapse
|
29
|
Poh AR, Dwyer AR, Eissmann MF, Chand AL, Baloyan D, Boon L, Murrey MW, Whitehead L, O'Brien M, Lowell CA, Putoczki TL, Pixley FJ, O'Donoghue RJJ, Ernst M. Inhibition of the SRC Kinase HCK Impairs STAT3-Dependent Gastric Tumor Growth in Mice. Cancer Immunol Res 2020; 8:428-435. [PMID: 31992566 DOI: 10.1158/2326-6066.cir-19-0623] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/08/2019] [Accepted: 01/24/2020] [Indexed: 01/25/2023]
Abstract
Persistent activation of the latent transcription factor STAT3 is observed in gastric tumor epithelial and immune cells and is associated with a poor patient prognosis. Although targeting STAT3-activating upstream kinases offers therapeutically viable targets with limited specificity, direct inhibition of STAT3 remains challenging. Here we provide functional evidence that myeloid-specific hematopoietic cell kinase (HCK) activity can drive STAT3-dependent epithelial tumor growth in mice and is associated with alternative macrophage activation alongside matrix remodeling and tumor cell invasion. Accordingly, genetic reduction of HCK expression in bone marrow-derived cells or systemic pharmacologic inhibition of HCK activity suppresses alternative macrophage polarization and epithelial STAT3 activation, and impairs tumor growth. These data validate HCK as a molecular target for the treatment of human solid tumors harboring excessive STAT3 activity.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Amy R Dwyer
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Moritz F Eissmann
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Ashwini L Chand
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | - David Baloyan
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | | | - Michael W Murrey
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Megan O'Brien
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia
| | | | - Tracy L Putoczki
- The Walter and Eliza Hall Institute of Medical Research and Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Fiona J Pixley
- School of Medicine and Pharmacology, The University of Western Australia, Western Australia, Australia
| | - Robert J J O'Donoghue
- Department of Pharmacology and Therapeutics, University of Melbourne, Victoria, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Victoria, Australia.
| |
Collapse
|
30
|
Mansingh DP, Pradhan S, Biswas D, Barathidasan R, Vasanthi HR. Palliative Role of Aqueous Ginger Extract on N-Nitroso- N-Methylurea-Induced Gastric Cancer. Nutr Cancer 2019; 72:157-169. [PMID: 31155951 DOI: 10.1080/01635581.2019.1619784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 01/26/2023]
Abstract
Ginger (Zingiber officinale) is a spice and also an herbal medicine used worldwide for managing GI tract disturbances. However, its role in gastric cancer is sparingly known. This study ensures the standardization of gastric cancer by the induction of N-nitroso N-methyl Urea (MNU) and to determine the role of the aqueous extract of ginger (AGE) in MNU-induced gastric cancer in albino Wistar rats. Accordingly, the anticancer potential of AGE and its possible mode of action were assessed on rats exposed to MNU, by various biochemical and molecular assays. As evidenced by the extent of lipid peroxidation, gastrin levels and histopathological sections in MNU-induced cancerous lesions at 8 wk which was stabilized at 16 wk confirming the induction of gastric carcinoma by the chemical carcinogen. Further, results revealed that AGE alleviated the oxidative stress as evidenced by the stomach antioxidant enzymes (SOD, catalase, GPx, and GR), markers of oxidative stress (TRx, GRx) and Gastrin, a specific marker for gastric cancer and a decreased level of pro-inflammatory markers (NF-kB, TNF-α, IL-6, PGE2) which was further confirmed by histopathological analysis. AGE is responsible to mitigate oxidative stress and inflammation related to gastric cancer and could be used as a potential dietary intervention in gastric cancer therapy.
Collapse
Affiliation(s)
- Debjani P Mansingh
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Shalini Pradhan
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Deeptarup Biswas
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - R Barathidasan
- Central Inter-Disciplinary Research Facility (CIDRF), Mahatma Gandhi Medical College & Research Institute campus, Puducherry, India
| | - Hannah R Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
31
|
Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, Kawasaki K, Togasaki K, Takahashi S, Sukawa Y, Ishida H, Sugimoto S, Kawakubo H, Kim J, Kitagawa Y, Sekine S, Koo BK, Kanai T, Sato T. Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell 2019; 174:856-869.e17. [PMID: 30096312 DOI: 10.1016/j.cell.2018.07.027] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/29/2018] [Accepted: 07/21/2018] [Indexed: 12/17/2022]
Abstract
Recent sequencing analyses have shed light on heterogeneous patterns of genomic aberrations in human gastric cancers (GCs). To explore how individual genetic events translate into cancer phenotypes, we established a biological library consisting of genetically engineered gastric organoids carrying various GC mutations and 37 patient-derived organoid lines, including rare genomically stable GCs. Phenotype analyses of GC organoids revealed divergent genetic and epigenetic routes to gain Wnt and R-spondin niche independency. An unbiased phenotype-based genetic screening identified a significant association between CDH1/TP53 compound mutations and the R-spondin independency that was functionally validated by CRISPR-based knockout. Xenografting of GC organoids further established the feasibility of Wnt-targeting therapy for Wnt-dependent GCs. Our results collectively demonstrate that multifaceted genetic abnormalities render human GCs independent of the stem cell niche and highlight the validity of the genotype-phenotype screening strategy in gaining deeper understanding of human cancers.
