1
|
Martinez Q, Amson E, Ruf I, Smith TD, Pirot N, Broyon M, Lebrun R, Captier G, Gascó Martín C, Ferreira G, Fabre PH. Turbinal bones are still one of the last frontiers of the tetrapod skull: hypotheses, challenges and perspectives. Biol Rev Camb Philos Soc 2024; 99:2304-2337. [PMID: 39092480 DOI: 10.1111/brv.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 08/04/2024]
Abstract
Turbinals are bony or cartilaginous structures that are present in the nasal cavity of most tetrapods. They are involved in key functions such as olfaction, heat, and moisture conservation, as well as protection of the respiratory tract. Despite recent studies that challenged long-standing hypotheses about their physiological and genomic correlation, turbinals remain largely unexplored, particularly for non-mammalian species. Herein, we review and synthesise the current knowledge of turbinals using an integrative approach that includes comparative anatomy, physiology, histology and genomics. In addition, we provide synonyms and correspondences of tetrapod turbinals from about 80 publications. This work represents a first step towards drawing hypotheses of homology for the whole clade, and provides a strong basis to develop new research avenues.
Collapse
Affiliation(s)
- Quentin Martinez
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Eli Amson
- Staatliches Museum für Naturkunde Stuttgart, Stuttgart, DE-70191, Germany
| | - Irina Ruf
- Abteilung Messelforschung und Mammalogie, Senckenberg Forschungsinstitut und Naturmuseum Frankfurt, Frankfurt am Main, 60325, Germany
- Institut für Geowissenschaften, Goethe-Universität Frankfurt am Main, Frankfurt am Main, 60438, Germany
- Research Center of Paleontology and Stratigraphy, Jilin University, Changchun, 130026, China
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, PA, 16057, USA
| | - Nelly Pirot
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Morgane Broyon
- BioCampus Montpellier (BCM), Université de Montpellier, CNRS, INSERM, Montpellier, 34090, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Université de Montpellier, Institut du Cancer de Montpellier (ICM), INSERM, Montpellier, 34298, France
| | - Renaud Lebrun
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
| | - Guillaume Captier
- Laboratoire d'anatomie, UFR médecine, Université Montpellier, Montpellier, 34060, France
- Département chirurgie pédiatrique, CHU Montpellier, université Montpellier, Montpellier, 34295, France
| | | | - Gabriel Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment at the Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
- Department of Geosciences, Faculty of Sciences, Eberhard Karls University of Tübingen, Tübingen, 727074, Germany
| | - Pierre-Henri Fabre
- Institut des Sciences de l'Évolution (ISEM, UMR 5554 CNRS-IRD-UM), Université de Montpellier, Place E. Bataillon-CC 064 - 34095, Montpellier Cedex 5, France
- Mammal Section, Department of Life Sciences, The Natural History Museum, London, SW7 5DB, UK
- Institut Universitaire de France (IUF), Paris, 75231, France
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History, Central Park West, 79th St, New York, NY, 10024-5192, USA
| |
Collapse
|
2
|
Crowell HL, Nagesan RS, Davis Rabosky AR, Kolmann MA. Differential performance of aqueous- and ethylic-Lugol's iodine stain to visualize anatomy in μCT-scanned vertebrates. J Anat 2024. [PMID: 39323056 DOI: 10.1111/joa.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024] Open
Abstract
Museum specimens are an increasingly important tool for studying global biodiversity. With the advent of diffusible iodine-based contrast-enhanced computed tomography (diceCT), researchers can now visualize an organism's internal soft tissue anatomy without the need for physical dissection or other highly destructive sampling methods. However, there are many considerations when deciding which method of staining to use for diceCT to produce the best gray-scale contrast for facilitating downstream anatomical analyses. The general lack of direct comparisons among staining methodologies can make it difficult for researchers to determine which approaches are most appropriate for their study. Here, we compare the performance of ethylic-Lugol's iodine solution with aqueous-Lugol's staining solution across several vertebrate orders to assess differential imaging outcomes. We found that ethylic-Lugol's is better for visualizing muscle attachment to bone but provides overall lower contrast between soft tissue types. Comparatively, aqueous-based Lugol's provides high-contrast imaging among soft tissue types, although bone is more difficult to discern. We conclude that the choice of staining methodology largely depends on the type of anatomical data the researcher wishes to collect, and we provide a decision-based framework for assessing which staining methodology (ethylic or aqueous) is most appropriate for desired imaging results.
Collapse
Affiliation(s)
- Hayley L Crowell
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ramon S Nagesan
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison R Davis Rabosky
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew A Kolmann
- Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
3
|
Sunaguchi N, Yuasa T, Shimao D, Huang Z, Ichihara S, Nishimura R, Iwakoshi A, Kim JK, Gupta R, Ando M. Phase-contrast visualization of human tissues using superimposed wavefront imaging of diffraction-enhanced x-rays. Med Phys 2024. [PMID: 39088789 DOI: 10.1002/mp.17336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Phase-contrast computed tomography (CT) using high-brilliance, synchrotron-generated x-rays enable three-dimensional (3D) visualization of microanatomical structures within biological specimens, offering exceptionally high-contrast images of soft tissues. Traditional methods for phase-contrast CT; however, necessitate a gap between the subject and the x-ray camera, compromising spatial resolution due to penumbral blurring. Our newly developed technique, Superimposed Wavefront Imaging of Diffraction-enhanced x-rays (SWIDeX), leverages a Laue-case Si angle analyzer affixed to a scintillator to convert x-rays to visible light, capturing second-order differential phase contrast images and effectively eliminating the distance to the x-ray camera. This innovation achieves superior spatial resolution over conventional methods. PURPOSE In this paper, the imaging principle and CT reconstruction algorithm based on SWIDeX are presented in detail and compared with conventional analyzer-based imaging (ABI). It also shows the physical setup of SWIDeX that provides the resolution preserving second-order differential images for reconstruction. We compare the spatial resolution and the sensitivity of SWIDeX to conventional ABI. METHODS To demonstrate high-spatial resolution achievable by SWIDeX, the internal structures of four human tissues-ductal carcinoma in situ, normal stomach, normal pancreas, and intraductal papillary mucinous neoplasm of the pancreas-were visualized using an imaging system configured at the Photon Factory's BL14B beamline under the High Energy Accelerator Research Organization (KEK). Each tissue was thinly sliced after imaging, stained with hematoxylin and eosin (H&E) for conventional microscope-based pathology. RESULTS A comparison of SWIDeX-CT and pathological images visually demonstrates the effectiveness of SWIDeX-CT for biological tissue imaging. SWIDeX could generate clearer 3D images than existing analyzer-based phase-contrast methods and accurately delineate tissue structures, as validated against histopathological images. CONCLUSIONS SWIDeX can visualize important 3D structures in biological soft tissue with high spatial resolution and can be an important tool for providing information between the disparate scales of clinical and pathological imaging.
Collapse
Affiliation(s)
- Naoki Sunaguchi
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tetsuya Yuasa
- Graduate School of Engineering and Science, Yamagata University, Yonezawa, Yamagata, Japan
| | | | - Zhuoran Huang
- Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shu Ichihara
- Department of Pathology, NHO Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Rieko Nishimura
- Department of Pathology, NHO Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Akari Iwakoshi
- Department of Pathology, NHO Nagoya Medical Center, Nagoya, Aichi, Japan
| | - Jong-Ki Kim
- Biomedical Engineering and Radiology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Rajiv Gupta
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Masami Ando
- High Energy Accelerator Research Organization, Tsukuba, Ibaraki, Japan
| |
Collapse
|
4
|
Tkachev S, Chepelova N, Galechyan G, Ershov B, Golub D, Popova E, Antoshin A, Giliazova A, Voloshin S, Efremov Y, Istranova E, Timashev P. Three-Dimensional Cell Culture Micro-CT Visualization within Collagen Scaffolds in an Aqueous Environment. Cells 2024; 13:1234. [PMID: 39120266 PMCID: PMC11311787 DOI: 10.3390/cells13151234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
Among all of the materials used in tissue engineering in order to develop bioequivalents, collagen shows to be the most promising due to its superb biocompatibility and biodegradability, thus becoming one of the most widely used materials for scaffold production. However, current imaging techniques of the cells within collagen scaffolds have several limitations, which lead to an urgent need for novel methods of visualization. In this work, we have obtained groups of collagen scaffolds and selected the contrasting agents in order to study pores and patterns of cell growth in a non-disruptive manner via X-ray computed microtomography (micro-CT). After the comparison of multiple contrast agents, a 3% aqueous phosphotungstic acid solution in distilled water was identified as the most effective amongst the media, requiring 24 h of incubation. The differences in intensity values between collagen fibers, pores, and masses of cells allow for the accurate segmentation needed for further analysis. Moreover, the presented protocol allows visualization of porous collagen scaffolds under aqueous conditions, which is crucial for the multimodal study of the native structure of samples.
Collapse
Affiliation(s)
- Sergey Tkachev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Natalia Chepelova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Gevorg Galechyan
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Boris Ershov
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Danila Golub
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Elena Popova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Artem Antoshin
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Aliia Giliazova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow 119991, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov University, Moscow 119991, Russia
| |
Collapse
|
5
|
Ditton DM, Marchus CR, Bozeman AL, Martes AC, Brumley MR, Schiele NR. Visualization of rat tendon in three dimensions using micro-Computed Tomography. MethodsX 2024; 12:102565. [PMID: 38292310 PMCID: PMC10825692 DOI: 10.1016/j.mex.2024.102565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Micro-computed tomography (CT) is an X-ray-based imaging modality that produces three-dimensional (3D), high-resolution images of whole-mount tissues, but is typically limited to dense tissues, such as bone. The X-rays readily pass-through tendons, rendering them transparent. Contrast-enhancing chemical stains have been explored, but their use to improve contrast in different tendon types and across developmental stages for micro-CT imaging has not been systematically evaluated. Therefore, we investigated how phosphotungstic acid (PTA) staining and tissue hydration impacts tendon contrast for micro-CT imaging. We showed that PTA staining increased X-ray absorption of tendon to enhance tissue contrast and obtain 3D micro-CT images of immature (postnatal day 21) and sexually mature (postnatal day 50) rat tendons within the tail and hindlimb. Further, we demonstrated that tissue hydration state following PTA staining significantly impacts soft tissue contrast. Using this method, we also found that tail tendon fascicles appear to cross between fascicle bundles. Ultimately, contrast-enhanced 3D micro-CT imaging will lead to better understanding of tendon structure, and relationships between the bone and soft tissues.•Simple tissue fixation and staining technique enhances soft tissue contrast for tendon visualization using micro-CT.•3D tendon visualization in situ advances understanding of musculoskeletal tissue structure and organization.
