1
|
Huang W, Tan C, Guo H. Ethylene in fruits: beyond ripening control. HORTICULTURE RESEARCH 2024; 11:uhae229. [PMID: 39415973 PMCID: PMC11480664 DOI: 10.1093/hr/uhae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024]
Abstract
Fruits are a rich source of nutrients, minerals, and dietary fibers for both humans and animals. While the gaseous phytohormone ethylene is well-known for its role in controlling fruit ripening, there is growing evidence that ethylene also plays crucial roles in regulating other developmental processes of fruits, such as sex determination, fruit set, and fruit growth. In this review, we aim to revisit these findings from various species like cucumber, melon, tomato, rice, maize, and more. These studies not only enhance our understanding of ethylene's function in fruits but also highlight the potential for manipulating ethylene to improve crops. Furthermore, we discuss recent studies that show the ethylene precursor ACC (1-AMINOCYCLOPROPANE-1-CARBOXYLATE), and the ethylene signaling components EIN2 (ETHYLENE INSENSITIVE2) and EIN3 (ETHYLENE INSENSITIVE3) have ethylene-independent function in specific conditions. This phenomenon, combined with findings of dosage-dependent ethylene functions in certain conditions, highlights the importance of analyzing mutants with completely blocked ethylene pathways in different species at specific developmental stages and tissue types. Overall, this review offers a timely and essential summary of ethylene's role in sex determination, fruit formation, and fruit growth, which could be beneficial for horticulture crop breeding.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agricultural, BGI Research, Shenzhen 518083, China
- BGI Bioverse, Shenzhen 518083, China
| | - Cong Tan
- BGI Bioverse, Shenzhen 518083, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Cai M, Xiong Q, Mao R, Zhu C, Deng H, Zhang Z, Qiu F, Liu L. Determination of single or paired-kernel-rows is controlled by two quantitative loci during maize domestication. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:227. [PMID: 39299955 DOI: 10.1007/s00122-024-04742-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE qPEDS1, a major quantitative trait locus that determines kernel row number during domestication, harbors the proposed causal gene Zm00001d033675, which may affect jasmonic acid biosynthesis and determine the fate of spikelets. Maize domestication has achieved the production of maize with enlarged ears, enhancing grain productivity dramatically. Kernel row number (KRN), an important yield-related trait, has increased from two rows in teosinte to at least eight rows in modern maize. However, the genetic mechanisms underlying this process remain unclear. To understand KRN domestication, we developed a teosinte-maize BC2F7 population by introgressing teosinte into a maize background. We identified one line, Teosinte ear rank1 (Ter1), with only 5-7 kernel rows which is fewer than those in almost all maize inbred lines. We detected two quantitative trait loci underlying Ter1 and fine-mapped the major one to a 300-kb physical interval. Two candidate genes, Zm674 and Zm675, were identified from 26 maize reference genomes and teosinte bacterial artificial chromosome sequences. Finally, we proposed that Ter1 affects jasmonic acid biosynthesis in the developing ear to determine KRN by the fate of spikelets. This study provides novel insights into the genetic and molecular mechanisms underlying KRN domestication and candidates for de novo wild teosinte domestication.
Collapse
Affiliation(s)
- Manjun Cai
- National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, People's Republic of China
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qing Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ruijie Mao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Can Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hua Deng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
3
|
Xie S, Luo H, Huang W, Jin W, Dong Z. Striking a growth-defense balance: Stress regulators that function in maize development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:424-442. [PMID: 37787439 DOI: 10.1111/jipb.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/01/2023] [Indexed: 10/04/2023]
Abstract
Maize (Zea mays) cultivation is strongly affected by both abiotic and biotic stress, leading to reduced growth and productivity. It has recently become clear that regulators of plant stress responses, including the phytohormones abscisic acid (ABA), ethylene (ET), and jasmonic acid (JA), together with reactive oxygen species (ROS), shape plant growth and development. Beyond their well established functions in stress responses, these molecules play crucial roles in balancing growth and defense, which must be finely tuned to achieve high yields in crops while maintaining some level of defense. In this review, we provide an in-depth analysis of recent research on the developmental functions of stress regulators, focusing specifically on maize. By unraveling the contributions of these regulators to maize development, we present new avenues for enhancing maize cultivation and growth while highlighting the potential risks associated with manipulating stress regulators to enhance grain yields in the face of environmental challenges.