Collapse
Affiliation(s)
- Kosaku Nanki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kohta Toshimitsu
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Ai Takano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masayuki Fujii
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mariko Shimokawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yuki Ohta
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Mami Matano
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Takashi Seino
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shingo Nishikori
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Company, Limited, Shiga 520-0106, Japan
| | - Keiko Ishikawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenta Kawasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazuhiro Togasaki
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Sirirat Takahashi
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Yasutaka Sukawa
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroki Ishida
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shinya Sugimoto
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hirofumi Kawakubo
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Jihoon Kim
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, 1030, Austria
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Shigeki Sekine
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, 1030, Austria
| | - Takanori Kanai
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Toshiro Sato
- Department of Gastroenterology, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| |
Collapse
|
32
|
Liu W, Pan HF, Wang Q, Zhao ZM. The application of transgenic and gene knockout mice in the study of gastric precancerous lesions. Pathol Res Pract 2018; 214:1929-1939. [PMID: 30477641 DOI: 10.1016/j.prp.2018.10.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
Gastric intestinal metaplasia is a precursor for gastric dysplasia, which is in turn, a risk factor for gastric adenocarcinoma. Gastric metaplasia and dysplasia are known as gastric precancerous lesions (GPLs), which are essential stages in the progression from normal gastric mucosa to gastric cancer (GC) or gastric adenocarcinoma. Genetically-engineered mice have become essential tools in various aspects of GC research, including mechanistic studies and drug discovery. Studies in mouse models have contributed significantly to our understanding of the pathogenesis and molecular mechanisms underlying GPLs and GC. With the development and improvement of gene transfer technology, investigators have created a variety of transgenic and gene knockout mouse models for GPLs, such as H/K-ATPase transgenic and knockout mutant mice and gastrin gene knockout mice. Combined with Helicobacter infection, and treatment with chemical carcinogens, these mice develop GPLs or GC and thus provide models for studying the molecular biology of GC, which may lead to the discovery and development of novel drugs. In this review, we discuss recent progress in the use of genetically-engineered mouse models for GPL research, with particular emphasis on the importance of examining the gastric mucosa at the histological level to investigate morphological changes of GPL and GC and associated protein and gene expression.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China.
| | - Hua-Feng Pan
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, China
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zi-Ming Zhao
- Guangdong Province Engineering Technology Research Institute of T.C.M., Guangzhou 510095, China
| |
Collapse
|
33
|
Li J, Perez Perez GI. Is There a Role for the Non- Helicobacter pylori Bacteria in the Risk of Developing Gastric Cancer? Int J Mol Sci 2018; 19:E1353. [PMID: 29751550 PMCID: PMC5983810 DOI: 10.3390/ijms19051353] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the most abundant bacterium in the gastric epithelium, and its presence has been associated with the risk of developing gastric cancer. As of 15 years ago, no other bacteria were associated with gastric epithelial colonization; but thanks to new methodologies, many other non-H. pylori bacteria have been identified. It is possible that non-H. pylori may have a significant role in the development of gastric cancer. Here, we discuss the specific role of H. pylori as a potential trigger for events that may be conducive to gastric cancer, and consider whether or not the rest of the gastric microbiota represent an additional risk in the development of this disease.
Collapse
Affiliation(s)
- Jackie Li
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
34
|
Zhang S, Kim W, Pham TT, Rogers AB, Houghton JM, Moss SF. Native and bone marrow-derived cell mosaicism in gastric carcinoma in H. pylori-infected p27-deficient mice. Oncotarget 2018; 7:69136-69148. [PMID: 27655701 PMCID: PMC5342465 DOI: 10.18632/oncotarget.12049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023] Open
Abstract
Objective Chronic Helicobacter pylori (H. pylori) infection promotes non-cardia gastric cancer. Some mouse models suggest that bone marrow derived cells (BMDC) contribute to Helicobacter-associated gastric carcinogenesis. We determined whether this increased susceptibility to Helicobacter-induced gastric carcinogenesis of p27-deficient mice is dependent upon their p27-null BMDC or their p27-null gastric epithelial cells. Design Female mice (recipients) were irradiated and transplanted with BMDC from male donors. Wild type (WT) mice in group 1 (control) received BMDC from male GFP-transgenic mice. Female WT and p27 KO mice were engrafted with male p27KO mice BMDC (Group 2) or GFP-transgenic WT BMDC (Group 3). Recipients were infected with H. pylori SS1 for one year. Results Mice lacking p27 in either the BM pool or gastric epithelium developed significantly more advanced gastric pathology, including high-grade dysplasia. Co-staining of donor BMDC in dysplastic gastric glands was confirmed by immunofluorescence. Gastric expression of IL-1 beta protein was reduced in groups 2 and 3 (p < 0.05 vs control) whereas expression of IFN-γ and chemokines MIP-1 beta, MIG, IP-10 and RANTES in group 2 were significantly higher than group 3. Conclusions Both bone marrow-derived and gastric epithelial cells contribute to the increased gastric cancer susceptibility of p27-deficient H. pylori-infected mice.
Collapse
Affiliation(s)
- Songhua Zhang
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Woojin Kim
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Tu T Pham
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Arlin B Rogers
- Department of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Jean Marie Houghton
- Department of Medicine and Cancer Biology, Division of Gastroenterology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Steven F Moss
- Division of Gastroenterology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|