Collapse
Affiliation(s)
- Destinee M. Ditton
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Colin R. Marchus
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Aimee L. Bozeman
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Alleyna C. Martes
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Michele R. Brumley
- Psychology, Idaho State University, 921 S 8th Avenue Stop 8087, Pocatello, ID 83209, USA
| | - Nathan R. Schiele
- Chemical & Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
6
|
Bradley-Cronkwright M, Moore S, Hou L, Cote S, Rolian C. Impact of hindlimb length variation on jumping dynamics in the Longshanks mouse. J Exp Biol 2024; 227:jeb246808. [PMID: 38634230 DOI: 10.1242/jeb.246808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/04/2024] [Indexed: 04/19/2024]
Abstract
Distantly related mammals (e.g. jerboa, tarsiers, kangaroos) have convergently evolved elongated hindlimbs relative to body size. Limb elongation is hypothesized to make these species more effective jumpers by increasing their kinetic energy output (through greater forces or acceleration distances), thereby increasing take-off velocity and jump distance. This hypothesis, however, has rarely been tested at the population level, where natural selection operates. We examined the relationship between limb length, muscular traits and dynamics using Longshanks mice, which were selectively bred over 22 generations for longer tibiae. Longshanks mice have approximately 15% longer tibiae and 10% longer femora compared with random-bred Control mice from the same genetic background. We collected in vivo measures of locomotor kinematics and force production, in combination with behavioral data and muscle morphology, to examine how changes in bone and muscle structure observed in Longshanks mice affect their hindlimb dynamics during jumping and clambering. Longshanks mice achieved higher mean and maximum lunge-jump heights than Control mice. When jumping to a standardized height (14 cm), Longshanks mice had lower maximum ground reaction forces, prolonged contact times and greater impulses, without significant differences in average force, power or whole-body velocity. While Longshanks mice have longer plantarflexor muscle bodies and tendons than Control mice, there were no consistent differences in muscular cross-sectional area or overall muscle volume; improved lunge-jumping performance in Longshanks mice is not accomplished by simply possessing larger muscles. Independent of other morphological or behavioral changes, our results point to the benefit of longer hindlimbs for performing dynamic locomotion.
Collapse
Affiliation(s)
| | - Sarah Moore
- Cumming School of Medicine, University of Calgary, AB, Canada, T2N 4N1
| | - Lily Hou
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Susanne Cote
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Campbell Rolian
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, AB, Canada, T2N 4N1
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada, T2N 4N1
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada, H3A 0C7
| |
Collapse
|
7
|
Davis S, Karali A, Balcaen T, Zekonyte J, Pétré M, Roldo M, Kerckhofs G, Blunn G. Comparison of two contrast-enhancing staining agents for use in X-ray imaging and digital volume correlation measurements across the cartilage-bone interface. J Mech Behav Biomed Mater 2024; 152:106414. [PMID: 38277908 DOI: 10.1016/j.jmbbm.2024.106414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE The pathogenesis of osteoarthritis (OA) is associated with subchondral bone changes, which is linked to abnormal strain distribution in the overlying articular cartilage. This highlights the importance of understanding mechanical interaction at the cartilage-bone interface. The aim of this study is to compare solutions of two contrast-enhancing staining agents (CESA) for combining high-resolution Contrast-Enhanced X-ray microfocus Computed Tomography (CECT) with Digital Volume Correlation (DVC) for full-field strain measurements at the cartilage-bone interface. DESIGN Bovine osteochondral plugs were stained with phosphotungstic acid (PTA) in 70% ethanol or 1:2 hafnium-substituted Wells-Dawson polyoxometalate (Hf-WD POM) in PBS. Mechanical properties were assessed using micromechanical probing and nanoindentation. Strain uncertainties (from CECT data) were evaluated following two consecutive unloaded scans. Residual strains were computed following unconfined compression (ex situ) testing. RESULTS PTA and Hf-WD POM enabled the visualisation of structural features in cartilage, allowing DVC computation on the CECT data. Residual strains up to ∼10,000 μɛ were detected up to the tidemark. Nanoindentation showed that PTA-staining caused an average ∼6-fold increase in articular cartilage stiffness, a ∼19-fold increase in reduced modulus and ∼7-fold increase in hardness, whereas Hf-WD POM-stained specimens had mechanical properties similar to pre-stain tissue. Micromechanical probing showed a 77% increase in cartilage surface stiffness after PTA-staining, in comparison to a 16% increase in stiffness after staining with Hf-WD POM. CONCLUSION Hf-WD POM is a more suitable CESA solution compared to PTA for CECT imaging combined with DVC as it allowed visualisation of structural features in the cartilage tissue whilst more closely maintaining tissue mechanical properties.
Collapse
Affiliation(s)
- Sarah Davis
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK; School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK.
| | - Aikaterina Karali
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Tim Balcaen
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Leuven, Belgium
| | - Jurgita Zekonyte
- School of Mechanical and Design Engineering, University of Portsmouth, PO1 3DJ, UK
| | - Maïté Pétré
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Heverlee, Belgium
| | - Marta Roldo
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Pole of Morphology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium; Department of Materials Engineering, KU Leuven, Heverlee, Belgium; Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Gordon Blunn
- School of Pharmacy and Biomedical Science, University of Portsmouth, Portsmouth, PO1 2DT, UK
| |
Collapse
|
8
|
Blackburn DC, Boyer DM, Gray JA, Winchester J, Bates JM, Baumgart SL, Braker E, Coldren D, Conway KW, Rabosky AD, de la Sancha N, Dillman CB, Dunnum JL, Early CM, Frable BW, Gage MW, Hanken J, Maisano JA, Marks BD, Maslenikov KP, McCormack JE, Nagesan RS, Pandelis GG, Prestridge HL, Rabosky DL, Randall ZS, Robbins MB, Scheinberg LA, Spencer CL, Summers AP, Tapanila L, Thompson CW, Tornabene L, Watkins-Colwell GJ, Welton LJ, Stanley EL. Increasing the impact of vertebrate scientific collections through 3D imaging: The openVertebrate (oVert) Thematic Collections Network. Bioscience 2024; 74:169-186. [PMID: 38560620 PMCID: PMC10977868 DOI: 10.1093/biosci/biad120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/08/2023] [Indexed: 04/04/2024] Open
Abstract
The impact of preserved museum specimens is transforming and increasing by three-dimensional (3D) imaging that creates high-fidelity online digital specimens. Through examples from the openVertebrate (oVert) Thematic Collections Network, we describe how we created a digitization community dedicated to the shared vision of making 3D data of specimens available and the impact of these data on a broad audience of scientists, students, teachers, artists, and more. High-fidelity digital 3D models allow people from multiple communities to simultaneously access and use scientific specimens. Based on our multiyear, multi-institution project, we identify significant technological and social hurdles that remain for fully realizing the potential impact of digital 3D specimens.
Collapse
Affiliation(s)
- David C Blackburn
- Florida Museum of Natural History (FLMNH), University of Florida, Gainesville, Florida, United States
- Blackburn served as the lead principal investigator for the oVert Thematic Collections Network
| | - Doug M Boyer
- Duke University, Durham, North Carolina, United States
| | - Jaimi A Gray
- Florida Museum of Natural History (FLMNH), University of Florida, Gainesville, Florida, United States
- Blackburn served as the lead principal investigator for the oVert Thematic Collections Network
| | | | - John M Bates
- Field Museum of Natural History, Chicago, Illinois, United States
| | - Stephanie L Baumgart
- University of Chicago and University of Florida, Gainesville, Florida, United States
| | - Emily Braker
- University of Colorado, Boulder, Colorado, United States
| | - Daryl Coldren
- Field Museum of Natural History, Chicago, Illinois, United States
| | - Kevin W Conway
- Texas A&M University, College Station, Texas, United States
| | | | - Noé de la Sancha
- Chicago State University DePaul University, Chicago, Illinois, United States
| | | | - Jonathan L Dunnum
- Museum of Southwestern Biology, University of New Mexico, Albuquerque, New Mexico, United States
| | - Catherine M Early
- FLMNH Science Museum of Minnesota, St. Paul, Minnesota, United States
| | - Benjamin W Frable
- Scripps Institute of Oceanography, University of California, San Diego, San Diego, California, United States
| | - Matt W Gage
- Harvard University, Cambridge, Massachusetts, United States
| | - James Hanken
- Harvard University, Cambridge, Massachusetts, United States
| | | | - Ben D Marks
- Field Museum of Natural History, Chicago, Illinois, United States
| | | | | | | | | | | | | | - Zachary S Randall
- Florida Museum of Natural History (FLMNH), University of Florida, Gainesville, Florida, United States
- Blackburn served as the lead principal investigator for the oVert Thematic Collections Network
| | | | | | - Carol L Spencer
- University of California, Berkeley, in Berkeley, California, United States
| | - Adam P Summers
- University of Washington, Seattle, Washington, United States
| | - Leif Tapanila
- Idaho State University, Pocatello, Idaho, United States
| | | | - Luke Tornabene
- University of Washington, Seattle, Washington, United States
| | | | - Luke J Welton
- University of Kansas, Lawrence, Kansas, United States
| | | | - Edward L Stanley
- Florida Museum of Natural History (FLMNH), University of Florida, Gainesville, Florida, United States
- Blackburn served as the lead principal investigator for the oVert Thematic Collections Network
| |
Collapse
|
9
|
Glancy SB, Morris HD, Ho VB, Klarmann GJ. Optimal Agents for Visualizing Collagen Tissue Microarchitecture Using Contrast-Enhanced MicroCT. Pharmaceuticals (Basel) 2023; 16:1719. [PMID: 38139845 PMCID: PMC10747128 DOI: 10.3390/ph16121719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Micro-computed tomography (microCT) is a common tool for the visualization of the internal composition of organic tissues. Collagen comprises approximately 25-35% of the whole-body protein content in mammals, and the structure and arrangement of collagen fibers contribute significantly to the integrity of tissues. Collagen type I is also frequently used as a key structural component in tissue-engineered and bioprinted tissues. However, the imaging of collagenous tissues is limited by their inherently low X-ray attenuation, which makes them indistinguishable from most other soft tissues. An imaging contrast agent that selectively alters X-ray attenuation is thus essential to properly visualize collagenous tissue using a standard X-ray tube microCT scanner. This review compares various contrast-enhanced techniques reported in the literature for MicroCT visualization of collagen-based tissues. An ideal microCT contrast agent would meet the following criteria: (1) it diffuses through the tissue quickly; (2) it does not deform or impair the object being imaged; and (3) it provides sufficient image contrast for reliable visualization of the orientation of individual fibers within the collagen network. The relative benefits and disadvantages of each method are discussed. Lugol's solution (I3K), phosphotungstic acid (H3PW12O40), mercury(II) chloride (HgCl2), and Wells-Dawson polyoxometalates came closest to fitting the criteria. While none of the contrast agents discussed in the literature met all criteria, each one has advantages to consider in the context of specific lab capabilities and imaging priorities.
Collapse
Affiliation(s)
- Spencer B. Glancy
- San Antonio Uniformed Services Health Education Consortium, San Antonio, TX 78234, USA;
| | - Herman Douglas Morris
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (H.D.M.); (V.B.H.)
| | - Vincent B. Ho
- School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA; (H.D.M.); (V.B.H.)