Collapse
Affiliation(s)
- Shiyi Xie
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Hongbing Luo
- Maize Engineering and Technology Research Center of Hunan Province, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wei Huang
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Weiwei Jin
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
- Tianjin Key Laboratory of Intelligent Breeding of Major Crops, Fresh Corn Research Center of BTH, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zhaobin Dong
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Ma X, Ju S, Lin H, Huang H, Huang J, Peng D, Ming R, Lan S, Liu ZJ. Sex-Related Gene Network Revealed by Transcriptome Differentiation of Bisexual and Unisexual Flowers of Orchid Cymbidium tortisepalum. Int J Mol Sci 2023; 24:16627. [PMID: 38068950 PMCID: PMC10706266 DOI: 10.3390/ijms242316627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Despite extensive research on orchid reproductive strategies, the genetic studies of sex differentiation in the orchid family are still lacking. In this study, we compared three sexual phenotypes of Cymbidium tortisepalum bisexual flowers as well as female and male unisexual mutants. Through comparative transcriptomes, we analyzed the sex-biased differentially expressed genes (DEGs) and gene co-expression networks of sex organs (gynostemium and ovary) among them, identified the candidate genes of sex differentiation, and validated their expression by qRT-PCR. The C. tortisepalum unisexual mutants with degenerated phenotypes were compared to the bisexual plants with respect to both the flower organs and plant morphologies. Totally, 12,145, 10,789, and 14,447 genes were uniquely expressed in the female, male, and hermaphrodite sex organs, respectively. A total of 4291 sex-biased DEGs were detected among them, with 871, 2867, and 1937 DEGs in the comparisons of bisexual vs. female, bisexual vs. male, and male vs. female flowers, respectively. Two co-expressed network modules, with 81 and 419 genes were tightly correlated with female sexual traits, while two others with 265 and 135 genes were highly correlated with male sexual traits. Two female-biased hub genes (CtSDR3b and CtSDR3b-like) nested in the female modules, the homologs of maize sex determinant tasselseed2, may control the feminization of C. tortisepalum. At the same time, two male-biased hub genes (CtYAB2 and CtYAB5) nested in the male modules, the homologs of grape sex determinant VviYABBY3, may control the androphany of C. tortisepalum. This study discovered the molecular regulation networks and proposed a model for orchid sex differentiation, therefore providing for the first time the genetic basis for the sex separation in the orchid family.
Collapse
Affiliation(s)
- Xiaokai Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Ju
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Han Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaxing Huang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Huang
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Donghui Peng
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ray Ming
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3707, USA
| | - Siren Lan
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
5
|
Tan C, Liang M, Luo Q, Zhang T, Wang W, Li S, Men S. AUX1, PIN3, and TAA1 collectively maintain fertility in Arabidopsis. PLANTA 2023; 258:68. [PMID: 37598130 DOI: 10.1007/s00425-023-04219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/21/2023]
Abstract
MAIN CONCLUSION We found that auxin synthesis gene TAA1 and auxin polar transport genes AUX1 and PIN3 collectively maintain fertility and seed size in Arabidopsis. Auxin plays a vital role in plant gametophyte development and embryogenesis. The auxin synthesis gene TAA1 and the auxin polar transport genes AUX1 and PIN3 are expressed during Arabidopsis gametophyte and seed development. However, aux1, pin3, and taa1 single mutants only exhibit mild reproductive defects. We, therefore, generated aux1-T pin3 taa1-k2 and aux1-T pin3-2 taa1-k1 triple mutants by crossing or CRISPR/Cas9 technique. These triple mutants displayed severe reproductive defects with approximately 70% and 77%, respectively, of the siliques failing to elongate after anthesis. Reciprocal crosses and microscopy analyses showed that the development of pollen and ovules in the aux1 pin3 taa1 mutants was normal, whereas the filaments were remarkably short, which might be the cause of the silique sterility. Further analyses indicated that the development and morphology of aux1 pin3 taa1 seeds were normal, but their size was smaller compared with that of the wild type. These results indicate that AUX1, PIN3, and TAA1 act in concert to maintain fertility and seed size in Arabidopsis.
