1
|
Nguyen LT, Moutesidi P, Ziegler J, Glasneck A, Khosravi S, Abel S, Hensel G, Krupinska K, Humbeck K. WHIRLY1 regulates aliphatic glucosinolate biosynthesis in early seedling development of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17181. [PMID: 39625871 PMCID: PMC11712025 DOI: 10.1111/tpj.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
WHIRLY1 belongs to a family of plant-specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A. thaliana were prepared by CRISPR/Cas9-mediated genome editing to investigate the role of WHIRLY1 during early seedling development. The loss-of-function of WHIRLY1 in 5-day-old seedlings did not cause differences in the phenotype and the photosynthetic performance of the emerging cotyledons compared with the wild type. Nevertheless, comparative RNA sequencing analysis revealed that the knockout of WHIRLY1 affected the expression of a small but specific set of genes during this critical phase of development. About 110 genes were found to be significantly deregulated in the knockout mutant, wherein several genes involved in the early steps of aliphatic glucosinolate (GSL) biosynthesis were suppressed compared with wild-type plants. The downregulation of these genes in WHIRLY1 knockout lines led to decreased GSL contents in seedlings and in seeds. Since GSL catabolism mediated by myrosinases was not altered during seed-to-seedling transition, the results suggest that AtWHIRLY1 plays a major role in modulation of aliphatic GSL biosynthesis during early seedling development. In addition, phylogenetic analysis revealed a coincidence between the evolution of methionine-derived aliphatic GSLs and the addition of a new WHIRLY in core families of the plant order Brassicales.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Institute of BiologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Pinelopi Moutesidi
- Department of Molecular Signal ProcessingLeibniz Institute of Plant Biochemistry (IPB)06120Halle (Saale)Germany
| | - Jörg Ziegler
- Program Center for Plant Metabolomics and Computational BiochemistryLeibniz Institute of Plant Biochemistry (IPB)06120Halle (Saale)Germany
| | - Anike Glasneck
- Institute of BotanyChristian‐Albrechts‐University (CAU)24098KielGermany
| | - Solmaz Khosravi
- Department of Breeding ResearchLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Steffen Abel
- Department of Molecular Signal ProcessingLeibniz Institute of Plant Biochemistry (IPB)06120Halle (Saale)Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant BiochemistryHeinrich‐Heine‐University Duesseldorf40225DuesseldorfGermany
| | - Karin Krupinska
- Institute of BotanyChristian‐Albrechts‐University (CAU)24098KielGermany
| | - Klaus Humbeck
- Institute of BiologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| |
Collapse
|
2
|
Aslam N, Li Q, Bashir S, Yuan L, Qiao L, Li W. Integrated Review of Transcriptomic and Proteomic Studies to Understand Molecular Mechanisms of Rice's Response to Environmental Stresses. BIOLOGY 2024; 13:659. [PMID: 39336087 PMCID: PMC11428526 DOI: 10.3390/biology13090659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
Rice (Oryza sativa L.) is grown nearly worldwide and is a staple food for more than half of the world's population. With the rise in extreme weather and climate events, there is an urgent need to decode the complex mechanisms of rice's response to environmental stress and to breed high-yield, high-quality and stress-resistant varieties. Over the past few decades, significant advancements in molecular biology have led to the widespread use of several omics methodologies to study all aspects of plant growth, development and environmental adaptation. Transcriptomics and proteomics have become the most popular techniques used to investigate plants' stress-responsive mechanisms despite the complexity of the underlying molecular landscapes. This review offers a comprehensive and current summary of how transcriptomics and proteomics together reveal the molecular details of rice's response to environmental stresses. It also provides a catalog of the current applications of omics in comprehending this imperative crop in relation to stress tolerance improvement and breeding. The evaluation of recent advances in CRISPR/Cas-based genome editing and the application of synthetic biology technologies highlights the possibility of expediting the development of rice cultivars that are resistant to stress and suited to various agroecological environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling 712100, China; (N.A.); (Q.L.); (S.B.); (L.Y.); (L.Q.)
| |
Collapse
|
3
|
Ebrahimi V, Hashemi A. CRISPR-based gene editing in plants: Focus on reagents and their delivery tools. BIOIMPACTS : BI 2024; 15:30019. [PMID: 39963563 PMCID: PMC11830140 DOI: 10.34172/bi.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2025]
Abstract
Introduction CRISPR-Cas9 technology has revolutionized plant genome editing, providing precise and efficient methods for genetic modification. This study focuses on the advancements and delivery of CRISPR-Cas9 in plant gene editing. Methods A comprehensive search in scientific databases, including PubMed, ScienceDirect, and Google Scholar, was conducted to gather information on CRISPR-Cas9 gene editing and its delivery in precise gene modification in plants. Results The evolving landscape of CRISPR nucleases has led to the development of innovative technologies, enhancing plant research. However, successful editing is contingent on efficient delivery of genome engineering reagents. CRISPR-based gene editing in plants utilizes diverse delivery methods: Agrobacterium-mediated transformation for bacterial transfer, biolistic transformation for physical gene insertion, electroporation for direct gene entry, expression of developmental regulators for gene expression modulation, and tobacco rattle virus as a viral vector, each offering distinct advantages for precise and efficient genetic modification in plants. Conclusion CRISPR-Cas9 gene editing stands as a pivotal advancement in plant genetics, offering precise gene manipulation with applications in agriculture and biotechnology. The continuous refinement of reagent delivery tools reinforces CRISPR-Cas9's transformative role in plant genome editing, with significant implications for broader scientific applications.
Collapse
Affiliation(s)
- Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Rezaeva BR, Rutten T, Bollmann C, Ortleb S, Melzer M, Kumlehn J. Plant Regeneration via Adventitious Shoot Formation from Immature Zygotic Embryo Explants of Camelina. PLANTS (BASEL, SWITZERLAND) 2024; 13:465. [PMID: 38498454 PMCID: PMC10892543 DOI: 10.3390/plants13040465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 03/20/2024]
Abstract
Camelina is an oil seed crop that is enjoying increasing interest because it has a particularly valuable fatty acid profile, is modest regarding its water and nutrient requirements, and is comparatively resilient to abiotic and biotic stress factors. The regeneration of plants from cells accessible to genetic manipulation is an essential prerequisite for the generation of genetically engineered plants, be it by transgenesis or genome editing. Here, immature embryos were used on the assumption that their incomplete differentiation was associated with totipotency. In culture, regenerative structures appeared adventitiously at the embryos' hypocotyls. For this, the application of auxin- or cytokinin-type growth regulators was essential. The formation of regenerative structures was most efficient when indole-3-acetic acid was added to the induction medium at 1 mg/L, zygotic embryos of the medium walking stick stage were used, and their hypocotyls were stimulated by pricking to a wound response. Histological examinations revealed that the formation of adventitious shoots was initiated by locally activated cell division and proliferation in the epidermis and the outer cortex of the hypocotyl. While the regeneration of plants was established in principle using the experimental line Cam139, the method proved to be similarly applicable to the current cultivar Ligena, and hence it constitutes a vital basis for future genetic engineering approaches.
Collapse
Affiliation(s)
- Barno Ruzimurodovna Rezaeva
- Plant Reproductive Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (B.R.R.); (C.B.)
| | - Twan Rutten
- Structural Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (T.R.); (M.M.)
| | - Carola Bollmann
- Plant Reproductive Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (B.R.R.); (C.B.)
| | - Stefan Ortleb
- Assimilate Allocation and NMR, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany;
| | - Michael Melzer
- Structural Cell Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (T.R.); (M.M.)
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute for Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (B.R.R.); (C.B.)
| |
Collapse
|
5
|
Pietralla J, Capdeville N, Schindele P, Puchta H. Optimizing ErCas12a for efficient gene editing in Arabidopsis thaliana. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:401-412. [PMID: 37864303 PMCID: PMC10826985 DOI: 10.1111/pbi.14194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 10/22/2023]
Abstract
The ErCas12a nuclease, also known as MAD7, is part of a CRISPR/Cas system from Eubacterium rectale and distantly related to Cas12a nucleases. As it shares only 31% sequence homology with the commonly used AsCas12a, its intellectual property may not be covered by the granted patent rights for Cas12a nucleases. Thus, ErCas12a became an attractive alternative for practical applications. However, the editing efficiency of ErCas12a is strongly target sequence- and temperature-dependent. Therefore, optimization of the enzyme activity through protein engineering is especially attractive for its application in plants, as they are cultivated at lower temperatures. Based on the knowledge obtained from the optimization of Cas12a nucleases, we opted to improve the gene editing efficiency of ErCas12a by introducing analogous amino acid exchanges. Interestingly, neither of these mutations analogous to those in the enhanced or Ultra versions of AsCas12a resulted in significant editing enhancement of ErCas12a in Arabidopsis thaliana. However, two different mutations, V156R and K172R, in putative alpha helical structures of the enzyme showed a detectable improvement in editing. By combining these two mutations, we obtained an improved ErCas12a (imErCas12a) variant, showing several-fold increase in activity in comparison to the wild-type enzyme in Arabidopsis. This variant yields strong editing efficiencies at 22 °C which could be further increased by raising the cultivation temperature to 28 °C and even enabled editing of formerly inaccessible targets. Additionally, no enhanced off-site activity was detected. Thus, imErCas12a is an economically attractive and efficient alternative to other CRISPR/Cas systems for plant genome engineering.