- 4D Bio3 Center for Biotechnology, Uniformed Services University, Bethesda, MD 20814, USA
| | - George J. Klarmann
- 4D Bio3 Center for Biotechnology, Uniformed Services University, Bethesda, MD 20814, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| |
Collapse
|
10
|
Keiler J, Stahnke T, Guthoff RF, Wree A, Runge J. Ex Vivo Micro-CT in Ophthalmology: Preparation and Contrasting for Non-invasive 3D-Visualisation. Klin Monbl Augenheilkd 2023; 240:1359-1368. [PMID: 38092003 DOI: 10.1055/a-2111-8415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
X-ray-based micro-computed tomography (micro-CT) is a largely non-destructive imaging method for the visualisation and analysis of internal structures in the ex vivo eye and affords high resolution. In contrast to other high-resolution imaging methods, micro-CT enables spatial recording of larger and more complex tissue structures, such as the anterior chamber of the eye. Special contrasting methods help to enhance the absorption properties of soft tissue, that is otherwise only weakly radiopaque. Critical point drying (CPD), as primarily used in scanning electron microscopy, offers an additional tool for improving differential contrast properties in soft tissue. In the visualisation of intraosseous soft tissue, such as the efferent lacrimal ducts, sample treatment by decalcification with ethylenediaminetetraacetic acid and subsequent CPD provides good results for micro-CT. Micro-CT can be used for a wide range of questions in 1. basic research, 2. application-related studies in ophthalmology (e.g. evaluation of the preclinical application of microstents for glaucoma treatment or analysis of the positioning of intraocular lenses) but also 3. as a supplement to ophthalmological histopathology.
Collapse
Affiliation(s)
- Jonas Keiler
- Institut für Anatomie, Universitätsmedizin Rostock, Deutschland
| | - Thomas Stahnke
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
- Institut für ImplantatTechnologie und Biomaterialien e. V., Warnemünde, Deutschland
| | - Rudolf F Guthoff
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
| | - Andreas Wree
- Institut für Anatomie, Universitätsmedizin Rostock, Deutschland
| | - Jens Runge
- Institut für Anatomie, Universitätsmedizin Rostock, Deutschland
- Klinik und Poliklinik für Augenheilkunde, Universitätsmedizin Rostock, Deutschland
| |
Collapse
|
11
|
Hildebrand T, Novak J, Nogueira LP, Boccaccini AR, Haugen HJ. Durability assessment of hydrogel mountings for contrast-enhanced micro-CT. Micron 2023; 174:103533. [PMID: 37660476 DOI: 10.1016/j.micron.2023.103533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Micro-computed tomography (micro-CT) provides valuable data for studying soft tissue, though it is often affected by sample movement during scans and low contrast in X-ray absorption. This can result in lower image quality and geometric inaccuracies, collectively known as 'artefacts'. To mitigate these issues, samples can be embedded in hydrogels and enriched with heavy metals for contrast enhancement. However, the long-term durability of these enhancements remains largely unexplored. In this study, we examine the effects of two contrast enhancement agents - iodine and phosphotungstic acid (PTA) - and two hydrogels - agarose and Poloxamer 407 - over a 14-day period. We used Drosophila melanogaster as a test model for our investigation. Our findings reveal that PTA and agarose are highly durable, while iodine and poloxamer hydrogel exhibits higher leakage rates. These observations lay the foundation for estimating contrast stabilities in contrast-enhanced micro-CT with hydrogel embedding and serve to inform future research in this field.
Collapse
Affiliation(s)
- Torben Hildebrand
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway.
| | - Jan Novak
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway; Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
| | - Liebert Parreiras Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Aldo Roberto Boccaccini
- Department of Materials Science and Engineering, Friedrich-Alexander-Universität, 91054 Erlangen, Germany
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| |
Collapse
|
12
|
Väänänen V, Christensen MM, Suhonen H, Jernvall J. Gene expression detection in developing mouse tissue using in situ hybridization and µCT imaging. Proc Natl Acad Sci U S A 2023; 120:e2301876120. [PMID: 37279266 PMCID: PMC10268296 DOI: 10.1073/pnas.2301876120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023] Open
Abstract
High resolution and noninvasiveness have made soft-tissue X-ray microtomography (µCT) a widely applicable three-dimensional (3D) imaging method in studies of morphology and development. However, scarcity of molecular probes to visualize gene activity with µCT has remained a challenge. Here, we apply horseradish peroxidase-assisted reduction of silver and catalytic gold enhancement of the silver deposit to in situ hybridization in order to detect gene expression in developing tissues with µCT (here called GECT, gene expression CT). We show that GECT detects expression patterns of collagen type II alpha 1 and sonic hedgehog in developing mouse tissues comparably with an alkaline phosphatase-based detection method. After detection, expression patterns are visualized with laboratory µCT, demonstrating that GECT is compatible with varying levels of gene expression and varying sizes of expression regions. Additionally, we show that the method is compatible with prior phosphotungstic acid staining, a conventional contrast staining approach in µCT imaging of soft tissues. Overall, GECT is a method that can be integrated with existing laboratory routines to obtain spatially accurate 3D detection of gene expression.
Collapse
Affiliation(s)
- Vilma Väänänen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Mona M. Christensen
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
| | - Heikki Suhonen
- Department of Physics, University of Helsinki, HelsinkiFI-00014, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, HelsinkiFI-00014, Finland
- Department of Geosciences and Geography, University of Helsinki, HelsinkiFI-00014, Finland
| |
Collapse
|
13
|
Simcock IC, Lamouroux A, Sebire NJ, Shelmerdine SC, Arthurs OJ. Less-invasive autopsy for early pregnancy loss. Prenat Diagn 2023; 43:937-949. [PMID: 37127547 DOI: 10.1002/pd.6361] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Autopsy investigations provide valuable information regarding fetal death that can assist in the parental bereavement process, and influence future pregnancies, but conventional autopsy is often declined by parents because of its invasive approach. This has led to the development of less-invasive autopsy investigations based on imaging technology to provide a more accessible and acceptable choice for parents when investigating their loss. Whilst the development and use of more conventional clinical imaging techniques (radiographs, CT, MRI, US) are well described in the literature for fetuses over 20 weeks of gestational age, these investigations have limited diagnostic accuracy in imaging smaller fetuses. Techniques such as ultra-high-field MRI (>3T) and micro-focus computed tomography have been shown to have higher diagnostic accuracy whilst still being acceptable to parents. By further developing and increasing the availability of these more innovative imaging techniques, parents will be provided with a greater choice of acceptable options to investigate their loss, which may in turn increase their uptake. We provide a narrative review focussing on the development of high-resolution, non-invasive imaging techniques to evaluate early gestational pregnancy loss.
Collapse
Affiliation(s)
- Ian C Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Audrey Lamouroux
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- Obstetrical Gynaecology Department, Nîmes University Hospital, Nîmes, France
- Clinical Genetics Department, Montpellier University Hospital, Montpellier, France
- ICAR Research Team, LIRMM, CNRS and Charles Coulomb Laboratory, UMR 5221 CNRS-UM, BNIF User Facility Imaging, University of Montpellier, Nîmes and Montpellier, Montpellier, France
| | - Neil J Sebire
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Susan C Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Owen J Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| |
Collapse
|
14
|
Kolmann MA, Nagesan RS, Andrews JV, Borstein SR, Figueroa RT, Singer RA, Friedman M, López-Fernández H. DiceCT for fishes: recommendations for pairing iodine contrast agents with μCT to visualize soft tissues in fishes. JOURNAL OF FISH BIOLOGY 2023; 102:893-903. [PMID: 36647819 DOI: 10.1111/jfb.15320] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Computed tomography (CT) scanning and other high-throughput three-dimensional (3D) visualization tools are transforming the ways we study morphology, ecology and evolutionary biology research beyond generating vast digital repositories of anatomical data. Contrast-enhanced chemical staining methods, which render soft tissues radio-opaque when coupled with CT scanning, encompass several approaches that are growing in popularity and versatility. Of these, the various diceCT techniques that use an iodine-based solution like Lugol's have provided access to an array of morphological data sets spanning extant vertebrate lineages. This contribution outlines straightforward means for applying diceCT techniques to preserved museum specimens of cartilaginous and bony fishes, collectively representing half of vertebrate species diversity. This study contrasts the benefits of using either aqueous or ethylic Lugol's solutions and reports few differences between these methods with respect to the time required to achieve optimal tissue contrast. It also explores differences in minimum stain duration required for different body sizes and shapes and provides recommendations for staining specimens individually or in small batches. As reported by earlier studies, the authors note a decrease in pH during staining with either aqueous or ethylic Lugol's. Nonetheless, they could not replicate the drastic declines in pH reported elsewhere. They provide recommendations for researchers and collections staff on how to incorporate diceCT into existing curatorial practices, while offsetting risk to specimens. Finally, they outline how diceCT with Lugol's can aid ichthyologists of all kinds in visualizing anatomical structures of interest: from brains and gizzards to gas bladders and pharyngeal jaw muscles.
Collapse
Affiliation(s)
- Matthew A Kolmann
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Ramon S Nagesan
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - James V Andrews
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel R Borstein
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rodrigo Tinoco Figueroa
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Randal A Singer
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | - Matt Friedman
- University of Michigan Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Hernán López-Fernández
- Department of Ecology & Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
15
|
Fabrication of targeted gold nanoparticle as potential contrast agent in molecular CT imaging. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2022.100490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Hanly A, Johnston RD, Lemass C, Jose A, Tornifoglio B, Lally C. Phosphotungstic acid (PTA) preferentially binds to collagen- rich regions of porcine carotid arteries and human atherosclerotic plaques observed using contrast enhanced micro-computed tomography (CE-µCT). Front Physiol 2023; 14:1057394. [PMID: 36818446 PMCID: PMC9932683 DOI: 10.3389/fphys.2023.1057394] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Background and aims: Atherosclerotic plaque rupture in the carotid artery can cause small emboli to travel to cerebral arteries, causing blockages and preventing blood flow leading to stroke. Contrast enhanced micro computed tomography (CEμCT) using a novel stain, phosphotungstic acid (PTA) can provide insights into the microstructure of the vessel wall and atherosclerotic plaque, and hence their likelihood to rupture. Furthermore, it has been suggested that collagen content and orientation can be related to mechanical integrity. This study aims to build on existing literature and establish a robust and reproducible staining and imaging technique to non-destructively quantify the collagen content within arteries and plaques as an alternative to routine histology. Methods: Porcine carotid arteries and human atherosclerotic plaques were stained with a concentration of 1% PTA staining solution and imaged using MicroCT to establish the in situ architecture of the tissue and measure collagen content. A histological assessment of the collagen content was also performed from picrosirius red (PSR) staining. Results: PTA stained arterial samples highlight the reproducibility of the PTA staining and MicroCT imaging technique used with a quantitative analysis showing a positive correlation between the collagen content measured from CEμCT and histology. Furthermore, collagen-rich areas can be clearly visualised in both the vessel wall and atherosclerotic plaque. 3D reconstruction was also performed showing that different layers of the vessel wall and various atherosclerotic plaque components can be differentiated using Hounsfield Unit (HU) values. Conclusion: The work presented here is unique as it offers a quantitative method of segmenting the vessel wall into its individual components and non-destructively quantifying the collagen content within these tissues, whilst also delivering a visual representation of the fibrous structure using a single contrast agent.