Collapse
Affiliation(s)
- Chao Tan
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengxiao Liang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiong Luo
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tan Zhang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenhui Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Suxin Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shuzhen Men
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
6
|
Best N, Dilkes B. Genetic evidence that brassinosteroids suppress pistils in the maize tassel independent of the jasmonic acid pathway. PLANT DIRECT 2023; 7:e501. [PMID: 37440932 PMCID: PMC10333885 DOI: 10.1002/pld3.501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 07/15/2023]
Abstract
The developmental genetics of reproductive structure control in maize must consider both the staminate florets of the tassel and the pistillate florets of the ear synflorescences. Pistil abortion takes place in the tassel florets, and stamen arrest is affected in ear florets to give rise to the monoecious nature of maize. Gibberellin (GA) deficiency results in increased tillering, a dwarfed plant syndrome, and the retention of anthers in the ear florets of maize. The silkless1 mutant results in suppression of silks in the ear. We demonstrate in this study that jasmonic acid (JA) and GA act independently and show additive phenotypes resulting in androecious dwarf1;silkless1 double mutant plants. The persistence of pistils in the tassel can be induced by multiple mechanisms, including JA deficiency, GA excess, genetic control of floral determinacy, and organ identity. The silkless1 mutant can suppress both silks in the ear and the silks in the tassel of JA-deficient and AP2 transcription factor tasselseed mutants. We previously demonstrated that GA production was required for brassinosteroid (BR) deficiency to affect persistence of pistils in the tassel. We find that BR deficiency affects pistil persistence by an independent mechanism from the silkless1 mutant and JA pathway. The silkless1 mutant did not prevent the formation of pistils in the tassel by nana plant2 in double mutants. In addition, we demonstrate that there is more to the silkless1 mutant than just a suppression of pistil growth. We document novel phenotypes of silkless1 mutants including weakly penetrant ear fasciation and anther persistence in the ear florets. Thus, the JA/AP2 mechanism of pistil retention in the tassel and silk growth in the ear are similarly sensitive to loss of the SILKLESS1 protein, while the BR/GA mechanism is not.
Collapse
Affiliation(s)
- Norman Best
- Agriculture Research Service, Plant Genetics Research UnitUSDAColumbiaMissouriUSA
| | - Brian Dilkes
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
7
|
Ma C, Li R, Sun Y, Zhang M, Li S, Xu Y, Song J, Li J, Qi J, Wang L, Wu J. ZmMYC2s play important roles in maize responses to simulated herbivory and jasmonate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1041-1058. [PMID: 36349965 DOI: 10.1111/jipb.13404] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Both herbivory and jasmonic acid (JA) activate the biosynthesis of defensive metabolites in maize, but the mechanism underlying this remains unclear. We generated maize mutants in which ZmMYC2a and ZmMYC2b, two transcription factor genes important in JA signaling, were individually or both knocked out. Genetic and biochemical analyses were used to elucidate the functions of ZmMYC2 proteins in the maize response to simulated herbivory and JA. Compared with the wild-type (WT) maize, the double mutant myc2ab was highly susceptible to insects, and the levels of benzoxazinoids and volatile terpenes, and the levels of their biosynthesis gene transcripts, were much lower in the mutants than in the WT maize after simulated insect feeding or JA treatment. Moreover, ZmMYC2a and ZmMYC2b played a redundant role in maize resistance to insects and JA signaling. Transcriptome and Cleavage Under Targets and Tagmentation-Sequencing (CUT&Tag-Seq) analysis indicated that ZmMYC2s physically targeted 60% of the JA-responsive genes, even though only 33% of these genes were transcriptionally ZmMYC2-dependent. Importantly, CUT&Tag-Seq and dual luciferase assays revealed that ZmMYC2s transactivate the benzoxazinoid and volatile terpene biosynthesis genes IGPS1/3, BX10/11/12/14, and TPS10/2/3/4/5/8 by directly binding to their promoters. Furthermore, several transcription factors physically targeted by ZmMYC2s were identified, and these are likely to function in the regulation of benzoxazinoid biosynthesis. This work reveals the transcriptional regulatory landscapes of both JA signaling and ZmMYC2s in maize and provides comprehensive mechanistic insight into how JA signaling modulates defenses in maize responses to herbivory through ZmMYC2s.
