1
|
Li X, Liao M, Huang J, Xu Z, Lin Z, Ye N, Zhang Z, Peng X. Glycolate oxidase-dependent H 2O 2 production regulates IAA biosynthesis in rice. BMC PLANT BIOLOGY 2021; 21:326. [PMID: 34229625 PMCID: PMC8261990 DOI: 10.1186/s12870-021-03112-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/28/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Glycolate oxidase (GLO) is not only a key enzyme in photorespiration but also a major engine for H2O2 production in plants. Catalase (CAT)-dependent H2O2 decomposition has been previously reported to be involved in the regulation of IAA biosynthesis. However, it is still not known which mechanism contributed to the H2O2 production in IAA regulation. RESULTS In this study, we found that in glo mutants of rice, as H2O2 levels decreased IAA contents significantly increased, whereas high CO2 abolished the difference in H2O2 and IAA contents between glo mutants and WT. Further analyses showed that tryptophan (Trp, the precursor for IAA biosynthesis in the Trp-dependent biosynthetic pathway) also accumulated due to increased tryptophan synthetase β (TSB) activity. Moreover, expression of the genes involved in Trp-dependent IAA biosynthesis and IBA to IAA conversion were correspondingly up-regulated, further implicating that both pathways contribute to IAA biosynthesis as mediated by the GLO-dependent production of H2O2. CONCLUSION We investigated the function of GLO in IAA signaling in different levels from transcription, enzyme activities to metabolic levels. The results suggest that GLO-dependent H2O2 signaling, essentially via photorespiration, confers regulation over IAA biosynthesis in rice plants.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Mengmeng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Jiayu Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zheng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Zhanqiao Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| | - Nenghui Ye
- College of Agronomy, Hunan Agricultural University, No.1, Nongda Road, Changsha, 410128, China
| | - Zhisheng Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China.
| | - Xinxiang Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, No.483, Wushan Road, 510642, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, South China Agricultural University, No.483, Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
2
|
Metabolite Profiling in Arabidopsisthaliana with Moderately Impaired Photorespiration Reveals Novel Metabolic Links and Compensatory Mechanisms of Photorespiration. Metabolites 2021; 11:metabo11060391. [PMID: 34203750 PMCID: PMC8232240 DOI: 10.3390/metabo11060391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Photorespiration is an integral component of plant primary metabolism. Accordingly, it has been often observed that impairing the photorespiratory flux negatively impacts other cellular processes. In this study, the metabolic acclimation of the Arabidopsisthaliana wild type was compared with the hydroxypyruvate reductase 1 (HPR1; hpr1) mutant, displaying only a moderately reduced photorespiratory flux. Plants were analyzed during development and under varying photoperiods with a combination of non-targeted and targeted metabolome analysis, as well as 13C- and 14C-labeling approaches. The results showed that HPR1 deficiency is more critical for photorespiration during the vegetative compared to the regenerative growth phase. A shorter photoperiod seems to slowdown the photorespiratory metabolite conversion mostly at the glycerate kinase and glycine decarboxylase steps compared to long days. It is demonstrated that even a moderate impairment of photorespiration severely reduces the leaf-carbohydrate status and impacts on sulfur metabolism. Isotope labeling approaches revealed an increased CO2 release from hpr1 leaves, most likely occurring from enhanced non-enzymatic 3-hydroxypyruvate decarboxylation and a higher flux from serine towards ethanolamine through serine decarboxylase. Collectively, the study provides evidence that the moderate hpr1 mutant is an excellent tool to unravel the underlying mechanisms governing the regulation of metabolic linkages of photorespiration with plant primary metabolism.