Collapse
Affiliation(s)
- A. Hanly
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - R. D. Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lemass
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - A. Jose
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - B. Tornifoglio
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - C. Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland,*Correspondence: C. Lally,
| |
Collapse
|
17
|
Jonsson T. Micro-CT and deep learning: Modern techniques and applications in insect morphology and neuroscience. FRONTIERS IN INSECT SCIENCE 2023; 3:1016277. [PMID: 38469492 PMCID: PMC10926430 DOI: 10.3389/finsc.2023.1016277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 03/13/2024]
Abstract
Advances in modern imaging and computer technologies have led to a steady rise in the use of micro-computed tomography (µCT) in many biological areas. In zoological research, this fast and non-destructive method for producing high-resolution, two- and three-dimensional images is increasingly being used for the functional analysis of the external and internal anatomy of animals. µCT is hereby no longer limited to the analysis of specific biological tissues in a medical or preclinical context but can be combined with a variety of contrast agents to study form and function of all kinds of tissues and species, from mammals and reptiles to fish and microscopic invertebrates. Concurrently, advances in the field of artificial intelligence, especially in deep learning, have revolutionised computer vision and facilitated the automatic, fast and ever more accurate analysis of two- and three-dimensional image datasets. Here, I want to give a brief overview of both micro-computed tomography and deep learning and present their recent applications, especially within the field of insect science. Furthermore, the combination of both approaches to investigate neural tissues and the resulting potential for the analysis of insect sensory systems, from receptor structures via neuronal pathways to the brain, are discussed.
Collapse
Affiliation(s)
- Thorin Jonsson
- Institute of Biology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
18
|
Warr R, Handschuh S, Glösmann M, Cernik RJ, Withers PJ. Quantifying multiple stain distributions in bioimaging by hyperspectral X-ray tomography. Sci Rep 2022; 12:21945. [PMID: 36535963 PMCID: PMC9763266 DOI: 10.1038/s41598-022-23592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical staining of biological specimens is commonly utilised to boost contrast in soft tissue structures, but unambiguous identification of staining location and distribution is difficult without confirmation of the elemental signature, especially for chemicals of similar density contrast. Hyperspectral X-ray computed tomography (XCT) enables the non-destructive identification, segmentation and mapping of elemental composition within a sample. With the availability of hundreds of narrow, high resolution (~ 1 keV) energy channels, the technique allows the simultaneous detection of multiple contrast agents across different tissue structures. Here we describe a hyperspectral imaging routine for distinguishing multiple chemical agents, regardless of contrast similarity. Using a set of elemental calibration phantoms, we perform a first instance of direct stain concentration measurement using spectral absorption edge markers. Applied to a set of double- and triple-stained biological specimens, the study analyses the extent of stain overlap and uptake regions for commonly used contrast markers. An improved understanding of stain concentration as a function of position, and the interaction between multiple stains, would help inform future studies on multi-staining procedures, as well as enable future exploration of heavy metal uptake across medical, agricultural and ecological fields.
Collapse
Affiliation(s)
- Ryan Warr
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Stephan Handschuh
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martin Glösmann
- grid.6583.80000 0000 9686 6466VetCore Facility for Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Robert J. Cernik
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| | - Philip J. Withers
- grid.5379.80000000121662407Henry Royce Institute, Department of Materials, The University of Manchester, Manchester, M13 9PL UK
| |
Collapse
|
19
|
Wells G, Glasgow JN, Nargan K, Lumamba K, Madansein R, Maharaj K, Perumal LY, Matthew M, Hunter RL, Pacl H, Peabody Lever JE, Stanford DD, Singh SP, Bajpai P, Manne U, Benson PV, Rowe SM, le Roux S, Sigal A, Tshibalanganda M, Wells C, du Plessis A, Msimang M, Naidoo T, Steyn AJC. A high-resolution 3D atlas of the spectrum of tuberculous and COVID-19 lung lesions. EMBO Mol Med 2022; 14:e16283. [PMID: 36285507 PMCID: PMC9641421 DOI: 10.15252/emmm.202216283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 02/01/2023] Open
Abstract
Our current understanding of the spectrum of TB and COVID-19 lesions in the human lung is limited by a reliance on low-resolution imaging platforms that cannot provide accurate 3D representations of lesion types within the context of the whole lung. To characterize TB and COVID-19 lesions in 3D, we applied micro/nanocomputed tomography to surgically resected, postmortem, and paraffin-embedded human lung tissue. We define a spectrum of TB pathologies, including cavitary lesions, calcium deposits outside and inside necrotic granulomas and mycetomas, and vascular rearrangement. We identified an unusual spatial arrangement of vasculature within an entire COVID-19 lobe, and 3D segmentation of blood vessels revealed microangiopathy associated with hemorrhage. Notably, segmentation of pathological anomalies reveals hidden pathological structures that might otherwise be disregarded, demonstrating a powerful method to visualize pathologies in 3D in TB lung tissue and whole COVID-19 lobes. These findings provide unexpected new insight into the spatial organization of the spectrum of TB and COVID-19 lesions within the framework of the entire lung.
Collapse
Affiliation(s)
- Gordon Wells
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Joel N Glasgow
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Kievershen Nargan
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Kapongo Lumamba
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Rajhmun Madansein
- Inkosi Albert Luthuli Central Hospital and University of KwaZulu‐NatalDurbanSouth Africa
| | - Kameel Maharaj
- Inkosi Albert Luthuli Central Hospital and University of KwaZulu‐NatalDurbanSouth Africa
| | - Leon Y Perumal
- Perumal & Partners RadiologistsAhmed Al‐Kadi Private HospitalDurbanSouth Africa
| | - Malcolm Matthew
- Perumal & Partners RadiologistsAhmed Al‐Kadi Private HospitalDurbanSouth Africa
| | - Robert L Hunter
- Department of Pathology and Laboratory MedicineUniversity of Texas Health Sciences Center at HoustonHoustonTXUSA
| | - Hayden Pacl
- Medical Scientist Training ProgramUniversity of Alabama at BirminghamBirminghamALUSA
| | | | - Denise D Stanford
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | - Satinder P Singh
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Department of RadiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Prachi Bajpai
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Upender Manne
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Paul V Benson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Steven M Rowe
- Department of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
- Cystic Fibrosis Research CenterUniversity of Alabama at BirminghamBirminghamALUSA
| | | | - Alex Sigal
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Muofhe Tshibalanganda
- Research Group 3D Innovation, Physics DepartmentStellenbosch UniversityStellenboschSouth Africa
| | - Carlyn Wells
- CT Scanner Facility, Central Analytical FacilitiesStellenbosch UniversityStellenboschSouth Africa
| | - Anton du Plessis
- Research Group 3D Innovation, Physics DepartmentStellenbosch UniversityStellenboschSouth Africa
- Object Research SystemsMontrealQCCanada
| | - Mpumelelo Msimang
- Department of Anatomical Pathology, National Health Laboratory ServiceInkosi Albert Luthuli Central HospitalDurbanSouth Africa
| | - Threnesan Naidoo
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of Anatomical Pathology, National Health Laboratory ServiceInkosi Albert Luthuli Central HospitalDurbanSouth Africa
- Department of Laboratory Medicine & PathologyWalter Sisulu UniversityEastern CapeSouth Africa
| | - Adrie J C Steyn
- Africa Health Research InstituteUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
- Centers for AIDS Research and Free Radical BiologyUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
20
|
Handschuh S, Okada CTC, Walter I, Aurich C, Glösmann M. An optimized workflow for
microCT
imaging of formalin‐fixed and paraffin‐embedded (
FFPE
) early equine embryos. Anat Histol Embryol 2022; 51:611-623. [PMID: 35851500 PMCID: PMC9542120 DOI: 10.1111/ahe.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023]
Abstract
Here, we describe a workflow for high‐detail microCT imaging of formalin‐fixed and paraffin‐embedded (FFPE) equine embryos recovered on Day 34 of pregnancy (E34), a period just before placenta formation. The presented imaging methods are suitable for large animals' embryos with intention to study morphological and developmental aspects, but more generally can be adopted for all kinds of FFPE tissue specimens. Microscopic 3D imaging techniques such as microCT are important tools for detecting and studying normal embryogenesis and developmental disorders. To date, microCT imaging of vertebrate embryos was mostly done on embryos that have been stained with an X‐ray dense contrast agent. Here, we describe an alternative imaging procedure that allows to visualize embryo morphology and organ development in unstained FFPE embryos. Two aspects are critical for high‐quality data acquisition: (i) a proper sample mounting leaving as little as possible paraffin around the sample and (ii) an image filtering pipeline that improves signal‐to‐noise ratio in these inherently low‐contrast data sets. The presented workflow allows overview imaging of the whole embryo proper and can be used for determination of organ volumes and development. Furthermore, we show that high‐resolution interior tomographies can provide virtual histology information from selected regions of interest. In addition, we demonstrate that microCT scanned embryos remain intact during the scanning procedure allowing for a subsequent investigation by routine histology and/or immunohistochemistry. This makes the presented workflow applicable also to archival paraffin‐embedded material.
Collapse
Affiliation(s)
- Stephan Handschuh
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| | - Carolina T. C. Okada
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Ingrid Walter
- VetCore Facility for Research/VetBiobank University of Veterinary Medicine Vienna Vienna Austria
- Institute of Morphology University of Veterinary Medicine Vienna Vienna Austria
| | - Christine Aurich
- Platform Artificial Insemination and Embryo Transfer Department for Small Animals and Horses University of Veterinary Medicine Vienna Vienna Austria
| | - Martin Glösmann
- VetCore Facility for Research/Imaging Unit University of Veterinary Medicine Vienna Vienna Austria
| |
Collapse
|
21
|
Yamashita M, Tsuihiji T. The relationship between hard and soft tissue structures of the eye in extant lizards. J Morphol 2022; 283:1182-1199. [PMID: 35833614 PMCID: PMC9545706 DOI: 10.1002/jmor.21495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
The sizes of the eye structures, such as the lens diameter and the axial length, are important factors for the visual performance and are considered to be related to the mode of life. Although the size of these soft structures cannot be directly observed in fossil taxa, such information may be obtained from measuring size and morphology of the bony scleral ossicle ring, which is present in the eyes of extant saurospids, excluding crocodiles and snakes, and is variously preserved in fossil taxa. However, there have been only a few studies investigating the relationships between the size, the scleral ossicle ring, and soft structures of the eye. We investigated such relationships among the eye structures in extant Squamata, to establish the basis for inferring the size of the soft structures in the eye in fossil squamates. Three‐dimensional morphological data on the eye and head region of 59 lizard species covering most major clades were collected using micro‐computed tomography scanners. Strong correlations were found between the internal and external diameters of the scleral ossicle ring and soft structures. The tight correlations found here will allow reliable estimations of the sizes of soft structures and inferences on the visual performance and mode of life in fossil squamates, based on the diameters of their preserved scleral ossicle rings. Furthermore, the comparison of the allometric relationships between structures in squamates eyes with those in avian eyes suggest the possibility that the similarities of these structures closely reflect the mechanism of accommodation. The sizes of the eye structures are important factors for the visual performance. Strong correlations were found between the scleral ossicle ring and soft structures in extant squamates eyes. These correlations will allow reliable estimations of soft structures and inferences on the visual performance and mode of life in fossil squamates.