Collapse
Affiliation(s)
- Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruoyue Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Sun
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Mou Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, the Chinese Academy of Sciences, Kunming, 650201, China
- Chinese Academy of Science Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
8
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
9
|
Zhou G, Yin H, Chen F, Wang Y, Gao Q, Yang F, He C, Zhang L, Wan Y. The genome of Areca catechu provides insights into sex determination of monoecious plants. THE NEW PHYTOLOGIST 2022; 236:2327-2343. [PMID: 36089819 DOI: 10.1111/nph.18471] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
The areca palm (Areca catechu) has a monoecious spadix, with male flowers on the apical side and females on the basal side. Here, we applied multiomics analysis to investigate sex determination and floral organ development in areca palms. We generated a chromosome-level reference genome of A. catechu with 16 pseudochromosomes, composed of 2.73 Gb and encoding 31 406 genes. Data from RNA-seq and ATAC-seq (assay for transposase accessible chromatin sequencing) suggested that jasmonic acid (JA) synthesis and signal transduction-related genes were differentially expressed between female and male flowers via epigenetic modifications. JA concentration in female flowers was c. 10 times than that in males on the same inflorescence, while JA concentration in hermaphroditic flowers of abnormal inflorescences was about twice that in male flowers of normal inflorescences. JA promotes the development of female flower organs by decreasing the expression of B-function genes, including AGL16, AP3, PIb and PIc. There is also a region on pseudochromosome 15 harboring sex-related genes, including CYP703, LOG, GPAT, AMS and BiP. Among them, CYP703, AMS and BiP were specifically expressed in male flowers.
Collapse
Affiliation(s)
- Guangzhen Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hongyan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Fei Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
- Hainan Yazhou Bay Seed Laboratory, College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Sanya, 572025, China
| | - Yicheng Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Qiang Gao
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fusun Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Chaozhu He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute of Zhejiang University, Sanya, 572025, China
| | - Yinglang Wan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
10
|
Yang H, Nukunya K, Ding Q, Thompson BE. Tissue-specific transcriptomics reveal functional differences in floral development. PLANT PHYSIOLOGY 2022; 188:1158-1173. [PMID: 34865134 PMCID: PMC8825454 DOI: 10.1093/plphys/kiab557] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 05/22/2023]
Abstract
Flowers are produced by floral meristems, groups of stem cells that give rise to floral organs. In grasses, including the major cereal crops, flowers (florets) are contained in spikelets, which contain one to many florets, depending on the species. Importantly, not all grass florets are developmentally equivalent, and one or more florets are often sterile or abort in each spikelet. Members of the Andropogoneae tribe, including maize (Zea mays), produce spikelets with two florets; the upper and lower florets are usually dimorphic, and the lower floret is greatly reduced compared to the upper floret. In maize ears, early development appears identical in both florets but the lower floret ultimately aborts. To gain insight into the functional differences between florets with different fates, we used laser capture microdissection coupled with RNA-sequencing to globally examine gene expression in upper and lower floral meristems in maize. Differentially expressed genes were involved in hormone regulation, cell wall, sugar, and energy homeostasis. Furthermore, cell wall modifications and sugar accumulation differed between the upper and lower florets. Finally, we identified a boundary domain between upper and lower florets, which we hypothesize is important for floral meristem activity. We propose a model in which growth is suppressed in the lower floret by limiting sugar availability and upregulating genes involved in growth repression. This growth repression module may also regulate floret fertility in other grasses and potentially be modulated to engineer more productive cereal crops.
Collapse
Affiliation(s)
- Hailong Yang
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Kate Nukunya
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Queying Ding
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
| | - Beth E Thompson
- Department of Biology, East Carolina University, Greenville, North Carolina 27858, USA
- Author for communication:
| |
Collapse
|
11
|
Usman B, Zhao N, Nawaz G, Qin B, Liu F, Liu Y, Li R. CRISPR/Cas9 Guided Mutagenesis of Grain Size 3 Confers Increased Rice ( Oryza sativa L.) Grain Length by Regulating Cysteine Proteinase Inhibitor and Ubiquitin-Related Proteins. Int J Mol Sci 2021; 22:ijms22063225. [PMID: 33810044 PMCID: PMC8004693 DOI: 10.3390/ijms22063225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/21/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas9)-mediated genome editing has become an important way for molecular breeding in crop plants. To promote rice breeding, we edited the Grain Size 3 (GS3) gene for obtaining valuable and stable long-grain rice mutants. Furthermore, isobaric tags for the relative and absolute quantitation (iTRAQ)-based proteomic method were applied to determine the proteome-wide changes in the GS3 mutants compared with wild type (WT). Two target sites were designed to construct the vector, and the Agrobacterium-mediated method was used for rice transformation. Specific mutations were successfully introduced, and the grain length (GL) and 1000-grain weight (GWT) of the mutants were increased by 31.39% and 27.15%, respectively, compared with WT. The iTRAQ-based proteomic analysis revealed that a total of 31 proteins were differentially expressed in the GS3 mutants, including 20 up-regulated and 11 down-regulated proteins. Results showed that differentially expressed proteins (DEPs) were mainly related to cysteine synthase, cysteine proteinase inhibitor, vacuolar protein sorting-associated, ubiquitin, and DNA ligase. Furthermore, functional analysis revealed that DEPs were mostly enriched in cellular process, metabolic process, binding, transmembrane, structural, and catalytic activities. Pathway enrichment analysis revealed that DEPs were mainly involved in lipid metabolism and oxylipin biosynthesis. The protein-to-protein interaction (PPI) network found that proteins related to DNA damage-binding, ubiquitin-40S ribosomal, and cysteine proteinase inhibitor showed a higher degree of interaction. The homozygous mutant lines featured by stable inheritance and long-grain phenotype were obtained using the CRISPR/Cas9 system. This study provides a convenient and effective way of improving grain yield, which could significantly accelerate the breeding process of long-grain japonica parents and promote the development of high-yielding rice.