Collapse
Affiliation(s)
- Janine Pietralla
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)Department of Molecular BiologyKarlrsruheGermany
| | - Niklas Capdeville
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)Department of Molecular BiologyKarlrsruheGermany
| | - Patrick Schindele
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)Department of Molecular BiologyKarlrsruheGermany
| | - Holger Puchta
- Karlsruhe Institute of Technology (KIT), Joseph Gottlieb Kölreuter Institute for Plant Sciences (JKIP)Department of Molecular BiologyKarlrsruheGermany
| |
Collapse
|
6
|
Li J, Kong D, Ke Y, Zeng W, Miki D. Application of multiple sgRNAs boosts efficiency of CRISPR/Cas9-mediated gene targeting in Arabidopsis. BMC Biol 2024; 22:6. [PMID: 38233866 PMCID: PMC10795408 DOI: 10.1186/s12915-024-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Precise gene targeting (GT) is a powerful tool for heritable precision genome engineering, enabling knock-in or replacement of the endogenous sequence via homologous recombination. We recently established a CRISPR/Cas9-mediated approach for heritable GT in Arabidopsis thaliana (Arabidopsis) and rice and reported that the double-strand breaks (DSBs) frequency of Cas9 influences the GT efficiency. However, the relationship between DSBs and GT at the same locus was not examined. Furthermore, it has never been investigated whether an increase in the number of copies of sgRNAs or the use of multiple sgRNAs would improve the efficiency of GT. RESULTS Here, we achieved precise GT at endogenous loci Embryo Defective 2410 (EMB2410) and Repressor of Silencing 1 (ROS1) using the sequential transformation strategy and the combination of sgRNAs. We show that increasing of sgRNAs copy number elevates both DSBs and GT efficiency. On the other hand, application of multiple sgRNAs does not always enhance GT efficiency. Our results also suggested that some inefficient sgRNAs would play a role as a helper to facilitate other sgRNAs DSBs activity. CONCLUSIONS The results of this study clearly show that DSB efficiency, rather than mutation pattern, is one of the most important key factors determining GT efficiency. This study provides new insights into the relationship between sgRNAs, DSBs, and GTs and the molecular mechanisms of CRISPR/Cas9-mediated GTs in plants.
Collapse
Affiliation(s)
- Jing Li
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dali Kong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongping Ke
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjie Zeng
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
7
|
Hisano H, Hoffie RE, Kumlehn J, Sato K. Targeted Modification of Grain Dormancy Genes in Barley. Methods Mol Biol 2024; 2830:149-161. [PMID: 38977576 DOI: 10.1007/978-1-0716-3965-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Transgenesis technologies, such as overexpression or RNA interference-mediated suppression, have often been used to alter the activity of target genes. More recently developed targeted genome modification methods using customizable endonucleases allow for the regulation or knockout mutation of target genes without the necessity of integrating recombinant DNA. Such approaches make it possible to create novel alleles of target genes, thereby significantly contributing to crop improvement. Among these technologies, the Cas9 endonuclease-based method is widely applied to several crops, including barley (Hordeum vulgare). In this chapter, we describe an Agrobacterium-based approach to the targeted modification of grain dormancy genes in barley using RNA-guided Cas9 nuclease.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan.
| | - Robert E Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Faculty of Agriculture, Setsunan University, Hirakata, Japan
- Kazusa DNA Research Institute, Kisarazu, Japan
| |
Collapse
|
8
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
9
|
Chojnacka A, Smoczynska A, Bielewicz D, Pacak A, Hensel G, Kumlehn J, Maciej Karlowski W, Grabsztunowicz M, Sobieszczuk-Nowicka E, Jarmolowski A, Szweykowska-Kulinska Z. PEP444c encoded within the MIR444c gene regulates microRNA444c accumulation in barley. PHYSIOLOGIA PLANTARUM 2023; 175:e14018. [PMID: 37882256 DOI: 10.1111/ppl.14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/15/2023] [Indexed: 10/27/2023]
Abstract
MicroRNAs are small, noncoding RNA molecules that regulate the expression of their target genes. The MIR444 gene family is present exclusively in monocotyledons, and microRNAs444 from this family have been shown to target certain MADS-box transcription factors in rice and barley. We identified three barley MIR444 (MIR444a/b/c) genes and comprehensively characterised their structure and the processing pattern of the primary transcripts (pri-miRNAs444). Pri-microRNAs444 undergo extensive alternative splicing, generating functional and nonfunctional pri-miRNA444 isoforms. We show that barley pri-miRNAs444 contain numerous open reading frames (ORFs) whose transcripts associate with ribosomes. Using specific antibodies, we provide evidence that selected ORFs encoding PEP444a within MIR444a and PEP444c within MIR444c are expressed in barley plants. Moreover, we demonstrate that CRISPR-associated endonuclease 9 (Cas9)-mediated mutagenesis of the PEP444c-encoding sequence results in a decreased level of PEP444 transcript in barley shoots and roots and a 5-fold reduced level of mature microRNA444c in roots. Our observations suggest that PEP444c encoded by the MIR444c gene is involved in microRNA444c biogenesis in barley.
Collapse
Affiliation(s)
- Aleksandra Chojnacka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Aleksandra Smoczynska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Dawid Bielewicz
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Goetz Hensel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Wojciech Maciej Karlowski
- Department of Computational Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Magda Grabsztunowicz
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
10
|
Choi HY, Kim EG, Park JR, Jang YH, Jan R, Farooq M, Asif S, Kim N, Kim JH, Gwon D, Lee SB, Jeong SK, Kim KM. Volunteer Plants' Occurrence and the Environmental Adaptability of Genetically Modified Fodder Corn upon Unintentional Release into the Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:2653. [PMID: 37514267 PMCID: PMC10383316 DOI: 10.3390/plants12142653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
The number of corn cultivars that have been improved using genetically modified technology continues to increase. However, concerns about the unintentional release of living-modified organisms (LMOs) into the environment still exist. Specifically, there are cases where LMO crops grown as fodder are released into the environment and form a volunteer plant community, which raises concerns about their safety. In this study, we analyzed the possibility of weediness and volunteer plants' occurrence when GMO fodder corn grains distributed in Korea are unintentionally released into the environment. Volunteer plants' occurrence was investigated by directly sowing grains in an untreated field. The results showed that the germination rate was extremely low, and even if a corn seed germinated, it could not grow into an adult plant and would die due to weed competition. In addition, the germination rate of edible and fodder grains was affected by temperature (it was high at 20 °C and 30 °C but low at 40 °C and extremely low at 10 °C), and it was higher in the former than in the latter. And the germination rate was higher in Daehakchal (edible corn grains) than in Gwangpyeongok (fodder corn grains). The environmental risk assessment data obtained in this study can be used for future evaluations of the weediness potential of crops and the development of volunteer plant suppression technology in response to unintentional GMO release.
Collapse
Affiliation(s)
- Han-Yong Choi
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eun-Gyeong Kim
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jae-Ryoung Park
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
- Crop Breeding Division, National Institute of Crop Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yoon-Hee Jang
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rahmatullah Jan
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Muhammad Farooq
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nari Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Hun Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dohyeong Gwon
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong-Beom Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung-Kyo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
11
|
Yang X, Wang J, Sun X, Wang P, Dou H, Yang Z, Wang Y. A method for generating genome edited plant lines from CRISPR-transformed Shanxin poplar plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111732. [PMID: 37207820 DOI: 10.1016/j.plantsci.2023.111732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/25/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Due to the reason of low efficiency of mutation in CRISPR-editing, a high frequency of CRISPR transformed plant lines failing in mutation had been generated and had to be discarded. In the present study, we built a method to increase the efficiency of CRISPR-editing. We used Shanxin poplar (Populus davidiana×P. bolleana) as the study material, and CRISPR-editing system was first built to generate the CRISPR-transformed lines. The line that failed in CRISPR-editing was used for improving the efficiency of mutation, which was treated with heat (37 °C) to improve the cleaving activity of Cas9, leading to increased frequency of the cleaved DNA. Our results indicated that 87-100% of cells in CRISPR-transformed plants whose DNA had been cleaved by heat treatment, and the heat treatment plants were then cut into explants to differentiate adventitious buds. Each differentiated bud can be considered as an independent line. Twenty independent lines were randomly selected for analysis, and all of them had been mutated by CRISPR editing, displaying 4 types of mutation. Our results indicated that heat treatment combined with re-differentiation can generate CRISPR-edited plants efficiently. This method could conquer the problem of low mutation efficiency of CRISPR-editing in Shanxin poplar, and will have a wide application in plant CRISPR-editing. DATA AVAILABILITY: The genome sequence of Populus davidiana × P. bolleana had been submitted to GenBank with the BioProject Accession number of PRJNA867039 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA867039).
Collapse
Affiliation(s)
- Xue Yang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Jingxin Wang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Xiaomeng Sun
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Pengyu Wang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Huiying Dou
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Ziyao Yang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang 110866, China.
| |
Collapse
|
12
|
Steckenborn S, Cuacos M, Ayoub MA, Feng C, Schubert V, Hoffie I, Hensel G, Kumlehn J, Heckmann S. The meiotic topoisomerase VI B subunit (MTOPVIB) is essential for meiotic DNA double-strand break formation in barley (Hordeum vulgare L.). PLANT REPRODUCTION 2023; 36:1-15. [PMID: 35767067 PMCID: PMC9957907 DOI: 10.1007/s00497-022-00444-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/31/2022] [Indexed: 06/01/2023]
Abstract
In barley (Hordeum vulgare), MTOPVIB is critical for meiotic DSB and accompanied SC and CO formation while dispensable for meiotic bipolar spindle formation. Homologous recombination during meiosis assures genetic variation in offspring. Programmed meiotic DNA double-strand breaks (DSBs) are repaired as crossover (CO) or non-crossover (NCO) during meiotic recombination. The meiotic topoisomerase VI (TopoVI) B subunit (MTOPVIB) plays an essential role in meiotic DSB formation critical for CO-recombination. More recently MTOPVIB has been also shown to play a role in meiotic bipolar spindle formation in rice and maize. Here, we describe a meiotic DSB-defective mutant in barley (Hordeum vulgare L.). CRISPR-associated 9 (Cas9) endonuclease-generated mtopVIB plants show complete sterility due to the absence of meiotic DSB, synaptonemal complex (SC), and CO formation leading to the occurrence of univalents and their unbalanced segregation into aneuploid gametes. In HvmtopVIB plants, we also frequently found the bi-orientation of sister kinetochores in univalents during metaphase I and the precocious separation of sister chromatids during anaphase I. Moreover, the near absence of polyads after meiosis II, suggests that despite being critical for meiotic DSB formation in barley, MTOPVIB seems not to be strictly required for meiotic bipolar spindle formation.