Collapse
Affiliation(s)
- Momo Yamashita
- Center for Collections, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, Japan.,Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8567, Japan
| | - Takanobu Tsuihiji
- Department of Geology and Paleontology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki, 305-0005, Japan.,Department of Earth and Planetary Science, The University of Tokyo, 7-3-1, Hongo, Bunkyoku, Tokyo, 113-0033, Japan
| |
Collapse
|
22
|
Piriou M, Lorenzo C, Raymond-Letron I, Coronas-Dupuis S, Pieruccioni L, Rouquette J, Guissard C, Chaumont J, Casteilla L, Planat-Benard V, Kemoun P, Monsarrat P. A Spectral Principal Component Analysis-Based Framework for Composite Hard/Soft Tissue Fluorescence Image Investigation. Front Physiol 2022; 13:899626. [PMID: 35910575 PMCID: PMC9325997 DOI: 10.3389/fphys.2022.899626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional thin sectioning microscopy of large bone and dental tissue samples using demineralization may disrupt structure morphologies and even damage soft tissues, thus compromising the histopathological investigation. Here, we developed a synergistic and original framework on thick sections based on wide-field multi-fluorescence imaging and spectral Principal Component Analysis (sPCA) as an alternative, fast, versatile, and reliable solution, suitable for highly mineralized tissue structure sustain and visualization. Periodontal 2-mm thick sections were stained with a solution containing five fluorescent dyes chosen for their ability to discriminate close tissues, and acquisitions were performed with a multi-zoom macroscope for blue, green, red, and NIR (near-infrared) emissions. Eigen-images derived from both standard scaler (Std) and Contrast Limited Adaptive Histogram Equalization (Clahe) pre-preprocessing significantly enhanced tissue contrasts, highly suitable for histopathological investigation with an in-depth detail for sub-tissue structure discrimination. Using this method, it is possible to preserve and delineate accurately the different anatomical/morphological features of the periodontium, a complex tooth-supporting multi-tissue. Indeed, we achieve characterization of gingiva, alveolar bone, cementum, and periodontal ligament tissues. The ease and adaptability of this approach make it an effective method for providing high-contrast features that are not usually available in standard staining histology. Beyond periodontal investigations, this first proof of concept of an sPCA solution for optical microscopy of complex structures, especially including mineralized tissues opens new perspectives to deal with other chronic diseases involving complex tissue and organ defects. Overall, such an imaging framework appears to be a novel and convenient strategy for optical microscopy investigation.
Collapse
Affiliation(s)
- Marie Piriou
- Dental Faculty and Hospital of Toulouse—Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
| | - Corinne Lorenzo
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Isabelle Raymond-Letron
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- LabHPEC, Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse, France
| | - Sophie Coronas-Dupuis
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- LabHPEC, Université de Toulouse, ENVT (Ecole Nationale Vétérinaire de Toulouse), Toulouse, France
| | - Laetitia Pieruccioni
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Jacques Rouquette
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Christophe Guissard
- Dental Faculty and Hospital of Toulouse—Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Jade Chaumont
- Dental Faculty and Hospital of Toulouse—Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
| | - Louis Casteilla
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Valérie Planat-Benard
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Philippe Kemoun
- Dental Faculty and Hospital of Toulouse—Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Paul Monsarrat
- Dental Faculty and Hospital of Toulouse—Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France
- Restore Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France
- *Correspondence: Paul Monsarrat,
| |
Collapse
|
23
|
Ebrahimi N, Osanlouy M, Bradley CP, Kubke MF, Gerneke DA, Hunter PJ. A method for investigating spatiotemporal growth patterns at cell and tissue levels during C-looping in the embryonic chick heart. iScience 2022; 25:104600. [PMID: 35800755 PMCID: PMC9253367 DOI: 10.1016/j.isci.2022.104600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 01/15/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nazanin Ebrahimi
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
- Corresponding author
| | - Mahyar Osanlouy
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| | - Chris P. Bradley
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| | - M. Fabiana Kubke
- University of Auckland, Anatomy and Medical Imaging, Auckland 1010, New Zealand
| | - Dane A. Gerneke
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| | - Peter J. Hunter
- University of Auckland, Auckland Bioengineering Institute, Auckland 1010, New Zealand
| |
Collapse
|
24
|
Clear E, Grant RA, Carroll M, Brassey CA. A Review and Case Study of 3D Imaging Modalities for Female Amniote Reproductive Anatomy. Integr Comp Biol 2022; 62:icac027. [PMID: 35536568 PMCID: PMC10570564 DOI: 10.1093/icb/icac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Recent advances in non-invasive imaging methods have revitalised the field of comparative anatomy, and reproductive anatomy has been no exception. The reproductive systems of female amniotes present specific challenges, namely their often internal "hidden" anatomy. Quantifying female reproductive systems is crucial to recognising reproductive pathologies, monitoring menstrual cycles, and understanding copulatory mechanics. Here we conduct a review of the application of non-invasive imaging techniques to female amniote reproductive anatomy. We introduce the commonly used imaging modalities of computed tomography (CT) and magnetic resonance imaging (MRI), highlighting their advantages and limitations when applied to female reproductive tissues, and make suggestions for future advances. We also include a case study of micro CT and MRI, along with their associated staining protocols, applied to cadavers of female adult stoats (Mustela erminea). In doing so, we will progress the discussion surrounding the imaging of female reproductive anatomy, whilst also impacting the fields of sexual selection research and comparative anatomy more broadly.
Collapse
Affiliation(s)
- Emma Clear
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
- Williamson Park Zoo, Quernmore Road, Lancaster, Lancashire LA1 1UX, UK
| | - Robyn A Grant
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Michael Carroll
- Department of Life Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| | - Charlotte A Brassey
- Department of Natural Sciences, Manchester Metropolitan University, Chester St, Manchester M1 5GD, UK
| |
Collapse
|
25
|
Wright MA, Sears KE, Pierce SE. Comparison of Hindlimb Muscle Architecture Properties in Small-Bodied, Generalist Mammals Suggests Similarity in Soft Tissue Anatomy. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Alizadeh Sardroud H, Wanlin T, Chen X, Eames BF. Cartilage Tissue Engineering Approaches Need to Assess Fibrocartilage When Hydrogel Constructs Are Mechanically Loaded. Front Bioeng Biotechnol 2022; 9:787538. [PMID: 35096790 PMCID: PMC8790514 DOI: 10.3389/fbioe.2021.787538] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Chondrocytes that are impregnated within hydrogel constructs sense applied mechanical force and can respond by expressing collagens, which are deposited into the extracellular matrix (ECM). The intention of most cartilage tissue engineering is to form hyaline cartilage, but if mechanical stimulation pushes the ratio of collagen type I (Col1) to collagen type II (Col2) in the ECM too high, then fibrocartilage can form instead. With a focus on Col1 and Col2 expression, the first part of this article reviews the latest studies on hyaline cartilage regeneration within hydrogel constructs that are subjected to compression forces (one of the major types of the forces within joints) in vitro. Since the mechanical loading conditions involving compression and other forces in joints are difficult to reproduce in vitro, implantation of hydrogel constructs in vivo is also reviewed, again with a focus on Col1 and Col2 production within the newly formed cartilage. Furthermore, mechanotransduction pathways that may be related to the expression of Col1 and Col2 within chondrocytes are reviewed and examined. Also, two recently-emerged, novel approaches of load-shielding and synchrotron radiation (SR)–based imaging techniques are discussed and highlighted for future applications to the regeneration of hyaline cartilage. Going forward, all cartilage tissue engineering experiments should assess thoroughly whether fibrocartilage or hyaline cartilage is formed.
Collapse
Affiliation(s)
- Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Hamed Alizadeh Sardroud,
| | - Tasker Wanlin
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - B. Frank Eames
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
27
|
Computed Tomography as a Characterization Tool for Engineered Scaffolds with Biomedical Applications. MATERIALS 2021; 14:ma14226763. [PMID: 34832165 PMCID: PMC8619049 DOI: 10.3390/ma14226763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/29/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The ever-growing field of materials with applications in the biomedical field holds great promise regarding the design and fabrication of devices with specific characteristics, especially scaffolds with personalized geometry and architecture. The continuous technological development pushes the limits of innovation in obtaining adequate scaffolds and establishing their characteristics and performance. To this end, computed tomography (CT) proved to be a reliable, nondestructive, high-performance machine, enabling visualization and structure analysis at submicronic resolutions. CT allows both qualitative and quantitative data of the 3D model, offering an overall image of its specific architectural features and reliable numerical data for rigorous analyses. The precise engineering of scaffolds consists in the fabrication of objects with well-defined morphometric parameters (e.g., shape, porosity, wall thickness) and in their performance validation through thorough control over their behavior (in situ visualization, degradation, new tissue formation, wear, etc.). This review is focused on the use of CT in biomaterial science with the aim of qualitatively and quantitatively assessing the scaffolds’ features and monitoring their behavior following in vivo or in vitro experiments. Furthermore, the paper presents the benefits and limitations regarding the employment of this technique when engineering materials with applications in the biomedical field.
Collapse
|
28
|
Chatzinikolaou E, Keklikoglou K. Micro-CT protocols for scanning and 3D analysis of Hexaplextrunculus during its different life stages. Biodivers Data J 2021; 9:e71542. [PMID: 34616212 PMCID: PMC8458271 DOI: 10.3897/bdj.9.e71542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/06/2021] [Indexed: 11/12/2022] Open
Abstract
Micro-computed tomography (micro-CT) is a high-resolution 3D-imaging technique which is now increasingly applied in biological studies focusing on taxonomy and functional morphology. The creation of virtual representations of specimens can increase availability of otherwise underexploited and inaccessible samples. The 3D model dataset can be also further processed through volume rendering and morphometric analysis. The success of micro-CT as a visualisation technique depends on several methodological manipulations, including the use of contrast enhancing staining agents, filters, scanning mediums, containers, exposure time and frame averaging. The aim of this study was to standardise a series of micro-CT scanning and 3D analysis protocols for a marine gastropod species, Hexaplextrunculus. The analytical protocols have followed all the developmental stages of this gastropod, from egg capsules and embryos to juveniles and adults.
Collapse
Affiliation(s)
- Eva Chatzinikolaou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC) Heraklion, Crete Greece
| | - Kleoniki Keklikoglou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Heraklion, Crete, Greece Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC) Heraklion, Crete Greece.,Biology Department, University of Crete, Heraklion, Crete, Greece Biology Department, University of Crete Heraklion, Crete Greece
| |
Collapse
|
29
|
Xia CW, Hu SQ, Zhou QZ, Gan RL, Pan JR, Zhang Q, Pu YM, Chen S, Hu QG, Wang YX. Accurately Locating Metastatic Foci in Lymph Nodes With Lugol's Iodine-Enhanced Micro-CT Imaging. Front Oncol 2021; 11:594915. [PMID: 34604023 PMCID: PMC8481801 DOI: 10.3389/fonc.2021.594915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Background Accurate evaluation of lymph node (LN) status is the key factor to determine the treatment and evaluate prognosis for patients with cancer. However, traditional pathological examination resulted in a 30% false-negative rate of detection of metastases in LNs. This study aimed to utilize Lugol's iodine (I2-IK)-enhanced micro-CT imaging to reveal the 3-dimensional structure of regional LNs and decrease the false-negative rate in pathological examination. Methods To explore the feasibility of I2-IK-enhanced micro-CT imaging in locating metastatic lesion in LNs, nonmetastatic and metastatic LNs from mice were used to mimic the imaging process. Then, the LNs from oral squamous cell carcinoma (OSCC) patients were applied to verify the value of I2-IK-enhanced micro-CT imaging in revealing LN structure and locating metastatic lesions in LNs. The glycogen content in nonmetastatic and metastatic LNs was further detected by the use of a glycogen assay kit and periodic acid-Schiff (PAS) staining to explain the imaging differences between them. Results In nude mice, 0.5% I2-IK staining for 4 h was the best parameter for normal LN. The metastatic foci in metastatic LNs were also clearly outlined in this condition. For nonmetastatic LNs from patients with OSCC, 1% I2-IK staining for 12 h was the best parameter. However, due to the increased volume of metastatic LNs, the image effect of 3% I2-IK staining for 12 h was superior to 1% I2-IK staining [tumor background ratio (TBR), 3% vs. 1%, 1.89 ± 0.10 vs. 1.27 ± 0.07, p < 0.001]. Compared with subsequent pathological sections, we found the CT intensity of metastatic foci in LNs and muscle tissues was significantly higher than in nonmetastatic regions. Meanwhile, the glycogen content of metastatic foci in LNs detected was also significantly higher than in nonmetastatic region. Conclusions I2-IK-enhanced micro-CT imaging could identify the spatial location of metastatic foci in LNs. This will be an effective method to assist in decreasing the LN false-negative rate for cancer pathology.