Collapse
|
3
|
Dhami N, Tissue DT, Cazzonelli CI. Leaf-age dependent response of carotenoid accumulation to elevated CO 2 in Arabidopsis. Arch Biochem Biophys 2018; 647:67-75. [PMID: 29604257 DOI: 10.1016/j.abb.2018.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 01/06/2023]
Abstract
Carotenoids contribute to photosynthesis, photoprotection, phytohormone and apocarotenoid biosynthesis in plants. Carotenoid-derived metabolites control plant growth, development and signalling processes and their accumulation can depend upon changes in the environment. Elevated carbon dioxide (eCO2) often enhances carbon assimilation, early growth patterns and overall plant biomass, and may increase carotenoid accumulation due to higher levels of precursors from isoprenoid biosynthesis. Variable effects of eCO2 on carotenoid accumulation in leaves have been observed for different plant species. Here, we determined whether the variable response of carotenoids to eCO2 was potentially a function of leaf age and the impact of eCO2 on leaf development by growing Arabidopsis in ambient CO2 (400 ppm) and eCO2 (800 ppm). eCO2 increased plant leaf number, rosette area, biomass, seed yield and net photosynthesis. In addition, eCO2 increased carotenoid content by 10-20% in younger emerging leaves, but not in older mature leaves. Older leaves contained approximately 60% less total carotenoids compared to younger leaves. The age-dependent effect on carotenoid content was observed for cotyledon, juvenile and adult phase leaves. We conclude that younger leaves utilize additional carbon from enhanced photosynthesis in eCO2 to increase carotenoid content, yet older leaves have less capacity to store additional carbon into carotenoids.
Collapse
Affiliation(s)
- Namraj Dhami
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - David T Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.
| |
Collapse
|
4
|
Tcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous KY, Griffin K, Way D, Turnbull M, Adams MA, Atkin OK, Farquhar GD, Cornic G. Leaf day respiration: low CO 2 flux but high significance for metabolism and carbon balance. THE NEW PHYTOLOGIST 2017; 216:986-1001. [PMID: 28967668 DOI: 10.1111/nph.14816] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/13/2017] [Indexed: 05/04/2023]
Abstract
Contents 986 I. 987 II. 987 III. 988 IV. 991 V. 992 VI. 995 VII. 997 VIII. 998 References 998 SUMMARY: It has been 75 yr since leaf respiratory metabolism in the light (day respiration) was identified as a low-flux metabolic pathway that accompanies photosynthesis. In principle, it provides carbon backbones for nitrogen assimilation and evolves CO2 and thus impacts on plant carbon and nitrogen balances. However, for a long time, uncertainties have remained as to whether techniques used to measure day respiratory efflux were valid and whether day respiration responded to environmental gaseous conditions. In the past few years, significant advances have been made using carbon isotopes, 'omics' analyses and surveys of respiration rates in mesocosms or ecosystems. There is substantial evidence that day respiration should be viewed as a highly dynamic metabolic pathway that interacts with photosynthesis and photorespiration and responds to atmospheric CO2 mole fraction. The view of leaf day respiration as a constant and/or negligible parameter of net carbon exchange is now outdated and it should now be regarded as a central actor of plant carbon-use efficiency.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Paul Gauthier
- Department of Geosciences, Princeton University, Princeton, NJ, 08540, USA
| | - Thomas N Buckley
- IA Watson Grains Research Centre, University of Sydney, 12656 Newell Hwy, Narrabri, NSW, 2390, Australia
| | - Florian A Busch
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Margaret M Barbour
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Dan Bruhn
- Section of Biology and Environmental Science, Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg East, Denmark
| | - Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354, Freising, Germany
| | - Kristine Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Kevin Griffin
- Department of Ecology, Evolution and Environmental Biology (E3B), Columbia University, 1200 Amsterdam Avenue, New York, NY, 10027, USA
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Matthew Turnbull
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, PB 4800, Christchurch, New Zealand
| | - Mark A Adams
- Centre for Carbon, Water and Food, University of Sydney, 380 Werombi Rd, Brownlow Hill, NSW, 2570, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Graham D Farquhar
- Research School of Biology, College of Science, and ARC Center of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Gabriel Cornic
- Ecologie Systématique Evolution, Université Paris-Sud, 91405, Orsay Cedex, France
| |
Collapse
|
5
|
Abadie C, Carroll A, Tcherkez G. Interactions Between Day Respiration, Photorespiration, and N and S Assimilation in Leaves. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M, Hoehne M, Fernie AR, Stitt M. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:283-298. [PMID: 27834209 PMCID: PMC5853532 DOI: 10.1093/jxb/erw414] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/18/2016] [Indexed: 05/17/2023]
Abstract
Worldwide efforts to engineer C4 photosynthesis into C3 crops require a deep understanding of how this complex pathway operates. CO2 is incorporated into four-carbon metabolites in the mesophyll, which move to the bundle sheath where they are decarboxylated to concentrate CO2 around RuBisCO. We performed dynamic 13CO2 labeling in maize to analyze C flow in C4 photosynthesis. The overall labeling kinetics reflected the topology of C4 photosynthesis. Analyses of cell-specific labeling patterns after fractionation to enrich bundle sheath and mesophyll cells revealed concentration gradients to drive intercellular diffusion of malate, but not pyruvate, in the major CO2-concentrating shuttle. They also revealed intercellular concentration gradients of aspartate, alanine, and phosphenolpyruvate to drive a second phosphoenolpyruvate carboxykinase (PEPCK)-type shuttle, which carries 10-14% of the carbon into the bundle sheath. Gradients also exist to drive intercellular exchange of 3-phosphoglycerate and triose-phosphate. There is rapid carbon exchange between the Calvin-Benson cycle and the CO2-concentrating shuttle, equivalent to ~10% of carbon gain. In contrast, very little C leaks from the large pools of metabolites in the C concentration shuttle into respiratory metabolism. We postulate that the presence of multiple shuttles, alongside carbon transfer between them and the Calvin-Benson cycle, confers great flexibility in C4 photosynthesis.