Collapse
Affiliation(s)
- Stefan Steckenborn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Mohammad A Ayoub
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Chao Feng
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Iris Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstrasse 3, 06466, Seeland, Germany.
| |
Collapse
|
13
|
Sharma P, Pandey A, Malviya R, Dey S, Karmakar S, Gayen D. Genome editing for improving nutritional quality, post-harvest shelf life and stress tolerance of fruits, vegetables, and ornamentals. Front Genome Ed 2023; 5:1094965. [PMID: 36911238 PMCID: PMC9998953 DOI: 10.3389/fgeed.2023.1094965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Agricultural production relies on horticultural crops, including vegetables, fruits, and ornamental plants, which sustain human life. With an alarming increase in human population and the consequential need for more food, it has become necessary for increased production to maintain food security. Conventional breeding has subsidized the development of improved verities but to enhance crop production, new breeding techniques need to be acquired. CRISPR-Cas9 system is a unique and powerful genome manipulation tool that can change the DNA in a precise way. Based on the bacterial adaptive immune system, this technique uses an endonuclease that creates double-stranded breaks (DSBs) at the target loci under the guidance of a single guide RNA. These DSBs can be repaired by a cellular repair mechanism that installs small insertion and deletion (indels) at the cut sites. When equated to alternate editing tools like ZFN, TALENs, and meganucleases, CRISPR- The cas-based editing tool has quickly gained fast-forward for its simplicity, ease to use, and low off-target effect. In numerous horticultural and industrial crops, the CRISPR technology has been successfully used to enhance stress tolerance, self-life, nutritional improvements, flavor, and metabolites. The CRISPR-based tool is the most appropriate one with the prospective goal of generating non-transgenic yields and avoiding the regulatory hurdles to release the modified crops into the market. Although several challenges for editing horticultural, industrial, and ornamental crops remain, this new novel nuclease, with its crop-specific application, makes it a dynamic tool for crop improvement.
Collapse
Affiliation(s)
- Punam Sharma
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Anuradha Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Rinku Malviya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Sharmistha Dey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | | | - Dipak Gayen
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
14
|
Verma V, Kumar A, Partap M, Thakur M, Bhargava B. CRISPR-Cas: A robust technology for enhancing consumer-preferred commercial traits in crops. FRONTIERS IN PLANT SCIENCE 2023; 14:1122940. [PMID: 36824195 PMCID: PMC9941649 DOI: 10.3389/fpls.2023.1122940] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The acceptance of new crop varieties by consumers is contingent on the presence of consumer-preferred traits, which include sensory attributes, nutritional value, industrial products and bioactive compounds production. Recent developments in genome editing technologies provide novel insight to identify gene functions and improve the various qualitative and quantitative traits of commercial importance in plants. Various conventional as well as advanced gene-mutagenesis techniques such as physical and chemical mutagenesis, CRISPR-Cas9, Cas12 and base editors are used for the trait improvement in crops. To meet consumer demand, breakthrough biotechnologies, especially CRISPR-Cas have received a fair share of scientific and industrial interest, particularly in plant genome editing. CRISPR-Cas is a versatile tool that can be used to knock out, replace and knock-in the desired gene fragments at targeted locations in the genome, resulting in heritable mutations of interest. This review highlights the existing literature and recent developments in CRISPR-Cas technologies (base editing, prime editing, multiplex gene editing, epigenome editing, gene delivery methods) for reliable and precise gene editing in plants. This review also discusses the potential of gene editing exhibited in crops for the improvement of consumer-demanded traits such as higher nutritional value, colour, texture, aroma/flavour, and production of industrial products such as biofuel, fibre, rubber and pharmaceuticals. In addition, the bottlenecks and challenges associated with gene editing system, such as off targeting, ploidy level and the ability to edit organelle genome have also been discussed.
Collapse
Affiliation(s)
- Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Akhil Kumar
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR) –Institute of Himalayan Bioresource Technology (IHBT), Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
15
|
Applications and Prospects of CRISPR/Cas9-Mediated Base Editing in Plant Breeding. Curr Issues Mol Biol 2023; 45:918-935. [PMID: 36826004 PMCID: PMC9955079 DOI: 10.3390/cimb45020059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 system (Cas9) has been used at length to optimize multiple aspects of germplasm resources. However, large-scale genomic research has indicated that novel variations in crop plants are attributed to single-nucleotide polymorphisms (SNPs). Therefore, substituting single bases into a plant genome may produce desirable traits. Gene editing by CRISPR/Cas9 techniques frequently results in insertions-deletions (indels). Base editing allows precise single-nucleotide changes in the genome in the absence of double-strand breaks (DSBs) and donor repair templates (DRTs). Therefore, BEs have provided a new way of thinking about genome editing, and base editing techniques are currently being utilized to edit the genomes of many different organisms. As traditional breeding techniques and modern molecular breeding technologies complement each other, various genome editing technologies have emerged. How to realize the greater potential of BE applications is the question we need to consider. Here, we explain various base editings such as CBEs, ABEs, and CGBEs. In addition, the latest applications of base editing technologies in agriculture are summarized, including crop yield, quality, disease, and herbicide resistance. Finally, the challenges and future prospects of base editing technologies are presented. The aim is to provide a comprehensive overview of the application of BE in crop breeding to further improve BE and make the most of its value.
Collapse
|
16
|
González MN, Massa GA, Andersson M, Storani L, Olsson N, Décima Oneto CA, Hofvander P, Feingold SE. CRISPR/Cas9 Technology for Potato Functional Genomics and Breeding. Methods Mol Biol 2023; 2653:333-361. [PMID: 36995636 DOI: 10.1007/978-1-0716-3131-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cultivated potato (Solanum tuberosum L.) is one of the most important staple food crops worldwide. Its tetraploid and highly heterozygous nature poses a great challenge to its basic research and trait improvement through traditional mutagenesis and/or crossbreeding. The establishment of the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) as a gene editing tool has allowed the alteration of specific gene sequences and their concomitant gene function, providing powerful technology for potato gene functional analysis and improvement of elite cultivars. This technology relies on a short RNA molecule called single guide RNA (sgRNA) that directs the Cas9 nuclease to induce a site-specific double-stranded break (DSB). Further, repair of the DSB by the error-prone non-homologous end joining (NHEJ) mechanism leads to the introduction of targeted mutations, which can be used to produce the loss of function of specific gene(s). In this chapter, we describe experimental procedures to apply the CRISPR/Cas9 technology for potato genome editing. First, we provide strategies for target selection and sgRNA design and describe a Golden Gate-based cloning system to obtain a sgRNA/Cas9-encoding binary vector. We also describe an optimized protocol for ribonucleoprotein (RNP) complex assembly. The binary vector can be used for both Agrobacterium-mediated transformation and transient expression in potato protoplasts, while the RNP complexes are intended to obtain edited potato lines through protoplast transfection and plant regeneration. Finally, we describe procedures to identify the gene-edited potato lines. The methods described here are suitable for potato gene functional analysis and breeding.
Collapse
Affiliation(s)
- Matías Nicolás González
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gabriela Alejandra Massa
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Mariette Andersson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Leonardo Storani
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica, Buenos Aires, Argentina
| | - Niklas Olsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Cecilia Andrea Décima Oneto
- Laboratorio de Agrobiotecnología, IPADS (INTA - CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | |
Collapse
|
17
|
Scintilla S, Salvagnin U, Giacomelli L, Zeilmaker T, Malnoy MA, Rouppe van der Voort J, Moser C. Regeneration of non-chimeric plants from DNA-free edited grapevine protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1078931. [PMID: 36531381 PMCID: PMC9752144 DOI: 10.3389/fpls.2022.1078931] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/19/2023]
Abstract
The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.
Collapse
Affiliation(s)
- Simone Scintilla
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| | - Umberto Salvagnin
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
- Consorzio Innovazione Vite (CIVIT), Trento, TN, Italy
| | - Lisa Giacomelli
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
- Scienza Biotechnologies BV., Enkhuizen, Netherlands
| | | | - Mickael A. Malnoy
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| | | | - Claudio Moser
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all’Adige, Trento, Italy
| |
Collapse
|
18
|
Devi R, Chauhan S, Dhillon TS. Genome editing for vegetable crop improvement: Challenges and future prospects. Front Genet 2022; 13:1037091. [PMID: 36482900 PMCID: PMC9723405 DOI: 10.3389/fgene.2022.1037091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2024] Open
Abstract
Vegetable crops are known as protective foods due to their potential role in a balanced human diet, especially for vegetarians as they are a rich source of vitamins and minerals along with dietary fibers. Many biotic and abiotic stresses threaten the crop growth, yield and quality of these crops. These crops are annual, biennial and perennial in breeding behavior. Traditional breeding strategies pose many challenges in improving economic crop traits. As in most of the cases the large number of backcrosses and stringent selection pressure is required for the introgression of the useful traits into the germplasm, which is time and labour-intensive process. Plant scientists have improved economic traits like yield, quality, biotic stress resistance, abiotic stress tolerance, and improved nutritional quality of crops more precisely and accurately through the use of the revolutionary breeding method known as clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 (Cas9). The high mutation efficiency, less off-target consequences and simplicity of this technique has made it possible to attain novel germplasm resources through gene-directed mutation. It facilitates mutagenic response even in complicated genomes which are difficult to breed using traditional approaches. The revelation of functions of important genes with the advancement of whole-genome sequencing has facilitated the CRISPR-Cas9 editing to mutate the desired target genes. This technology speeds up the creation of new germplasm resources having better agro-economical traits. This review entails a detailed description of CRISPR-Cas9 gene editing technology along with its potential applications in olericulture, challenges faced and future prospects.
Collapse
Affiliation(s)
- Ruma Devi
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, India
| | | | | |
Collapse
|
19
|
Ali S, Khan N, Tang Y. Epigenetic marks for mitigating abiotic stresses in plants. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153740. [PMID: 35716656 DOI: 10.1016/j.jplph.2022.153740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/02/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stressors are one of the major factors affecting agricultural output. Plants have evolved adaptive systems to respond appropriately to various environmental cues. These responses can be accomplished by modulating or fine-tuning genetic and epigenetic regulatory mechanisms. Understanding the response of plants' molecular features to abiotic stress is a priority in the current period of continued environmental changes. Epigenetic modifications are necessary that control gene expression by changing chromatin status and recruiting various transcription regulators. The present study summarized the current knowledge on epigenetic modifications concerning plant responses to various environmental stressors. The functional relevance of epigenetic marks in regulating stress tolerance has been revealed, and epigenetic changes impact the effector genes. This study looks at the epigenetic mechanisms that govern plant abiotic stress responses, especially DNA methylation, histone methylation/acetylation, chromatin remodeling, and various metabolites. Plant breeders will benefit from a thorough understanding of these processes to create alternative crop improvement approaches. Genome editing with clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) provides genetic tools to make agricultural genetic engineering more sustainable and publicly acceptable.