Collapse
Affiliation(s)
- Babar Usman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Gul Nawaz
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China; (B.U.); (N.Z.); (G.N.); (B.Q.); (F.L.)
- Correspondence: (Y.L.); (R.L.); Tel.: +86-20-8528-1908 (Y.L.); +86-136-0009-4135 (R.L.)
| |
Collapse
|
12
|
Liu H, Timko MP. Jasmonic Acid Signaling and Molecular Crosstalk with Other Phytohormones. Int J Mol Sci 2021; 22:ijms22062914. [PMID: 33805647 PMCID: PMC8000993 DOI: 10.3390/ijms22062914] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Plants continually monitor their innate developmental status and external environment and make adjustments to balance growth, differentiation and stress responses using a complex and highly interconnected regulatory network composed of various signaling molecules and regulatory proteins. Phytohormones are an essential group of signaling molecules that work through a variety of different pathways conferring plasticity to adapt to the everchanging developmental and environmental cues. Of these, jasmonic acid (JA), a lipid-derived molecule, plays an essential function in controlling many different plant developmental and stress responses. In the past decades, significant progress has been made in our understanding of the molecular mechanisms that underlie JA metabolism, perception, signal transduction and its crosstalk with other phytohormone signaling pathways. In this review, we discuss the JA signaling pathways starting from its biosynthesis to JA-responsive gene expression, highlighting recent advances made in defining the key transcription factors and transcriptional regulatory proteins involved. We also discuss the nature and degree of crosstalk between JA and other phytohormone signaling pathways, highlighting recent breakthroughs that broaden our knowledge of the molecular bases underlying JA-regulated processes during plant development and biotic stress responses.
Collapse
|
13
|
Zhao Y, Jiang T, Li L, Zhang X, Yang T, Liu C, Chu J, Zheng B. The chromatin remodeling complex imitation of switch controls stamen filament elongation by promoting jasmonic acid biosynthesis in Arabidopsis. J Genet Genomics 2021; 48:123-133. [PMID: 33903069 DOI: 10.1016/j.jgg.2021.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Plant reproduction requires the coordinated development of both male and female reproductive organs. Jasmonic acid (JA) plays an essential role in stamen filament elongation. However, the mechanism by which the JA biosynthesis genes are regulated to promote stamen elongation remains unclear. Here, we show that the chromatin remodeling complex Imitation of Switch (ISWI) promotes stamen filament elongation by regulating JA biosynthesis. We show that AT-Rich Interacting Domain 5 (ARID5) interacts with CHR11, CHR17, and RLT1, several known subunits of ISWI. Mutations in ARID5 and RLTs caused a reduced seed set due to greatly shortened stamen filaments. RNA-seq analyses reveal that the expression of key genes responsible for JA biosynthesis is significantly down-regulated in the arid5 and rlt mutants. Consistently, the JA levels are drastically decreased in both arid5 and rlt mutants. Chromatin immunoprecipitation-quantitative PCR analyses further show that ARID5 is recruited to the chromatin of JA biosynthesis genes. Importantly, exogenous JA treatments can fully rescue the defects of stamen filament elongation in both arid5 and rlt mutants, leading to the partial recovery of fertility. Our results provide a clue how JA biosynthesisis positively regulated by the chromatin remodeling complex ISWI, thereby promoting stamen filament elongation in Arabidopsis.