Collapse
Affiliation(s)
- Cheng-Wan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qun-Zhi Zhou
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong-Lin Gan
- Department of Stomatology, The Suzhou Hospital affiliated to the Nanjing Medical University, Suzhou, China
| | - Jiong-Ru Pan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Mei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shen Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin-Gang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
30
|
A Comprehensive Review on Seismocardiogram: Current Advancements on Acquisition, Annotation, and Applications. MATHEMATICS 2021. [DOI: 10.3390/math9182243] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, cardiovascular diseases are on the rise, and they entail enormous health burdens on global economies. Cardiac vibrations yield a wide and rich spectrum of essential information regarding the functioning of the heart, and thus it is necessary to take advantage of this data to better monitor cardiac health by way of prevention in early stages. Specifically, seismocardiography (SCG) is a noninvasive technique that can record cardiac vibrations by using new cutting-edge devices as accelerometers. Therefore, providing new and reliable data regarding advancements in the field of SCG, i.e., new devices and tools, is necessary to outperform the current understanding of the State-of-the-Art (SoTA). This paper reviews the SoTA on SCG and concentrates on three critical aspects of the SCG approach, i.e., on the acquisition, annotation, and its current applications. Moreover, this comprehensive overview also presents a detailed summary of recent advancements in SCG, such as the adoption of new techniques based on the artificial intelligence field, e.g., machine learning, deep learning, artificial neural networks, and fuzzy logic. Finally, a discussion on the open issues and future investigations regarding the topic is included.
Collapse
|
31
|
Keklikoglou K, Arvanitidis C, Chatzigeorgiou G, Chatzinikolaou E, Karagiannidis E, Koletsa T, Magoulas A, Makris K, Mavrothalassitis G, Papanagnou ED, Papazoglou AS, Pavloudi C, Trougakos IP, Vasileiadou K, Vogiatzi A. Micro-CT for Biological and Biomedical Studies: A Comparison of Imaging Techniques. J Imaging 2021; 7:jimaging7090172. [PMID: 34564098 PMCID: PMC8470083 DOI: 10.3390/jimaging7090172] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Several imaging techniques are used in biological and biomedical studies. Micro-computed tomography (micro-CT) is a non-destructive imaging technique that allows the rapid digitisation of internal and external structures of a sample in three dimensions and with great resolution. In this review, the strengths and weaknesses of some common imaging techniques applied in biological and biomedical fields, such as optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy, are presented and compared with the micro-CT technique through five use cases. Finally, the ability of micro-CT to create non-destructively 3D anatomical and morphological data in sub-micron resolution and the necessity to develop complementary methods with other imaging techniques, in order to overcome limitations caused by each technique, is emphasised.
Collapse
Affiliation(s)
- Kleoniki Keklikoglou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- Biology Department, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence:
| | - Christos Arvanitidis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
- LifeWatch ERIC, 41071 Seville, Spain
| | - Georgios Chatzigeorgiou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Eva Chatzinikolaou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Efstratios Karagiannidis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Triantafyllia Koletsa
- Department of Pathology, Faculty of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Antonios Magoulas
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Konstantinos Makris
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| | - George Mavrothalassitis
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
- IMBB, FORTH, 70013 Heraklion, Crete, Greece
| | - Eleni-Dimitra Papanagnou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Andreas S. Papazoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (E.K.); (A.S.P.)
| | - Christina Pavloudi
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece; (E.-D.P.); (I.P.T.)
| | - Katerina Vasileiadou
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), P.O. Box 2214, 71003 Heraklion, Crete, Greece; (C.A.); (G.C.); (E.C.); (A.M.); (C.P.); (K.V.)
| | - Angeliki Vogiatzi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece; (K.M.); (G.M.); (A.V.)
| |
Collapse
|
32
|
Pierantoni M, Silva Barreto I, Hammerman M, Verhoeven L, Törnquist E, Novak V, Mokso R, Eliasson P, Isaksson H. A quality optimization approach to image Achilles tendon microstructure by phase-contrast enhanced synchrotron micro-tomography. Sci Rep 2021; 11:17313. [PMID: 34453067 PMCID: PMC8397765 DOI: 10.1038/s41598-021-96589-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/06/2021] [Indexed: 12/19/2022] Open
Abstract
Achilles tendons are mechanosensitive, and their complex hierarchical structure is in part the result of the mechanical stimulation conveyed by the muscles. To fully understand how their microstructure responds to mechanical loading a non-invasive approach for 3D high resolution imaging suitable for soft tissue is required. Here we propose a protocol that can capture the complex 3D organization of the Achilles tendon microstructure, using phase-contrast enhanced synchrotron micro-tomography (SR-PhC-μCT). We investigate the effects that sample preparation and imaging conditions have on the resulting image quality, by considering four types of sample preparations and two imaging setups (sub-micrometric and micrometric final pixel sizes). The image quality is assessed using four quantitative parameters. The results show that for studying tendon collagen fibers, conventional invasive sample preparations such as fixation and embedding are not necessary or advantageous. Instead, fresh frozen samples result in high-quality images that capture the complex 3D organization of tendon fibers in conditions as close as possible to natural. The comprehensive nature of this innovative study by SR-PhC-μCT breaks ground for future studies of soft complex biological tissue in 3D with high resolution in close to natural conditions, which could be further used for in situ characterization of how soft tissue responds to mechanical stimuli on a microscopic level.
Collapse
Affiliation(s)
- Maria Pierantoni
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden.
| | | | - Malin Hammerman
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Lissa Verhoeven
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Elin Törnquist
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| | - Vladimir Novak
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
| | - Rajmund Mokso
- Swiss Light Source, Paul Scherrer Institute, 5232, Villigen, Switzerland
- Division of Solid Mechanics, Lund University, Box 118, 221 00, Lund, Sweden
| | - Pernilla Eliasson
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Box 118, 221 00, Lund, Sweden
| |
Collapse
|
33
|
Rolfe S, Pieper S, Porto A, Diamond K, Winchester J, Shan S, Kirveslahti H, Boyer D, Summers A, Maga AM. SlicerMorph: An open and extensible platform to retrieve, visualize and analyse 3D morphology. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13669] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sara Rolfe
- Friday Harbor Marine LaboratoriesUniversity of Washington San Juan WA USA
- Seattle Children's Research Institute Center for Developmental Biology and Regenerative Medicine Seattle WA USA
| | | | - Arthur Porto
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
- Center for Computation and Technology Louisiana State University Baton Rouge LA USA
| | - Kelly Diamond
- Seattle Children's Research Institute Center for Developmental Biology and Regenerative Medicine Seattle WA USA
| | - Julie Winchester
- Department of Evolutionary Anthropology Duke University Durham NC USA
| | - Shan Shan
- Department of Mathematics Mount Holyoke College South Hadley MA USA
| | | | - Doug Boyer
- Department of Biological Sciences Louisiana State University Baton Rouge LA USA
| | - Adam Summers
- Friday Harbor Marine LaboratoriesUniversity of Washington San Juan WA USA
| | - A. Murat Maga
- Seattle Children's Research Institute Center for Developmental Biology and Regenerative Medicine Seattle WA USA
- Department of Pediatrics Division of Craniofacial Medicine University of Washington Seattle WA USA
| |
Collapse
|
34
|
Architectural properties of the musculoskeletal system in the shoulder of two callitrichid primate species derived from virtual dissection. Primates 2021; 62:827-843. [PMID: 34181123 PMCID: PMC8410736 DOI: 10.1007/s10329-021-00917-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/06/2021] [Indexed: 12/31/2022]
Abstract
Callitrichidae are small, arboreal New World primates that utilize a variety of locomotor behaviors including trunk-to-trunk leaping (TTL) and horizontal locomotion which involve differential functional demands. Little is known about the relationship between the preferred locomotor behavior and musculoskeletal architecture of these primates. In this study, we compared the musculoskeletal architecture of selected shoulder muscles in two cadavers each of the trunk-to-trunk leaper Cebuella pygmaea and the mainly pronograde quadrupedally moving Saguinus imperator subgrisescens. Contrast-enhanced microfocus computed tomography (µCT) was used to virtually dissect the cadavers, produce muscle maps, and create 3D reconstructions for an image-based analysis of the muscles. Muscle lengths, muscle volumes, and osteological muscle moment arms were measured, and the anatomical cross-sectional areas (ACSA) were calculated. We expected the muscles of the forelimb of S. imperator to be larger in volume and to be relatively shorter with a larger ACSA due to a higher demand for powerful extension in the forelimbs of this horizontally locomoting species. For C. pygmaea, we expected relatively larger moment arms for the triceps brachii, supraspinatus, infraspinatus and subscapularis, as larger moment arms present an advantage for extensive vertical clinging on the trunk. The muscles of S. imperator were relatively larger in volume than in C. pygmaea and had a relatively larger ACSA. Thus, the shoulder muscles of S. imperator were suited to generate relatively larger forces than those of C. pygmaea. Contrary to our expectations, there were only slight differences between species in regard to muscle lengths and moment arms, which suggests that these properties are not dependent on the preferred locomotor mode. The study of this limited dataset demonstrates that some but not all properties of the musculoskeletal architecture reflect the preferred locomotor behavior in the two species of Callitrichidae examined.
Collapse
|
35
|
Simcock IC, Shelmerdine SC, Hutchinson JC, Sebire NJ, Arthurs OJ. Human fetal whole-body postmortem microfocus computed tomographic imaging. Nat Protoc 2021; 16:2594-2614. [PMID: 33854254 DOI: 10.1038/s41596-021-00512-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023]
Abstract
Perinatal autopsy is the standard method for investigating fetal death; however, it requires dissection of the fetus. Human fetal microfocus computed tomography (micro-CT) provides a generally more acceptable and less invasive imaging alternative for bereaved parents to determine the cause of early pregnancy loss compared with conventional autopsy techniques. In this protocol, we describe the four main stages required to image fetuses using micro-CT. Preparation of the fetus includes staining with the contrast agent potassium triiodide and takes 3-19 d, depending on the size of the fetus and the time taken to obtain consent for the procedure. Setup for imaging requires appropriate positioning of the fetus and takes 1 h. The actual imaging takes, on average, 2 h 40 min and involves initial test scans followed by high-definition diagnostic scans. Postimaging, 3 d are required to postprocess the fetus, including removal of the stain, and also to undertake artifact recognition and data transfer. This procedure produces high-resolution isotropic datasets, allowing for radio-pathological interpretations to be made and long-term digital archiving for re-review and data sharing, where required. The protocol can be undertaken following appropriate training, which includes both the use of micro-CT techniques and handling of postmortem tissue.