Collapse
Affiliation(s)
- Shahid Ali
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Naeem Khan
- Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, FL, 32611, USA
| | - Yulin Tang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong Province, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
20
|
Baloglu MC, Celik Altunoglu Y, Baloglu P, Yildiz AB, Türkölmez N, Özden Çiftçi Y. Gene-Editing Technologies and Applications in Legumes: Progress, Evolution, and Future Prospects. Front Genet 2022; 13:859437. [PMID: 35836569 PMCID: PMC9275826 DOI: 10.3389/fgene.2022.859437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Legumes are rich in protein and phytochemicals and have provided a healthy diet for human beings for thousands of years. In recognition of the important role they play in human nutrition and agricultural production, the researchers have made great efforts to gain new genetic traits in legumes such as yield, stress tolerance, and nutritional quality. In recent years, the significant increase in genomic resources for legume plants has prepared the groundwork for applying cutting-edge breeding technologies, such as transgenic technologies, genome editing, and genomic selection for crop improvement. In addition to the different genome editing technologies including the CRISPR/Cas9-based genome editing system, this review article discusses the recent advances in plant-specific gene-editing methods, as well as problems and potential benefits associated with the improvement of legume crops with important agronomic properties. The genome editing technologies have been effectively used in different legume plants including model legumes like alfalfa and lotus, as well as crops like soybean, cowpea, and chickpea. We also discussed gene-editing methods used in legumes and the improvements of agronomic traits in model and recalcitrant legumes. Despite the immense opportunities genome editing can offer to the breeding of legumes, governmental regulatory restrictions present a major concern. In this context, the comparison of the regulatory framework of genome editing strategies in the European Union and the United States of America was also discussed. Gene-editing technologies have opened up new possibilities for the improvement of significant agronomic traits in legume breeding.
Collapse
Affiliation(s)
- Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Pinar Baloglu
- Research and Application Center, Kastamonu University, Kastamonu, Turkey
| | - Ali Burak Yildiz
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Nil Türkölmez
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
| | - Yelda Özden Çiftçi
- Department of Molecular Biology and Genetics, Gebze Technical University, Kocaeli, Turkey
- Smart Agriculture Research and Application Center, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
21
|
Oberkofler V, Bäurle I. Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory. PLANT PHYSIOLOGY 2022; 189:703-714. [PMID: 35285498 PMCID: PMC9157090 DOI: 10.1093/plphys/kiac113] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/15/2022] [Indexed: 05/26/2023]
Abstract
Histone modifications play a crucial role in the integration of environmental signals to mediate gene expression outcomes. However, genetic and pharmacological interference often causes pleiotropic effects, creating the urgent need for methods that allow locus-specific manipulation of histone modifications, preferably in an inducible manner. Here, we report an inducible system for epigenome editing in Arabidopsis (Arabidopsis thaliana) using a heat-inducible dCas9 to target a JUMONJI (JMJ) histone H3 lysine 4 (H3K4) demethylase domain to a locus of interest. As a model locus, we target the ASCORBATE PEROXIDASE2 (APX2) gene that shows transcriptional memory after heat stress (HS), correlating with H3K4 hyper-methylation. We show that dCas9-JMJ is targeted in a HS-dependent manner to APX2 and that the HS-induced overaccumulation of H3K4 trimethylation (H3K4me3) decreases when dCas9-JMJ binds to the locus. This results in reduced HS-mediated transcriptional memory at the APX2 locus. Targeting an enzymatically inactive JMJ protein in an analogous manner affected transcriptional memory less than the active JMJ protein; however, we still observed a decrease in H3K4 methylation levels. Thus, the inducible targeting of dCas9-JMJ to APX2 was effective in reducing H3K4 methylation levels. As the effect was not fully dependent on enzyme activity of the eraser domain, the dCas9-JMJ fusion protein may act in part independently of its demethylase activity. This underlines the need for caution in the design and interpretation of epigenome editing studies. We expect our versatile inducible epigenome editing system to be especially useful for studying temporal dynamics of chromatin modifications.
Collapse
Affiliation(s)
- Vicky Oberkofler
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
| | - Isabel Bäurle
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, 14476, Germany
| |
Collapse
|
22
|
George DR, Hornstein ED, Clower CA, Coomber AL, Dillard D, Mugwanya N, Pezzini DT, Rozowski C. Lessons for a SECURE Future: Evaluating Diversity in Crop Biotechnology Across Regulatory Regimes. Front Bioeng Biotechnol 2022; 10:886765. [PMID: 35586550 PMCID: PMC9108862 DOI: 10.3389/fbioe.2022.886765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Regulation of next-generation crops in the United States under the newly implemented “SECURE” rule promises to diversify innovation in agricultural biotechnology. Specifically, SECURE promises to expand the number of products eligible for regulatory exemption, which proponents theorize will increase the variety of traits, genes, organisms, and developers involved in developing crop biotechnology. However, few data-driven studies have looked back at the history of crop biotechnology to understand how specific regulatory pathways have affected diversity in crop biotechnology and how those patterns might change over time. In this article, we draw upon 30 years of regulatory submission data to 1) understand historical diversification trends across the landscape and history of past crop biotechnology regulatory pathways and 2) forecast how the new SECURE regulations might affect future diversification trends. Our goal is to apply an empirical approach to exploring the relationship between regulation and diversity in crop biotechnology and provide a basis for future data-driven analysis of regulatory outcomes. Based on our analysis, we suggest that diversity in crop biotechnology does not follow a single trajectory dictated by the shifts in regulation, and outcomes of SECURE might be more varied and restrictive despite the revamped exemption categories. In addition, the concept of confidential business information and its relationship to past and future biotechnology regulation is reviewed in light of our analysis.
Collapse
Affiliation(s)
- Dalton R. George
- Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina Sate University, Raleigh, NC, United States
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Dalton R. George,
| | - Eli D. Hornstein
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Carrie A. Clower
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Communication, College of Humanities and Social Sciences, North Carolina State University, Raleigh, NC, United States
| | - Allison L. Coomber
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Biological Sciences, College of Sciences, North Carolina State University, Raleigh, NC, United States
| | - DeShae Dillard
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Nassib Mugwanya
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Agricultural and Human Sciences, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Daniela T. Pezzini
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Casey Rozowski
- Genetic Engineering and Society Center, North Carolina State University, Raleigh, NC, United States
- Department of Agricultural and Resource Economics, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
23
|
Kershanskaya OI, Yessenbaeva GL, Nelidova DS, Karabekova AN, Sadullaeva ZN. CRISPR/Cas genome editing perspectives for barley breeding. PHYSIOLOGIA PLANTARUM 2022; 174:e13686. [PMID: 35451132 DOI: 10.1111/ppl.13686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/01/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The CRISPR/Cas9 technology shows potential to improve crop breeding efficiency and antiviral defense. The interest in DNA editing in crops has grown due to the possibility of increasing the resistance of different plants to many viruses. Our aim was to create an elite disease-resistant local barley cultivar using CRISPR/Cas9 biotechnology. For this purpose, we used CRISPR/Cas 9-eIF4E with the eukaryotic translation initiation factor 4E (eIF4E) barley gene to edit the genomes of five local Kazakhstan barley cultivars. After identifying the single guide RNA (sgRNA) target sequences, they were synthesized and cloned into the CRISPR-plant vector before being introduced into barley cells via our own patented Agrobacterium germ-line transformation technique. Barley plants eIF4E-modified were successfully obtained and were resistant to virus infection. Based on our research, the CRISPR/Cas9 system for plant genome editing could be a prospect for applying this breakthrough biotechnology in barley breeding.
Collapse
Affiliation(s)
- Olga I Kershanskaya
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Gulvira L Yessenbaeva
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Darya S Nelidova
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Aizhan N Karabekova
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| | - Zarina N Sadullaeva
- Laboratory of Cell Engineering, Institute of Plant Biology and Biotechnology, Almaty, Kazakhstan
| |
Collapse
|
24
|
Belzile F, Jean M, Torkamaneh D, Tardivel A, Lemay MA, Boudhrioua C, Arsenault-Labrecque G, Dussault-Benoit C, Lebreton A, de Ronne M, Tremblay V, Labbé C, O’Donoughue L, St-Amour VTB, Copley T, Fortier E, Ste-Croix DT, Mimee B, Cober E, Rajcan I, Warkentin T, Gagnon É, Legay S, Auclair J, Bélanger R. The SoyaGen Project: Putting Genomics to Work for Soybean Breeders. FRONTIERS IN PLANT SCIENCE 2022; 13:887553. [PMID: 35557742 PMCID: PMC9087807 DOI: 10.3389/fpls.2022.887553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
The SoyaGen project was a collaborative endeavor involving Canadian soybean researchers and breeders from academia and the private sector as well as international collaborators. Its aims were to develop genomics-derived solutions to real-world challenges faced by breeders. Based on the needs expressed by the stakeholders, the research efforts were focused on maximizing realized yield through optimization of maturity and improved disease resistance. The main deliverables related to molecular breeding in soybean will be reviewed here. These include: (1) SNP datasets capturing the genetic diversity within cultivated soybean (both within a worldwide collection of > 1,000 soybean accessions and a subset of 102 short-season accessions (MG0 and earlier) directly relevant to this group); (2) SNP markers for selecting favorable alleles at key maturity genes as well as loci associated with increased resistance to key pathogens and pests (Phytophthora sojae, Heterodera glycines, Sclerotinia sclerotiorum); (3) diagnostic tools to facilitate the identification and mapping of specific pathotypes of P. sojae; and (4) a genomic prediction approach to identify the most promising combinations of parents. As a result of this fruitful collaboration, breeders have gained new tools and approaches to implement molecular, genomics-informed breeding strategies. We believe these tools and approaches are broadly applicable to soybean breeding efforts around the world.