Collapse
Affiliation(s)
- Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Marek Szecówka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Manuela Guenther
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
7
|
du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:1261. [PMID: 28775728 PMCID: PMC5518647 DOI: 10.3389/fpls.2017.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.
Collapse
Affiliation(s)
- Kari du Plessis
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Philip R. Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Hans A. Eyéghé-Bickong
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- Institute for Grape and Wine Sciences, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- *Correspondence: Melané A. Vivier
| |
Collapse
|
8
|
Jorge TF, Mata AT, António C. Mass spectrometry as a quantitative tool in plant metabolomics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150370. [PMID: 27644967 PMCID: PMC5031636 DOI: 10.1098/rsta.2015.0370] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2016] [Indexed: 05/03/2023]
Abstract
Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Tiago F Jorge
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Ana T Mata
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Carla António
- Plant Metabolomics Laboratory, ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
9
|
Florez-Sarasa I, Ribas-Carbo M, Del-Saz NF, Schwahn K, Nikoloski Z, Fernie AR, Flexas J. Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. THE NEW PHYTOLOGIST 2016; 212:66-79. [PMID: 27321208 DOI: 10.1111/nph.14030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/23/2016] [Indexed: 06/06/2023]
Abstract
The mitochondrial alternative oxidase pathway (AOP) has been suggested to act as a sink for excess reducing power generated in the chloroplast under high-light (HL) stress and thus may reduce photoinhibition. The aim of this study was to compare different species to investigate the in vivo regulation and role of AOP under HL stress. The in vivo activities of AOP (νalt ) and the cytochrome oxidase pathway, chlorophyll fluorescence, metabolite profiles, alternative oxidase (AOX) capacity and protein amount were determined in leaves of five C3 species under growth light and after HL treatment. Differences in respiration and metabolite levels were observed among species under growth light conditions. The HL response of νalt was highly species dependent, correlated with the AOP capacity and independent of AOX protein content. Nevertheless, significant correlations were observed between νalt , levels of key metabolites and photosynthetic parameters. The results show that the species-specific response of νalt is caused by the differential post-translational regulation of AOX. Significant correlations between respiration, metabolites and photosynthetic performance across species suggest that AOP may permit stress-related amino acid synthesis, whilst maintaining photosynthetic activity under HL stress.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | - Néstor Fernández Del-Saz
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | - Kevin Schwahn
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jaume Flexas
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
10
|
Orf I, Timm S, Bauwe H, Fernie AR, Hagemann M, Kopka J, Nikoloski Z. Can cyanobacteria serve as a model of plant photorespiration? - a comparative meta-analysis of metabolite profiles. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2941-2952. [PMID: 26969741 DOI: 10.1093/jxb/erw068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photorespiration is a process that is crucial for the survival of oxygenic phototrophs in environments that favour the oxygenation reaction of Rubisco. While photorespiration is conserved among cyanobacteria, algae, and embryophytes, it evolved to different levels of complexity in these phyla. The highest complexity is found in embryophytes, where the pathway involves four cellular compartments and respective transport processes. The complexity of photorespiration in embryophytes raises the question whether a simpler system, such as cyanobacteria, may serve as a model to facilitate our understanding of the common key aspects of photorespiration. In this study, we conducted a meta-analysis of publicly available metabolite profiles from the embryophyte Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 grown under conditions that either activate or suppress photorespiration. The comparative meta-analysis evaluated the similarity of metabolite profiles, the variability of metabolite pools, and the patterns of metabolite ratios. Our results show that the metabolic signature of photorespiration is in part conserved between the compared model organisms under conditions that favour the oxygenation reaction. Therefore, our findings support the claim that cyanobacteria can serve as prokaryotic models of photorespiration in embryophytes.