Collapse
Affiliation(s)
- Ian C Simcock
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK.,UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - Susan C Shelmerdine
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK.,UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
| | - J Ciaran Hutchinson
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.,Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Neil J Sebire
- UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.,Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Owen J Arthurs
- Department of Clinical Radiology, Great Ormond Street Hospital for Children, London, UK. .,UCL Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, London, UK. .,NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK.
| |
Collapse
|
36
|
Haberthür D, Hlushchuk R, Wolf TG. Automated segmentation and description of the internal morphology of human permanent teeth by means of micro-CT. BMC Oral Health 2021; 21:185. [PMID: 33845806 PMCID: PMC8040229 DOI: 10.1186/s12903-021-01551-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/05/2021] [Indexed: 11/10/2022] Open
Abstract
High-resolution micro-computed tomography is a powerful tool to analyze and visualize the internal morphology of human permanent teeth. It is increasingly used for investigation of epidemiological questions to provide the dentist with the necessary information required for successful endodontic treatment. The aim of the present paper was to propose an image processing method to automate parts of the work needed to fully describe the internal morphology of human permanent teeth. One hundred and four human teeth were scanned on a high-resolution micro-CT scanner using an automatic specimen changer. Python code in a Jupyter notebook was used to verify and process the scans, prepare the datasets for description of the internal morphology and to measure the apical region of the tooth. The presented method offers an easy, non-destructive, rapid and efficient approach to scan, check and preview tomographic datasets of a large number of teeth. It is a helpful tool for the detailed description and characterization of the internal morphology of human permanent teeth using automated segmentation by means of micro-CT with full reproducibility and high standardization.
Collapse
Affiliation(s)
- David Haberthür
- Institute of Anatomy, University of Bern, Bern, Switzerland.
| | | | - Thomas Gerhard Wolf
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes-Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
37
|
Lanzetti A, Ekdale EG. Enhancing CT imaging: A safe protocol to stain and de-stain rare fetal museum specimens using diffusible iodine-based staining (diceCT). J Anat 2021; 239:228-241. [PMID: 33665841 DOI: 10.1111/joa.13410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 01/25/2023] Open
Abstract
Computed tomography (CT) scanning is being increasingly employed in the study of natural history, particularly to investigate the internal anatomy of unique specimens in museum collections. Different techniques to enhance the contrast between tissues have been developed to improve the quality of the scans while preserving the integrity of these rare specimens. Diffusible iodine-based contrast enhanced computed tomography (diceCT) was found to be particularly effective and reversible for staining tissues in formalin preserved specimens. While it can also be effectively employed to stain ethanol-preserved specimens of small size, the reversibility of this process and the applicability to large-bodied animals has never been thoroughly tested. Here, we describe a novel diceCT protocol developed to stain and de-stain ethanol-preserved prenatal specimens of baleen whales (Mysticeti, Cetacea). These large (10-90 cm in length only considering early fetal stages) specimens present unique challenges as they are rare in collections and irreplaceable, therefore it is imperative to not damage them with the staining process. Before trying this protocol on baleen whales' specimens, we conducted a pilot study on commercially available fetal pigs using the same parameters. This allowed us to optimize the staining time to obtain the best results in CT scanning and to test first-hand the effect of de-staining on ethanol-based specimens. External coloration of the specimens is also a concern with iodine-staining, as stained specimens assume a bright red color that needs to be removed from both internal and external tissues before they can be stored. To test the reversibility of the stain in ethanol-preserved specimens with fur, we also conducted a small experiment using commercially acquired domestic mice. After these trials were successful, we applied the staining and de-staining protocol to multiple fetal specimens of mysticetes up to 90 cm in length, both ethanol- and formalin-preserved. Specimens were soaked in a solution of 1% pure iodine in 70% ethanol for 1-28 days, according to their size. After scanning, specimens are soaked in a solution of 3% sodium thiosulfate in 70% ethanol that is able to completely wash out the iodine from the tissues in a shorter time frame, between a few hours and 14 days. The same concentrations were used for formalin-preserved specimens, but DI water was used as solvent instead of ethanol. The staining technique proved particularly useful to enhance the contrast difference between cartilage, mineralized bone, teeth, and the surrounding soft tissues even when the specimens where scanned in medical-grade CT scans. The specimens did not suffer any visible damage or shrinkage due to the procedure, and in both the fetal samples and in the mice the color of the stain was completely removed by the de-staining process. We conclude therefore that this protocol can be safely applied to a variety of ethanol-preserved museum specimens to enhance the quality of the CT scanning and highlight internal morphological features without recurring to dissection or other irreversible procedures. We also provide tips to best apply this protocol, from how to mix the solutions to how to minimize the staining time.
Collapse
Affiliation(s)
- Agnese Lanzetti
- Department of Life Sciences, Natural History Museum, London, UK
| | - Eric G Ekdale
- Department of Biology, San Diego State University, San Diego, CA, USA.,Department of Paleontology, San Diego Natural History Museum, San Diego, CA, USA
| |
Collapse
|
38
|
Kosmela P, Suchorzewski J, Formela K, Kazimierski P, Haponiuk JT, Piszczyk Ł. Microstructure-Property Relationship of Polyurethane Foams Modified with Baltic Sea Biomass: Microcomputed Tomography vs. Scanning Electron Microscopy. MATERIALS 2020; 13:ma13245734. [PMID: 33339184 PMCID: PMC7765592 DOI: 10.3390/ma13245734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 01/02/2023]
Abstract
In this paper, novel rigid polyurethane foams modified with Baltic Sea biomass were compared with traditional petro-based polyurethane foam as reference sample. A special attention was focused on complex studies of microstructure, which was visualized and measured in 3D with high-resolution microcomputed tomography (microCT) and, as commonly applied for this purpose, scanning electron microscopy (SEM). The impact of pore volume, area, shape and orientation on appearance density and thermal insulation properties of polyurethane foams was determined. The results presented in the paper confirm that microcomputed tomography is a useful tool for relatively quick estimation of polyurethane foams’ microstructure, what is crucial especially in the case of thermal insulation materials.
Collapse
Affiliation(s)
- Paulina Kosmela
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland; (J.T.H.); (Ł.P.)
- Correspondence: (P.K.); (K.F.)
| | - Jan Suchorzewski
- Division Built Environment, Department Infrastructure and Concrete Structures, Material Design, RISE Research Institutes of Sweden, Brinellgatan 4, 501-15 Borås, Sweden;
- Department of Concrete Structures, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland; (J.T.H.); (Ł.P.)
- Correspondence: (P.K.); (K.F.)
| | - Paweł Kazimierski
- Institute of Fluid Flow Machinery, Fiszera Str. 14, 80-231 Gdansk, Poland;
| | - Józef Tadeusz Haponiuk
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland; (J.T.H.); (Ł.P.)
| | - Łukasz Piszczyk
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland; (J.T.H.); (Ł.P.)
| |
Collapse
|
39
|
Bernard F, Mercier P, Chappard D. Microvascularization of the human central and peripheral nervous system: A new microcomputed tomography method. Morphologie 2020; 104:247-253. [PMID: 32561229 DOI: 10.1016/j.morpho.2020.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Microcomputed X-ray tomography (microCT), developed since the late 1990s, is a miniaturized version of the tomographs used daily in medical imaging. It produces vascular images that are different from those obtained by microradiography, in particular by facilitating the vision in space, thus understanding microvascularisation. The anatomical specimens, once treated with formalin, are injected with a mixture made of gelatin containing a contrast product (barium) and then analyzed by microCT. The acquisition times that can exceed 24hours and metal sheets used for X-ray filtering vary according to the sample. The projection images are reconstructed to produce 2D sections. These are combined for the reconstruction of 3D models using a volume rendering software. Four examples will allow the imaging of microvascularization: the inferior alveolar nerve, the cerebral cortex and pia-mother, brain stem, central gray nuclei (ganglia at the base of the brain). Small capillaries are highlighted using high-end software for reconstruction. Conventional software or freeware cause a considerable loss of information on small vessels that are not visualized. The VGStudio max high-end software allows the production of videos that are particularly useful for 3D exploration and teaching (four videos are provided with this article).
Collapse
Affiliation(s)
- F Bernard
- Laboratoire d'anatomie, faculté de santé, université d'Angers, 49933 Angers cedex, France
| | - P Mercier
- Laboratoire d'anatomie, faculté de santé, université d'Angers, 49933 Angers cedex, France; GEROM - Groupe études remodelage osseux et biomatériaux, université d'Angers, IRIS-IBS institut de biologie en santé, CHU d'Angers, 49933 Angers, France.
| | - D Chappard
- GEROM - Groupe études remodelage osseux et biomatériaux, université d'Angers, IRIS-IBS institut de biologie en santé, CHU d'Angers, 49933 Angers, France
| |
Collapse
|
40
|
Bayguinov PO, Fisher MR, Fitzpatrick JAJ. Assaying three-dimensional cellular architecture using X-ray tomographic and correlated imaging approaches. J Biol Chem 2020; 295:15782-15793. [PMID: 32938716 PMCID: PMC7667966 DOI: 10.1074/jbc.rev120.009633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Indexed: 12/16/2022] Open
Abstract
Much of our understanding of the spatial organization of and interactions between cellular organelles and macromolecular complexes has been the result of imaging studies utilizing either light- or electron-based microscopic analyses. These classical approaches, while insightful, are nonetheless limited either by restrictions in resolution or by the sheer complexity of generating multidimensional data. Recent advances in the use and application of X-rays to acquire micro- and nanotomographic data sets offer an alternative methodology to visualize cellular architecture at the nanoscale. These new approaches allow for the subcellular analyses of unstained vitrified cells and three-dimensional localization of specific protein targets and have served as an essential tool in bridging light and electron correlative microscopy experiments. Here, we review the theory, instrumentation details, acquisition principles, and applications of both soft X-ray tomography and X-ray microscopy and how the use of these techniques offers a succinct means of analyzing three-dimensional cellular architecture. We discuss some of the recent work that has taken advantage of these approaches and detail how they have become integral in correlative microscopy workflows.