Collapse
Affiliation(s)
- François Belzile
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Martine Jean
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Aurélie Tardivel
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Marc-André Lemay
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Chiheb Boudhrioua
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | | | | | - Amandine Lebreton
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Vanessa Tremblay
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Caroline Labbé
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| | - Louise O’Donoughue
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Vincent-Thomas Boucher St-Amour
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Tanya Copley
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | - Eric Fortier
- Centre de Recherche sur les Grains (CEROM), Saint-Mathieu-de-Beloeil, QC, Canada
| | | | - Benjamin Mimee
- Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, QC, Canada
| | - Elroy Cober
- Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Istvan Rajcan
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Tom Warkentin
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Éric Gagnon
- Semences Prograin Inc., Saint-Césaire, QC, Canada
- Sevita Genetics, Inkerman, ON, Canada
| | | | | | - Richard Bélanger
- Département de Phytologie, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
25
|
Hamdan N, Lee CH, Wong SL, Fauzi CENCA, Zamri NMA, Lee TH. Prevention of Enzymatic Browning by Natural Extracts and Genome-Editing: A Review on Recent Progress. Molecules 2022; 27:1101. [PMID: 35164369 PMCID: PMC8839884 DOI: 10.3390/molecules27031101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food quality and appearance. Thus, a safe and effective alternative method from natural sources is needed to tackle enzymatic browning prevention. The capabilities of natural anti-browning agents derived from plant- and animal-based resources in inhibiting enzymatic activity have been demonstrated in the literature. Some also possess strong antioxidants properties. This review aims to summarize a recent investigation regarding the use of natural anti-browning extracts from different sources for controlling the browning. The potential applications of genome-editing in preventing browning activity and improving postharvest quality is also discussed. Moreover, the patents on the anti-browning extract from natural sources is also presented in this review. The information reviewed here could provide new insights, contributing to the development of natural anti-browning extracts and genome-editing techniques for the prevention of food browning.
Collapse
Affiliation(s)
- Norfadilah Hamdan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Syie Luing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Department of Matem’atica Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electronica, Universidad Rey Juan Carlos, C/Tulip’an s/n, M´ostoles, 28933 Madrid, Spain
| | - Che Ellysa Nurshafika Che Ahmad Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Nur Mirza Aqilah Zamri
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Johor, Malaysia
| |
Collapse
|
26
|
Nahirñak V, Almasia NI, González MN, Massa GA, Décima Oneto CA, Feingold SE, Hopp HE, Vazquez Rovere C. State of the Art of Genetic Engineering in Potato: From the First Report to Its Future Potential. FRONTIERS IN PLANT SCIENCE 2022; 12:768233. [PMID: 35082806 PMCID: PMC8784693 DOI: 10.3389/fpls.2021.768233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Potato (Solanum tuberosum L.) is a crop of world importance that produces tubers of high nutritional quality. It is considered one of the promising crops to overcome the challenges of poverty and hunger worldwide. However, it is exposed to different biotic and abiotic stresses that can cause significant losses in production. Thus, potato is a candidate of special relevance for improvements through conventional breeding and biotechnology. Since conventional breeding is time-consuming and challenging, genetic engineering provides the opportunity to introduce/switch-off genes of interest without altering the allelic combination that characterize successful commercial cultivars or to induce targeted sequence modifications by New Breeding Techniques. There is a variety of methods for potato improvement via genetic transformation. Most of them incorporate genes of interest into the nuclear genome; nevertheless, the development of plastid transformation protocols broadened the available approaches for potato breeding. Although all methods have their advantages and disadvantages, Agrobacterium-mediated transformation is the most used approach. Alternative methods such as particle bombardment, protoplast transfection with polyethylene glycol and microinjection are also effective. Independently of the DNA delivery approach, critical steps for a successful transformation are a rapid and efficient regeneration protocol and a selection system. Several critical factors affect the transformation efficiency: vector type, insert size, Agrobacterium strain, explant type, composition of the subculture media, selective agent, among others. Moreover, transient or stable transformation, constitutive or inducible promoters, antibiotic/herbicide resistance or marker-free strategies can be considered. Although great efforts have been made to optimize all the parameters, potato transformation protocols are highly genotype-dependent. Genome editing technologies provide promising tools in genetic engineering allowing precise modification of targeted sequences. Interestingly, transient expression of genome editing components in potato protoplasts was reported to generate edited plants without the integration of any foreign DNA, which is a valuable aspect from both a scientific and a regulatory perspective. In this review, current challenges and opportunities concerning potato genetic engineering strategies developed to date are discussed. We describe their critical parameters and constrains, and the potential application of the available tools for functional analyses or biotechnological purposes. Public concerns and safety issues are also addressed.
Collapse
Affiliation(s)
- Vanesa Nahirñak
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Natalia I. Almasia
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| | - Matías N. González
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
| | - Gabriela A. Massa
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Cecilia A. Décima Oneto
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Argentina
| | - Sergio E. Feingold
- Laboratorio de Agrobiotecnología, IPADS (INTA – CONICET), Balcarce, Argentina
| | - Horacio E. Hopp
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Vazquez Rovere
- Instituto de Agrobiotecnología y Biología Molecular, UEDD INTA-CONICET, Hurlingham, Argentina
| |
Collapse
|
27
|
Hisano H, Hoffie RE, Abe F, Munemori H, Matsuura T, Endo M, Mikami M, Nakamura S, Kumlehn J, Sato K. Regulation of germination by targeted mutagenesis of grain dormancy genes in barley. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:37-46. [PMID: 34459083 PMCID: PMC8710902 DOI: 10.1111/pbi.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
High humidity during harvest season often causes pre-harvest sprouting in barley (Hordeum vulgare). Prolonged grain dormancy prevents pre-harvest sprouting; however, extended dormancy can interfere with malt production and uniform germination upon sowing. In this study, we used Cas9-induced targeted mutagenesis to create single and double mutants in QTL FOR SEED DORMANCY 1 (Qsd1) and Qsd2 in the same genetic background. We performed germination assays in independent qsd1 and qsd2 single mutants, as well as in two double mutants, which revealed a strong repression of germination in the mutants. These results demonstrated that normal early grain germination requires both Qsd1 and Qsd2 function. However, germination of qsd1 was promoted by treatment with 3% hydrogen peroxide, supporting the notion that the mutants exhibit delayed germination. Likewise, exposure to cold temperatures largely alleviated the block of germination in the single and double mutants. Notably, qsd1 mutants partially suppress the long dormancy phenotype of qsd2, while qsd2 mutant grains failed to germinate in the light, but not in the dark. Consistent with the delay in germination, abscisic acid accumulated in all mutants relative to the wild type, but abscisic acid levels cannot maintain long-term dormancy and only delay germination. Elucidation of mutant allele interactions, such as those shown in this study, are important for fine-tuning traits that will lead to the design of grain dormancy through combinations of mutant alleles. Thus, these mutants will provide the necessary germplasm to study grain dormancy and germination in barley.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | | | - Hiromi Munemori
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Takakazu Matsuura
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| | - Masaki Endo
- Institute of Agrobiological SciencesNAROTsukubaJapan
| | | | | | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenStadt SeelandGermany
| | - Kazuhiro Sato
- Institute of Plant Science and ResourcesOkayama UniversityKurashikiJapan
| |
Collapse
|
28
|
Scintilla S, Salvagnin U, Giacomelli L, Zeilmaker T, Malnoy MA, Rouppe van der Voort J, Moser C. Regeneration of non-chimeric plants from DNA-free edited grapevine protoplasts. FRONTIERS IN PLANT SCIENCE 2022; 13:1078931. [PMID: 36531381 DOI: 10.1101/2021.07.16.452503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 05/20/2023]
Abstract
The application of New Breeding Techniques (NBTs) in Vitis vinifera is highly desirable to introduce valuable traits while preserving the genotype of the elite cultivars. However, a broad application of NBTs through standard DNA-based transformation is poorly accepted by public opinion and law regulations in Europe and other countries due to the stable integration of exogenous DNA, which leads to transgenic plants possibly affected by chimerism. A single-cell based approach, coupled with a DNA-free transfection of the CRISPR/Cas editing machinery, constitutes a powerful tool to overcome these problems and maintain the original genetic make-up in the whole organism. We here describe a successful single-cell based, DNA-free methodology to obtain edited grapevine plants, regenerated from protoplasts isolated from embryogenic callus of two table grapevine varieties (V. vinifera cv. Crimson seedless and Sugraone). The regenerated, non-chimeric plants were edited on the downy- and powdery-mildew susceptibility genes, VviDMR6 and VviMlo6 respectively, either as single or double mutants.
Collapse
Affiliation(s)
- Simone Scintilla
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| | - Umberto Salvagnin
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
- Consorzio Innovazione Vite (CIVIT), Trento, TN, Italy
| | - Lisa Giacomelli
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
- Scienza Biotechnologies BV., Enkhuizen, Netherlands
| | | | - Mickael A Malnoy
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| | | | - Claudio Moser
- Centro Ricerca ed Innovazione, Fondazione E. Mach. Via E. Mach 1, San Michele all'Adige, Trento, Italy
| |
Collapse
|
29
|
Hoffie RE, Otto I, Perovic D, Budhagatapalli N, Habekuß A, Ordon F, Kumlehn J. Targeted Knockout of Eukaryotic Translation Initiation Factor 4E Confers Bymovirus Resistance in Winter Barley. Front Genome Ed 2021; 3:784233. [PMID: 34913048 PMCID: PMC8667817 DOI: 10.3389/fgeed.2021.784233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 12/03/2022] Open
Abstract
The Eukaryotic Translation Initiation Factor 4E (EIF4E) is a well-known susceptibility factor for potyvirus infections in many plant species. The barley yellow mosaic virus disease, caused by the bymoviruses Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV), can lead to yield losses of up to 50% in winter barley. In autumn, the roots of young barley plants are infected by the soil-borne plasmodiophoraceous parasite Polymyxa graminis L. that serves as viral vector. Upon viral establishment and systemic spreading into the upper parts of the plants, yellow mosaics occur as first symptoms on leaves. In the further course of plant development, the disease entails leaf necrosis and increased susceptibility to frost damage. Thanks to the rym4 and rym5 allelic variants of the HvEIF4E gene, more than two thirds of current European winter barley cultivars are resistant to BaYMV and BaMMV. However, several strains of BaYMV and BaMMV have already overcome rym4- and rym5-mediated resistance. Accordingly, new resistance-conferring alleles are needed for barley breeding. Therefore, we performed targeted mutagenesis of the EIF4E gene by Cas9 endonuclease in BaMMV/BaYMV-susceptible winter barley cv. “Igri”. Small insertions were generated, resulting in a shift of the translational reading frame, thereby causing the loss-of-function of EIF4E. The mutations occurred in the homozygous state already in the primary mutants. Their progeny proved invariably homozygous and fully resistant to mechanical inoculation with BaMMV. EIF4E knockout plants showed normal growth habit and produced grains, yet exhibited a yield penalty.