Collapse
Affiliation(s)
- Isabel Orf
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Stefan Timm
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Hermann Bauwe
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Martin Hagemann
- Universität Rostock, Abteilung Pflanzenphysiologie, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| | - Zoran Nikoloski
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam OT Golm, Germany
| |
Collapse
|
11
|
Obata T, Florian A, Timm S, Bauwe H, Fernie AR. On the metabolic interactions of (photo)respiration. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3003-14. [PMID: 27029352 DOI: 10.1093/jxb/erw128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Given that photorespiration is inextricably linked to the process of photosynthesis by virtue of sharing the common first enzyme Rubisco, the photorespiratory pathway has been less subject to study in isolation than many other metabolic pathways. That said, despite often being described to be linked to reactions of ammonia assimilation, C1 metabolism and respiratory metabolism, the precise molecular mechanisms governing these linkages in land plants remain partially obscure. The application of broad metabolite profiling on mutants with altered levels of metabolic enzymes has facilitated the identification of common and distinct metabolic responses among them. Here we provide an update of the recent findings from such studies, focusing particularly on the interplay between photorespiration and the metabolic reactions of mitochondrial respiration. In order to do so we evaluated (i) changes in organic acids following environmental perturbation of metabolism, (ii) changes in organic acid levels in a wide range of photorespiratory mutants, (iii) changes in levels of photorespiratory metabolites in transgenic tomato lines deficient in the expression of enzymes of the tricarboxylic acid cycle. In addition, we estimated the rates of photorespiration in a complete set of tricarboxylic acid cycle transgenic tomato lines. Finally, we discuss insight concerning the interaction between photorespiration and other pathways that has been attained following the development of (13)CO2-based flux profiling methods.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Alexandra Florian
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany
| | - Alisdair R Fernie
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
12
|
Hodges M, Dellero Y, Keech O, Betti M, Raghavendra AS, Sage R, Zhu XG, Allen DK, Weber APM. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3015-26. [PMID: 27053720 DOI: 10.1093/jxb/erw145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photorespiration is an essential high flux metabolic pathway that is found in all oxygen-producing photosynthetic organisms. It is often viewed as a closed metabolic repair pathway that serves to detoxify 2-phosphoglycolic acid and to recycle carbon to fuel the Calvin-Benson cycle. However, this view is too simplistic since the photorespiratory cycle is known to interact with several primary metabolic pathways, including photosynthesis, nitrate assimilation, amino acid metabolism, C1 metabolism and the Krebs (TCA) cycle. Here we will review recent advances in photorespiration research and discuss future priorities to better understand (i) the metabolic integration of the photorespiratory cycle within the complex network of plant primary metabolism and (ii) the importance of photorespiration in response to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Michael Hodges
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Younès Dellero
- Institute of Plant Sciences Paris-Saclay, Université Paris-Sud, CNRS, INRA, Université d'Evry, 91405 Orsay Cedex, France
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå, Sweden
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, 141012 Sevilla, Spain
| | - Agepati S Raghavendra
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Rowan Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S3B2, Canada
| | - Xin-Guang Zhu
- CAS-MPG Partner Institutes for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Doug K Allen
- United States Department of Agriculture-Agricultural Research Service, Plant Genetics Research Unit, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-Universität, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
14
|
Qi X, Zhang D. Plant metabolomics and metabolic biology. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:814-815. [PMID: 25088016 DOI: 10.1111/jipb.12247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Xiaoquan Qi
- Institute of Botany, the Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|