Collapse
Affiliation(s)
- Youshang Zhao
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Lei Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaotuo Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianyu Yang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Binglian Zheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
14
|
Wang M, Zhu X, Li Y, Xia Z. Transcriptome analysis of a new maize albino mutant reveals that zeta-carotene desaturase is involved in chloroplast development and retrograde signaling. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:407-419. [PMID: 33010551 DOI: 10.1016/j.plaphy.2020.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/21/2020] [Indexed: 05/24/2023]
Abstract
Carotenoids are a group of natural tetraterpenoid pigments with essential roles in a variety of physiological processes of plants. Although carotenoid biosynthesis has been well characterized, the genetic basis of the pathway, especially in crop plants, is largely unknown. In this study, we characterized a new albino maize mutant called albino1 (alb1), which was obtained from a Mutator mutagenized population. The alb1 mutant showed defective chloroplast development and declined photosynthetic pigments, leading to a seedling-lethal phenotype. Genetic and molecular analyses indicated that ALB1 encoded a putative ζ-carotene desaturase (ZDS) involved in carotenoid biosynthesis. Measurement of carotenoids revealed that several major carotenoid compounds downstream of the ZDS were significantly reduced in alb1 mutant, indicating that ALB1 is a functional ZDS. Further transcriptome analysis revealed that several groups of nuclear genes involved in photosynthesis, such as light-harvesting complex, pigment metabolism, and chloroplast function, were significantly down-regulated in alb1 compared with wide type. Interestingly, expression of some maize plastid-localized nuclear genes, including POR, CAO, Lhcb, and RbcS, was substantially reduced in alb1 plants. Furthermore, treatment of the inhibitor fluridone significantly rescued gene transcripts of these nucleus-encoded genes in alb1 mutant, which supported the retrograde signaling of ζ-carotene/phytofluene derived molecules. These results suggested that ALB1/ZDS might function as a regulator to coordinate nuclear photosynthetic gene expression in plastid-to-nucleus retrograde signaling during development of maize plants. Together, these results have demonstrated that ALB1/ZDS is essential for carotenoids biosynthesis and plays crucial roles in chloroplast biogenesis and development in maize.
Collapse
Affiliation(s)
- Meiping Wang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China; Department of Information, Library of Henan Agricultural University, Zhengzhou, 450002, PR China
| | - Xianfeng Zhu
- School of Life Sciences, Henan University, Kaifeng, 475004, PR China
| | - Yu Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, PR China; Synergetic Innovation Center of Henan Grain Crops and State Key Laboratory of Wheat & Maize Crop Science, Zhengzhou, 450002, PR China.
| |
Collapse
|
15
|
Wan X, Wu S, Li Z, An X, Tian Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants. MOLECULAR PLANT 2020; 13:955-983. [PMID: 32434071 DOI: 10.1016/j.molp.2020.05.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/20/2020] [Accepted: 05/14/2020] [Indexed: 05/18/2023]
Abstract
Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.
Collapse
Affiliation(s)
- Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Youhui Tian
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center, University of Science and Technology Beijing, Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| |
Collapse
|
16
|
Arabidopsis Flowers Unlocked the Mechanism of Jasmonate Signaling. PLANTS 2019; 8:plants8080285. [PMID: 31416189 PMCID: PMC6724136 DOI: 10.3390/plants8080285] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
The Arabidopsis male-sterile phenotype has been a wonderful model for jasmonate action in plants. It has allowed us to identify transcription factors that control gene expression during stamen and pollen maturation and provided for the discovery of the JAZ repressor proteins and the mechanism of jasmonate signaling. More recently, it has revealed intriguing details of the spatial localization of jasmonate synthesis and perception in stamen tissues. The extensive and thoughtful application of protein–protein interaction assays to identify JAZ-interacting partners has led to a much richer appreciation of the mechanisms by which jasmonate integrates with the actions of other hormones to regulate plant growth and physiological responses. This integration is strikingly evident in stamen and pollen development in Arabidopsis, which requires the actions of many hormones. Just as importantly, it is now evident that jasmonate has very different actions during flower development and reproduction in other plant species. This integration and diversity of action indicates that many exciting discoveries remain to be made in this area of jasmonate hormone signaling and response.
Collapse
|