Collapse
Affiliation(s)
- Robert Eric Hoffie
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ingrid Otto
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Nagaveni Budhagatapalli
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Antje Habekuß
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kuehn Institute (JKI), Federal Research Centre for Cultivated Plants, Quedlinburg, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
30
|
Jung C, Till B. Mutagenesis and genome editing in crop improvement: perspectives for the global regulatory landscape. TRENDS IN PLANT SCIENCE 2021; 26:1258-1269. [PMID: 34465535 DOI: 10.1016/j.tplants.2021.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 05/21/2023]
Abstract
Plant breeding depends on broad genetic variation. New allelic variation can be produced by targeted or random mutagenesis. Seemingly, random mutagenesis is outdated because clustered regularly interspaced short palindromic repeats (CRISPR)-Cas technology is much more precise and potentially faster. Unfortunately, genome editing is not accessible to breeders in many countries due to legal constraints. Therefore, random mutagenesis remains a vital method to create new allelic variation. Mutant offspring, however, suffer from a heavy mutation load, and application in polyploid crops is limited because multiple mutations are typically required. Exploiting random mutations became more efficient due to recent technological advancements, such as sequence-based mutant screening and genomic background selection. In this review, random and targeted mutagenesis will be compared, highlighting the legal situation.
Collapse
Affiliation(s)
- Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Bradley Till
- Veterinary Genetics Laboratory, University of California, Davis, Old Davis Road, Davis, CA 95616, USA.
| |
Collapse
|
31
|
Eghbalsaied S, Kues WA. An electrochemical protocol for CRISPR-mediated gene-editing of sheep embryonic fibroblast cells. Cells Tissues Organs 2021; 212:176-184. [PMID: 34823242 DOI: 10.1159/000521128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/19/2021] [Indexed: 11/19/2022] Open
Abstract
Genetic engineering of farm animals is commonly carried out via cell-mediated transfection followed by somatic cell nuclear transfer. However, efficient transfer of exogenous DNA into ovine embryonic fibroblast (EF) cells without compromising cell viability have remained a challenging issue. Here, we aimed to develop a protocol for electrotransfection of sheep EF cells. First, we optimized the pulsing condition using an OptiMEM-GlutaMAX medium as the electroporation buffer and found two pulses of 270 V, each for 10 ms and 10 s interval, is the most efficient condition to have a high rate of transfection and cell survival. Moreover, supplementing 3 % dimethyl sulfoxide (DMSO) into the electroporation medium considerably improved the cell viability after the electroporation process. The electroporation procedure resulted in > 98% transfection efficiency and > 97 % cell survival rate using reporter plasmids. Finally, using CRISPR/Cas9-encoding vectors, we targeted BMP15 and GDF9 genes in sheep EF cells. The electroporated cells are associated with a 52 % indels rate using single gRNAs as well as a highly efficient target deletion using two gRNAs. In conclusion, we developed an electrotransfection protocol using the OptiMEM-GlutaMAX medium supplemented with 3 % DMSO for sheep EF cells. The electroporation method can be used for cell-mediated gene-editing in sheep.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute of Animal Health, Biotechnology, Stem Cell Physiology, Neustadt, Germany
- Department of Animal Science, Isfahan branch, Islamic Azad University, Isfahan, Iran
| | - Wilfried A Kues
- Department of Animal Science, Isfahan branch, Islamic Azad University, Isfahan, Iran
| |
Collapse
|
32
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021; 22:11753. [PMID: 34769204 PMCID: PMC8583973 DOI: 10.3390/ijms222111753] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
Affiliation(s)
- Aftab Ahmad
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Nayla Munawar
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture Multan, Multan 60000, Pakistan;
| | - Alaa T. Qusmani
- Biology Department, Al-Jumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia;
| | - Sultan Habibullah Khan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Ashraf
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Muhammad Zubair Ghouri
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
- Center for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sabin Aslam
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Muhammad Salman Mubarik
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Ahmad Munir
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan; (A.J.); (S.A.); (A.M.)
| | - Qaiser Sultan
- Center for Advanced Studies in Agriculture and Food Security (CASAFS), University of Agriculture, Faisalabad 38000, Pakistan; (A.A.); (S.H.K.); (M.Z.G.); (S.A.); (M.S.M.); (Q.S.)
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Sameer H. Qari
- Molecular Biology Central Laboratory (GMCL), Department of Biology/Genetics, Aljumum University College, Umm Al-Qura University, Makkah 24243, Saudi Arabia
| |
Collapse
|
33
|
Ahmad A, Munawar N, Khan Z, Qusmani AT, Khan SH, Jamil A, Ashraf S, Ghouri MZ, Aslam S, Mubarik MS, Munir A, Sultan Q, Abd-Elsalam KA, Qari SH. An Outlook on Global Regulatory Landscape for Genome-Edited Crops. Int J Mol Sci 2021. [DOI: https://doi.org/10.3390/ijms222111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits—without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
34
|
Abstract
The revolutionary technology of CRISPR/Cas systems and their extraordinary potential to address fundamental questions in every field of biological sciences has led to their developers being awarded the 2020 Nobel Prize for Chemistry. In agriculture, CRISPR/Cas systems have accelerated the development of new crop varieties with improved traits-without the need for transgenes. However, the future of this technology depends on a clear and truly global regulatory framework being developed for these crops. Some CRISPR-edited crops are already on the market, and yet countries and regions are still divided over their legal status. CRISPR editing does not require transgenes, making CRISPR crops more socially acceptable than genetically modified crops, but there is vigorous debate over how to regulate these crops and what precautionary measures are required before they appear on the market. This article reviews intended outcomes and risks arising from the site-directed nuclease CRISPR systems used to improve agricultural crop plant genomes. It examines how various CRISPR system components, and potential concerns associated with CRISPR/Cas, may trigger regulatory oversight of CRISPR-edited crops. The article highlights differences and similarities between GMOs and CRISPR-edited crops, and discusses social and ethical concerns. It outlines the regulatory framework for GMO crops, which many countries also apply to CRISPR-edited crops, and the global regulatory landscape for CRISPR-edited crops. The article concludes with future prospects for CRISPR-edited crops and their products.
Collapse
|
35
|
Tao H, Shi X, He F, Wang D, Xiao N, Fang H, Wang R, Zhang F, Wang M, Li A, Liu X, Wang GL, Ning Y. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1639-1648. [PMID: 34170614 DOI: 10.1111/jipb.13145] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Rice blast and bacterial blight are important diseases of rice (Oryza sativa) caused by the fungus Magnaporthe oryzae and the bacterium Xanthomonas oryzae pv. oryzae (Xoo), respectively. Breeding rice varieties for broad-spectrum resistance is considered the most effective and sustainable approach to controlling both diseases. Although dominant resistance genes have been extensively used in rice breeding and production, generating disease-resistant varieties by altering susceptibility (S) genes that facilitate pathogen compatibility remains unexplored. Here, using CRISPR/Cas9 technology, we generated loss-of-function mutants of the S genes Pi21 and Bsr-d1 and showed that they had increased resistance to M. oryzae. We also generated a knockout mutant of the S gene Xa5 that showed increased resistance to Xoo. Remarkably, a triple mutant of all three S genes had significantly enhanced resistance to both M. oryzae and Xoo. Moreover, the triple mutant was comparable to the wild type in regard to key agronomic traits, including plant height, effective panicle number per plant, grain number per panicle, seed setting rate, and thousand-grain weight. These results demonstrate that the simultaneous editing of multiple S genes is a powerful strategy for generating new rice varieties with broad-spectrum resistance.
Collapse
Affiliation(s)
- Hui Tao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan Wang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Ning Xiao
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009, China
| | - Hong Fang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Min Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Aihong Li
- Institute of Agricultural Sciences for Lixiahe Region in Jiangsu, Yangzhou, 225009, China
| | - Xionglun Liu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus,, OH, 43210, USA
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
36
|
Hisano H, Abe F, Hoffie RE, Kumlehn J. Targeted genome modifications in cereal crops. BREEDING SCIENCE 2021; 71:405-416. [PMID: 34912167 PMCID: PMC8661484 DOI: 10.1270/jsbbs.21019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/13/2021] [Indexed: 05/15/2023]
Abstract
The recent advent of customizable endonucleases has led to remarkable advances in genetic engineering, as these molecular scissors allow for the targeted introduction of mutations or even precisely predefined genetic modifications into virtually any genomic target site of choice. Thanks to its unprecedented precision, efficiency, and functional versatility, this technology, commonly referred to as genome editing, has become an effective force not only in basic research devoted to the elucidation of gene function, but also for knowledge-based improvement of crop traits. Among the different platforms currently available for site-directed genome modifications, RNA-guided clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) endonucleases have proven to be the most powerful. This review provides an application-oriented overview of the development of customizable endonucleases, current approaches to cereal crop breeding, and future opportunities in this field.
Collapse
Affiliation(s)
- Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Fumitaka Abe
- Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8518, Japan
| | - Robert E. Hoffie
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland/OT Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Stadt Seeland/OT Gatersleben, Germany
| |
Collapse
|
37
|
Gupta D, Sharma G, Saraswat P, Ranjan R. Synthetic Biology in Plants, a Boon for Coming Decades. Mol Biotechnol 2021; 63:1138-1154. [PMID: 34420149 DOI: 10.1007/s12033-021-00386-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 08/16/2021] [Indexed: 02/01/2023]
Abstract
Recently an enormous expansion of knowledge is seen in various disciplines of science. This surge of information has given rise to concept of interdisciplinary fields, which has resulted in emergence of newer research domains, one of them is 'Synthetic Biology' (SynBio). It captures basics from core biology and integrates it with concepts from the other areas of study such as chemical, electrical, and computational sciences. The essence of synthetic biology is to rewire, re-program, and re-create natural biological pathways, which are carried through genetic circuits. A genetic circuit is a functional assembly of basic biological entities (DNA, RNA, proteins), created using typical design, built, and test cycles. These circuits allow scientists to engineer nearly all biological systems for various useful purposes. The development of sophisticated molecular tools, techniques, genomic programs, and ease of nucleic acid synthesis have further fueled several innovative application of synthetic biology in areas like molecular medicines, pharmaceuticals, biofuels, drug discovery, metabolomics, developing plant biosensors, utilization of prokaryotic systems for metabolite production, and CRISPR/Cas9 in the crop improvement. These applications have largely been dominated by utilization of prokaryotic systems. However, newer researches have indicated positive growth of SynBio for the eukaryotic systems as well. This paper explores advances of synthetic biology in the plant field by elaborating on its core components and potential applications. Here, we have given a comprehensive idea of designing, development, and utilization of synthetic biology in the improvement of the present research state of plant system.
Collapse
Affiliation(s)
- Dipinte Gupta
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Gauri Sharma
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Pooja Saraswat
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India
| | - Rajiv Ranjan
- Plant Biotechnology Lab, Department of Botany, Faculty of Science, Dayalbagh Educational Institute (Deemed to be University), Dayalbagh, Agra, 282005, India.
| |
Collapse
|
38
|
Knez M, Stangoulis JCR. Calcium Biofortification of Crops-Challenges and Projected Benefits. FRONTIERS IN PLANT SCIENCE 2021; 12:669053. [PMID: 34335646 PMCID: PMC8323714 DOI: 10.3389/fpls.2021.669053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Despite Calcium (Ca) being an essential nutrient for humans, deficiency of Ca is becoming an ensuing public health problem worldwide. Breeding staple crops with higher Ca concentrations is a sustainable long-term strategy for alleviating Ca deficiency, and particular criteria for a successful breeding initiative need to be in place. This paper discusses current challenges and projected benefits of Ca-biofortified crops. The most important features of Ca nutrition in plants are presented along with explicit recommendations for additional exploration of this important issue. In order for Ca-biofortified crops to be successfully developed, tested, and effectively implemented in most vulnerable populations, further research is required.
Collapse
Affiliation(s)
- Marija Knez
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- Centre of Research Excellence in Nutrition and Metabolism, National Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
39
|
Abdeen AA, Cosgrove BD, Gersbach CA, Saha K. Integrating Biomaterials and Genome Editing Approaches to Advance Biomedical Science. Annu Rev Biomed Eng 2021; 23:493-516. [PMID: 33909475 DOI: 10.1146/annurev-bioeng-122019-121602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.
Collapse
Affiliation(s)
- Amr A Abdeen
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Brian D Cosgrove
- Department of Biomedical Engineering and Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27708, USA;
| | - Charles A Gersbach
- Department of Biomedical Engineering and Center for Advanced Genomic Technologies, Duke University, Durham, North Carolina 27708, USA;
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27708, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- McPherson Eye Research Institute, Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA;
| |
Collapse
|
40
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
41
|
Michalski K, Hertig C, Mańkowski DR, Kumlehn J, Zimny J, Linkiewicz AM. Functional Validation of cas9/guideRNA Constructs for Site-Directed Mutagenesis of Triticale ABA8'OH1 loci. Int J Mol Sci 2021; 22:7038. [PMID: 34210100 PMCID: PMC8269138 DOI: 10.3390/ijms22137038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 12/02/2022] Open
Abstract
Cas endonuclease-mediated genome editing provides a long-awaited molecular biological approach to the modification of predefined genomic target sequences in living organisms. Although cas9/guide (g)RNA constructs are straightforward to assemble and can be customized to target virtually any site in the plant genome, the implementation of this technology can be cumbersome, especially in species like triticale that are difficult to transform, for which only limited genome information is available and/or which carry comparatively large genomes. To cope with these challenges, we have pre-validated cas9/gRNA constructs (1) by frameshift restitution of a reporter gene co-introduced by ballistic DNA transfer to barley epidermis cells, and (2) via transfection in triticale protoplasts followed by either a T7E1-based cleavage assay or by deep-sequencing of target-specific PCR amplicons. For exemplification, we addressed the triticale ABA 8'-hydroxylase 1 gene, one of the putative determinants of pre-harvest sprouting of grains. We further show that in-del induction frequency in triticalecan beincreased by TREX2 nuclease activity, which holds true for both well- and poorly performing gRNAs. The presented results constitute a sound basis for the targeted induction of heritable modifications in triticale genes.
Collapse
Affiliation(s)
- Krzysztof Michalski
- GMO Controlling Laboratory, Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.M.); (J.Z.)
| | - Christian Hertig
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (J.K.); (C.H.)
| | - Dariusz R. Mańkowski
- Laboratory of Seed Production and Plant Breeding Economics, Department of Seed Science and Technology, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland;
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Seeland, Germany; (J.K.); (C.H.)
| | - Janusz Zimny
- GMO Controlling Laboratory, Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.M.); (J.Z.)
| | - Anna M. Linkiewicz
- GMO Controlling Laboratory, Plant Biotechnology and Cytogenetics Department, Plant Breeding and Acclimatization Institute—National Research Institute, Radzików, 05-870 Błonie, Poland; (K.M.); (J.Z.)
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland
| |
Collapse
|
42
|
Turnbull C, Lillemo M, Hvoslef-Eide TAK. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom - A Review. FRONTIERS IN PLANT SCIENCE 2021; 12:630396. [PMID: 33719302 PMCID: PMC7943453 DOI: 10.3389/fpls.2021.630396] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/02/2021] [Indexed: 05/02/2023]
Abstract
Products derived from agricultural biotechnology is fast becoming one of the biggest agricultural trade commodities globally, clothing us, feeding our livestock, and fueling our eco-friendly cars. This exponential growth occurs despite asynchronous regulatory schemes around the world, ranging from moratoriums and prohibitions on genetically modified (GM) organisms, to regulations that treat both conventional and biotech novel plant products under the same regulatory framework. Given the enormous surface area being cultivated, there is no longer a question of acceptance or outright need for biotech crop varieties. Recent recognition of the researchers for the development of a genome editing technique using CRISPR/Cas9 by the Nobel Prize committee is another step closer to developing and cultivating new varieties of agricultural crops. By employing precise, efficient, yet affordable genome editing techniques, new genome edited crops are entering country regulatory schemes for commercialization. Countries which currently dominate in cultivating and exporting GM crops are quickly recognizing different types of gene-edited products by comparing the products to conventionally bred varieties. This nuanced legislative development, first implemented in Argentina, and soon followed by many, shows considerable shifts in the landscape of agricultural biotechnology products. The evolution of the law on gene edited crops demonstrates that the law is not static and must adjust to the mores of society, informed by the experiences of 25 years of cultivation and regulation of GM crops. The crux of this review is a consolidation of the global legislative landscape on GM crops, as it stands, building on earlier works by specifically addressing how gene edited crops will fit into the existing frameworks. This work is the first of its kind to synthesize the applicable regulatory documents across the globe, with a focus on GM crop cultivation, and provides links to original legislation on GM and gene edited crops.
Collapse
|
43
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
44
|
Sheva M, Hanania U, Ariel T, Turbovski A, Rathod VKR, Oz D, Tekoah Y, Shaaltiel Y. Sequential Genome Editing and Induced Excision of the Transgene in N. tabacum BY2 Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:607174. [PMID: 33324440 PMCID: PMC7723889 DOI: 10.3389/fpls.2020.607174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
While plant cells in suspension are becoming a popular platform for expressing biotherapeutic proteins, the need to pre-engineer these cells to better comply with their role as host cell lines is emerging. Heterologous DNA and selectable markers are used for transformation and genome editing designated to produce improved host cell lines for overexpression of recombinant proteins. The removal of these heterologous DNA and selectable markers, no longer needed, can be beneficial since they limit additional gene stacking in subsequent transformations and may pose excessive metabolic burden on the cell machinery. In this study we developed an innovative stepwise methodology in which the CRISPR-Cas9 is used sequentially to target genome editing, followed by its own excision. The first step included a stable insertion of a CRISPR-Cas9 cassette, targeted to knockout the β(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. The second step included the excision of the inserted cassette of 14.3 kbp by induction of specific sgRNA designed to target the T-DNA boundaries. The genome editing step and the transgene removal step are achieved in one transformation run. This mechanism enables CRISPR genome editing and subsequently eliminating the introduced transgenes thus freeing the cells from foreign DNA no longer needed.
Collapse
|
45
|
Sheva M, Hanania U, Ariel T, Turbovski A, Rathod VKR, Oz D, Tekoah Y, Shaaltiel Y. Sequential Genome Editing and Induced Excision of the Transgene in N. tabacum BY2 Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:607174. [PMID: 33324440 DOI: 10.3389/fpls.2020.60714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 05/23/2023]
Abstract
While plant cells in suspension are becoming a popular platform for expressing biotherapeutic proteins, the need to pre-engineer these cells to better comply with their role as host cell lines is emerging. Heterologous DNA and selectable markers are used for transformation and genome editing designated to produce improved host cell lines for overexpression of recombinant proteins. The removal of these heterologous DNA and selectable markers, no longer needed, can be beneficial since they limit additional gene stacking in subsequent transformations and may pose excessive metabolic burden on the cell machinery. In this study we developed an innovative stepwise methodology in which the CRISPR-Cas9 is used sequentially to target genome editing, followed by its own excision. The first step included a stable insertion of a CRISPR-Cas9 cassette, targeted to knockout the β(1,2)-xylosyltranferase (XylT) and the α(1,3)-fucosyltransferase (FucT) genes in Nicotiana tabacum L. cv Bright Yellow 2 (BY2) cell suspension. The second step included the excision of the inserted cassette of 14.3 kbp by induction of specific sgRNA designed to target the T-DNA boundaries. The genome editing step and the transgene removal step are achieved in one transformation run. This mechanism enables CRISPR genome editing and subsequently eliminating the introduced transgenes thus freeing the cells from foreign DNA no longer needed.
Collapse
Affiliation(s)
- Maor Sheva
- Protalix Biotherapeutics, Carmiel, Israel
| | | | - Tami Ariel
- Protalix Biotherapeutics, Carmiel, Israel
| | | | | | - Dina Oz
- Protalix Biotherapeutics, Carmiel, Israel
| | | | | |
Collapse
|
46
|
Legal and practical challenges to authorization of gene edited plants in the EU. N Biotechnol 2020; 60:183-188. [PMID: 33115638 DOI: 10.1016/j.nbt.2020.10.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/23/2022]
Abstract
According to a predominant interpretation of the C-528/16 judgment of the Court of Justice of the European Union, mutants resulting from gene editing, even those featuring only single nucleotide variants, should be subject to the authorization procedures designed for organisms developed through genetic modification (i.e. insertion of large DNA fragments). In this article, we illustrate practical problems with the authorization of products of gene editing in the EU. On the basis of these problems, we analyze the influence of the current interpretation of EU legislation and judgment on the practical ability to authorize and detect such products on the EU market. We show that the predominant interpretation of the judgment leads to legally unacceptable consequences, in particular to the violation of the principle of proportionality with regard to individuals who wish to develop and market products of gene editing. As a result of our considerations, we show that the C-528/16 judgment did not need to be interpreted in the dominant way.
Collapse
|
47
|
Pathi KM, Rink P, Budhagatapalli N, Betz R, Saado I, Hiekel S, Becker M, Djamei A, Kumlehn J. Engineering Smut Resistance in Maize by Site-Directed Mutagenesis of LIPOXYGENASE 3. FRONTIERS IN PLANT SCIENCE 2020; 11:543895. [PMID: 33193477 PMCID: PMC7609844 DOI: 10.3389/fpls.2020.543895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 09/22/2020] [Indexed: 05/23/2023]
Abstract
Biotic stresses caused by microbial pathogens impair crop yield and quality if not restricted by expensive and often ecologically problematic pesticides. For a sustainable agriculture of tomorrow, breeding or engineering of pathogen-resistant crop varieties is therefore a major cornerstone. Maize is one of the four most important cereal crops in the world. The biotrophic fungal pathogen Ustilago maydis causes galls on all aerial parts of the maize plant. Biotrophic pathogens like U. maydis co-evolved with their host plant and depend during their life cycle on successful manipulation of the host's cellular machinery. Therefore, removing or altering plant susceptibility genes is an effective and usually durable way to obtain resistance in plants. Transcriptional time course experiments in U. maydis-infected maize revealed numerous maize genes being upregulated upon establishment of biotrophy. Among these genes is the maize LIPOXYGENASE 3 (LOX3) previously shown to be a susceptibility factor for other fungal genera as well. Aiming to engineer durable resistance in maize against U. maydis and possibly other pathogens, we took a Cas endonuclease technology approach to generate loss of function mutations in LOX3. lox3 maize mutant plants react with an enhanced PAMP-triggered ROS burst implicating an enhanced defense response. Based on visual assessment of disease symptoms and quantification of relative fungal biomass, homozygous lox3 mutant plants exposed to U. maydis show significantly decreased susceptibility. U. maydis infection assays using a transposon mutant lox3 maize line further substantiated that LOX3 is a susceptibility factor for this important maize pathogen.
Collapse
Affiliation(s)
- Krishna Mohan Pathi
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Philipp Rink
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Nagaveni Budhagatapalli
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Ruben Betz
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Indira Saado
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Stefan Hiekel
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Martin Becker
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Armin Djamei
- Biotrophy & Immunity, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
48
|
Gerasimova SV, Hertig C, Korotkova AM, Kolosovskaya EV, Otto I, Hiekel S, Kochetov AV, Khlestkina EK, Kumlehn J. Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC PLANT BIOLOGY 2020; 20:255. [PMID: 33050877 PMCID: PMC7556925 DOI: 10.1186/s12870-020-02454-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 05/20/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND The naked caryopsis character in barley is a domestication-associated trait defined by loss-of-function of the NUD gene. The functional NUD gene encodes an Apetala 2/Ethylene-Response Factor (AP2/ERF) controlling the formation of a cementing layer between pericarp and both lemma and palea. The downstream genes regulated by the NUD transcription factor and molecular mechanism of a cementing layer formation are still not sufficiently described. A naturally occurring 17-kb deletion in the nud locus is associated with the emergence of naked barley. Naked barley has been traditionally used for food and nowadays is considered as a dietary component for functional nutrition. RESULTS In the present study, we demonstrate that targeted knockout of the NUD gene using RNA-guided Cas9 endonuclease leads to the phenotype conversion from hulled to naked barley. Using in vivo pre-testing systems, highly effective guide RNAs targeting the first exon of the NUD gene were selected. Expression cassettes harboring the cas9 and guide RNA genes were used to transform barley cv. Golden Promise via Agrobacterium-mediated DNA transfer. The recessive naked grain phenotype was observed in 57% of primary transformants, which indicates a frequent occurrence of homozygous or biallelic mutations. T-DNA-free homozygous lines with independently generated mutations in the NUD gene were obtained in the T1 generation. At homozygous state, all obtained mutations including one- and two-amino acid losses with the translational reading frame being retained invariably caused the naked grain phenotype. CONCLUSIONS The hulled and naked barley isogenic lines generated are a perfect experimental model for further studies on pleiotropic consequences of nud mutations on overall plant performance under particular consideration of yield-determining traits. Due to the high β-glucan content of its grains, naked barley is considered as being of particular dietary value. The possibility to convert hulled into naked barley cultivars by targeted mutagenesis allows breeders to extend the potential utilization of barley by the provision of functional food.
Collapse
Affiliation(s)
- Sophia V. Gerasimova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
| | - Christian Hertig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Anna M. Korotkova
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
| | | | - Ingrid Otto
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Stefan Hiekel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| | - Alex V. Kochetov
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
| | - Elena K. Khlestkina
- Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090 Russia
- Novosibirsk State University, Novosibirsk, 630090 Russia
- Vavilov Institute of Plant Genetic Resources (VIR), Saint Petersburg, 190000 Russia
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
| |
Collapse
|
49
|
Schenke D, Cai D. Applications of CRISPR/Cas to Improve Crop Disease Resistance: Beyond Inactivation of Susceptibility Factors. iScience 2020; 23:101478. [PMID: 32891884 PMCID: PMC7479627 DOI: 10.1016/j.isci.2020.101478] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Current crop production systems are prone to increasing pathogen pressure. Fundamental understanding of molecular plant-pathogen interactions, the availability of crop and pathogen genomic information, as well as emerging genome editing permits a novel approach for breeding of crop disease resistance. We describe here strategies to identify new targets for resistance breeding with focus on interruption of the compatible plant-pathogen interaction by CRISPR/Cas-mediated genome editing. Basically, crop genome editing can be applied in several ways to achieve this goal. The most common approach focuses on the "simple" knockout by non-homologous end joining repair of plant susceptibility factors required for efficient host colonization. However, genome re-writing via homology-directed repair or base editing can also prevent host manipulation by changing the targets of pathogen-derived effectors or molecules beyond recognition, which also decreases plant susceptibility. We conclude that genome editing by CRISPR/Cas will become increasingly indispensable to generate in relatively short time beneficial resistance traits in crops to meet upcoming challenges.
Collapse
Affiliation(s)
- Dirk Schenke
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| | - Daguang Cai
- Institute of Phytopathology, Department of Molecular Phytopathology and Biotechnology, Christian-Albrechts-University of Kiel, Hermann Rodewald Str. 9, 24118 Kiel, Germany
| |
Collapse
|
50
|
Zhu Y, Ji C, Cao W, Shen J, Zhao Q, Jiang L. Identification and characterization of unconventional membrane protein trafficking regulators in Arabidopsis: A genetic approach. JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153229. [PMID: 32750645 DOI: 10.1016/j.jplph.2020.153229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Proper trafficking and subcellular localization of membrane proteins are essential for plant growth and development. The plant endomembrane system contains several membrane-bound organelles with distinct functions including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN) or early endosome, prevacuolar compartment (PVC) or multivesicular body (MVB) and vacuole. Multiple approaches have been successfully used to identify and study the regulators and components important for signal transduction, growth and development, as well as membrane trafficking in the endomembrane system in plants. These include the homologous characterization of the counterparts in mammals or yeast employing both reverse genetic as well as the forward genetic screen approaches. However, the deletion or mutation of membrane trafficking related proteins usually leads to seedling lethality due to their essential roles in plant development and organelle biogenesis. To overcome the limitation of lethal phenotype of the target proteins, we used DEX-inducible RNAi knock-down lines to study their function in plants. More recently, we developed and used both RNAi knock-down and T-DNA insertional lines as starting materials to screen for mutations that could suppress and rescue the lethal phenotype, or a suppressor screening. Further characterization of the newly identified suppressor mutants has resulted in the identification of novel negative regulators in mediating membrane trafficking and organelle biogenesis in plants. In this review, we summarize the current approaches in studying protein trafficking in the endomembrane system. We then describe three examples of suppressor screening with distinct starting materials (i.e. FREE1, MON1, and SH3P2 that are regulators of MVB, vacuole, and autophagosomes, respectively) to discuss the rationale, procedures, advantages and disadvantages, and possible outcomes of such a suppressor screening. We finally propose that these novel screening approaches will lead to the identification of new unconventional players in regulating protein trafficking and organelle biogenesis in plants and discuss their impact on plant cell biology research.
Collapse
Affiliation(s)
- Ying Zhu
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Changyang Ji
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Wenhan Cao
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Qiong Zhao
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- Center for Cell and Developmental Biology, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; CUHK Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|