Collapse
Affiliation(s)
- Peter O Bayguinov
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Max R Fisher
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, Saint Louis, Missouri, USA; Departments of Cell Biology and Physiology and Neuroscience, Washington University School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in Saint Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
41
|
Xia CW, Gan RL, Pan JR, Hu SQ, Zhou QZ, Chen S, Zhang L, Hu QG, Wang YX. Lugol's Iodine-Enhanced Micro-CT: A Potential 3-D Imaging Method for Detecting Tongue Squamous Cell Carcinoma Specimens in Surgery. Front Oncol 2020; 10:550171. [PMID: 33194607 PMCID: PMC7609877 DOI: 10.3389/fonc.2020.550171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/19/2020] [Indexed: 02/05/2023] Open
Abstract
Background A positive surgical margin (PSM) following oral cancer resection results in local recurrence and poor prognosis. Mono-block tumor specimens, especially from the tumor base, are difficult to evaluate. This inaccurate sampling ultimately leads to a false pathological diagnosis. Lugol’s iodine (I2-IK)-enhanced micro-CT is an emerging method to image tumor specimens. This study explores the feasibility of I2-IK-enhanced micro-CT to evaluate the surgical margin for tongue squamous cell carcinoma (TSCC) specimens and to further seek optimal staining parameters. Methods Rabbit tongue tissues and human TSCC samples were imaged via I2-IK-enhanced micro-CT. The optimal I2-IK concentration and staining time were determined before clinical application using tissue shrinkage, micro-CT image quality, and effect on pathological diagnosis as assessment criteria. Next, 6 TSCC specimens were used to verify the process feasibility of surgical margin imaging with the optimal parameters. Finally, the possible reason by which I2-IK could enhance micro-CT imaging was validated in vitro. Results I2-IK staining influenced specimen shrinkage, micro-CT image quality, and pathological image quality in a concentration- and time-dependent manner. After comprehensively considering these indicators, 3% I2-IK staining for 48 and 12 h were found to be optimal for rabbit tongue tissues and TSCC samples, respectively. This method could provide a detailed 3-D structure of TSCC samples compared with H&E sections. Moreover, tumor and normal tissues could be differentiated by their glycogen content, which has high affinity with I2-IK. Conclusions I2-IK-enhanced micro-CT could, thus, indicate the tumor margin and assist pathological sampling in patients with TSCC postoperation.
Collapse
Affiliation(s)
- Cheng-Wan Xia
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong-Lin Gan
- Department of Stomatology, The Suzhou Hospital That Is Affiliated to the Nanjing Medical University, Suzhou, China
| | - Jiong-Ru Pan
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qun-Zhi Zhou
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shen Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lei Zhang
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qin-Gang Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
42
|
Fiorentino G, Parrilli A, Garagna S, Zuccotti M. Three-Dimensional Micro-Computed Tomography of the Adult Mouse Ovary. Front Cell Dev Biol 2020; 8:566152. [PMID: 33195196 PMCID: PMC7604317 DOI: 10.3389/fcell.2020.566152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
In the mouse ovary, folliculogenesis proceeds through eight main growth stages, from small primordial type 1 (T1) to fully grown antral T8 follicles. Most of our understanding of this process was obtained with approaches that disrupted the ovary three-dimensional (3D) integrity. Micro-Computed Tomography (microCT) allows the maintenance of the organ structure and a true in-silico 3D reconstruction, with cubic voxels and isotropic resolution, giving a precise spatial mapping of its functional units. Here, we developed a robust method that, by combining an optimized contrast procedure with microCT imaging of the tiny adult mouse ovary, allowed 3D mapping and counting of follicles, from pre-antral secondary T4 (53.2 ± 12.7 μm in diameter) to antral T8 (321.0 ± 21.3 μm) and corpora lutea, together with the major vasculature branches. Primordial and primary follicles (T1–T3) could not be observed. Our procedure highlighted, with unprecedent details, the main functional compartments of the growing follicle: granulosa, antrum, cumulus cells, zona pellucida, and oocyte with its nucleus. The results describe a homogeneous distribution of all follicle types between the ovary dorsal and ventral regions. Also, they show that each of the eight sectors, virtually segmented along the dorsal-ventral axis, houses an equal number of each follicle type. Altogether, these data suggest that follicle recruitment is homogeneously distributed all-over the ovarian surface. This topographic reconstruction builds sound bases for modeling follicles position and, prospectively, could contribute to our understanding of folliculogenesis dynamics, not only under normal conditions, but, importantly, during aging, in the presence of pathologies or after hormones or drugs administration.
Collapse
Affiliation(s)
- Giulia Fiorentino
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Annapaola Parrilli
- Center for X-ray Analytics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.,Center for Health Technologies, University of Pavia, Pavia, Italy
| |
Collapse
|
43
|
De-Deus G, Belladonna FG, Cavalcante DM, Simões-Carvalho M, Silva EJNL, Carvalhal JCA, Zamolyi RQ, Lopes RT, Versiani MA, Dummer PMH, Zehnder M. Contrast-enhanced micro-CT to assess dental pulp tissue debridement in root canals of extracted teeth: a series of cascading experiments towards method validation. Int Endod J 2020; 54:279-293. [PMID: 32920829 DOI: 10.1111/iej.13408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
AIM To validate a new method for the evaluation of pulp tissue debridement in the root canals of extracted teeth using an impregnation protocol involving potassium triiodide, a radiocontrast solution known as Lugol's, combined with micro-computed tomographic (micro-CT) imaging. METHODOLOGY The impact of NaOCl on the radiopacity of Lugol's solution was assessed using a two-fold dilution series of Lugol in distilled water and 5.25% NaOCl, which were then pipetted into transparent dishes and radiographed. To verify the influence of Lugol on the proteolytic effect of NaOCl, a dissolution test was performed using fresh bovine meat. Ten slices did not undergo any tissue processing, whilst twenty slices were fixed in formaldehyde for 24 h. After that, 10 of them were immersed in Lugol for another 24 h. Then, all specimens were placed in NaOCl and the time required for a complete tissue dissolution was recorded. For the last experiments (histological validation and micro-CT assessment), 8 extracted mandibular premolars with formerly vital pulps were immersed in buffered formalin, scanned in a micro-CT device, accessed, immersed in Lugol for 7 days and scanned again. Then, the root canals of 5 teeth were prepared and scanned, and the volume of remaining pulp tissue identified and quantified, whilst 3 teeth were histologically processed. The same specimens were subjected to histological assessment, and the images of the histologic sections were registered with the corresponding micro-CT images to verify whether the pulp tissue in the histological sections matched its counterpart in the Lugol-impregnated tissues identified in the micro-CT slices. RESULTS There was no discernible effect on radiopacity when NaOCl was mixed with Lugol's solution. Tissue processing did not affect the time required for the complete dissolution of fresh bovine meat. Histological evaluation revealed a correlation between micro-CT and histological images confirming the identification of Lugol-impregnated pulp tissue in micro-CT images. CONCLUSIONS The radiocontrast Lugol's solution was unaffected by NaOCl and did not interfere with its soft tissue dissolution capability. The impregnation protocol using Lugol's solution allowed the visualization of pulp tissue on the micro-CT images and the identification of pulp remnants after chemical-mechanical canal procedures.
Collapse
Affiliation(s)
- G De-Deus
- Department of Endodontics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - F G Belladonna
- Department of Endodontics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - D M Cavalcante
- Department of Endodontics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - M Simões-Carvalho
- Department of Endodontics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - E J N L Silva
- Department of Endodontics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.,Department of Endodontics, Grande Rio University, Duque de Caxias, Rio de Janeiro, Brazil
| | - J C A Carvalhal
- Department of Endodontics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - R Q Zamolyi
- Bonsucesso Federal Hospital, Rio de Janeiro, Rio de Janeiro, Brazil
| | - R T Lopes
- Nuclear Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Versiani
- Department of Endodontics, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - P M H Dummer
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - M Zehnder
- Division of Endodontology, Clinic of Conservative and Preventive Dentistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
44
|
Ondruš J, Hubatka F, Kulich P, Odehnalová N, Harabiš V, Hesko B, Sychra O, Široký P, Turánek J, Novobilský A. A novel approach to imaging engorged ticks: Micro-CT scanning of Ixodes ricinus fed on blood enriched with gold nanoparticles. Ticks Tick Borne Dis 2020; 12:101559. [PMID: 33137638 DOI: 10.1016/j.ttbdis.2020.101559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022]
Abstract
Micro-computed tomography (micro-CT) is an exceptional imaging modality which is limited in visualizing soft biological tissues that need pre-examination contrasting steps, which can cause serious deformation to sizeable specimens like engorged ticks. The aim of this study was to develop a new technique to bypass these limitations and allow the imaging of fed ticks in their natural state. To accomplish this, adult Ixodes ricinus females were allowed to engorge in vitro on blood supplemented with PEGylated gold nanoparticles (PEG-AuNPs). In total, 73/120 females divided into 6 groups engorged on blood enriched with 0.07-2.16 mg PEG-AuNPs per ml of blood. No toxic effect was observed for any of the tested groups compared to the control group, in which 12/20 females engorged on clear blood. The ticks were scanned on a Bruker micro-CT SkyScan 1276. The mean radiodensity of the examined ticks exceeded 0 Hounsfield Units only in the case of the two groups with the highest concentration. The best contrast was observed in ticks engorged on blood with the highest tested concentration of 2.16 mg/mL PEG-AuNPs. In these ticks, the midgut and rectal sac were clearly visible. Also, the midgut lumen volume was computed from segmented image data. The reduction in midgut volume was documented during the egg development process. According to this pilot study, micro-CT of ticks engorged on blood supplemented with contrasting agents in vitro may reveal additional information regarding the engorged ticks' anatomy.
Collapse
Affiliation(s)
- Jaroslav Ondruš
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - František Hubatka
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Nikola Odehnalová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Vratislav Harabiš
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Branislav Hesko
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Oldřich Sychra
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Pavel Široký
- CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1946/1, 612 42, Brno, Czech Republic
| | - Jaroslav Turánek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Adam Novobilský
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| |
Collapse
|
45
|
Early CM, Morhardt AC, Cleland TP, Milensky CM, Kavich GM, James HF. Chemical effects of diceCT staining protocols on fluid-preserved avian specimens. PLoS One 2020; 15:e0238783. [PMID: 32946473 PMCID: PMC7500670 DOI: 10.1371/journal.pone.0238783] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/31/2020] [Indexed: 01/05/2023] Open
Abstract
Diffusible iodine-based contrast-enhanced computed tomography (diceCT) techniques allow visualization of soft tissues of fluid-preserved specimens in three dimensions without dissection or histology. Two popular diceCT stains, iodine-potassium iodide (I2KI) dissolved in water and elemental iodine (I2) dissolved in 100% ethanol (EtOH), yield striking results. Despite the widespread use of these stains in clinical and biological fields, the molecular mechanisms that result in color change and radiopacity attributed to iodine staining are poorly understood. Requests to apply these stains to anatomical specimens preserved in natural history museums are increasing, yet curators have little information about the potential for degradation of treated specimens. To assess the molecular effects of iodine staining on typical museum specimens, we compared the two popular stains and two relatively unexplored stains (I2KI in 70% EtOH, I2 in 70% EtOH). House sparrows (Passer domesticus) were collected and preserved under uniform conditions following standard museum protocols, and each was then subjected to one of the stains. Results show that the three ethanol-based stains worked equally well (producing fully stained, life-like, publication quality scans) but in different timeframes (five, six, or eight weeks). The specimen in I2KI in water became degraded in physical condition, including developing flexible, demineralized bones. The ethanol-based methods also resulted in some demineralization but less than the water-based stain. The pH of the water-based stain was notably acidic compared to the water used as solvent in the stain. Our molecular analyses indicate that whereas none of the stains resulted in unacceptable levels of protein degradation, the bones of a specimen stained with I2KI in water demineralized throughout the staining process. We conclude that staining with I2KI or elemental I2 in 70% EtOH can yield high-quality soft-tissue visualization in a timeframe that is similar to that of better-known iodine-based stains, with lower risk of negative impacts on specimen condition.
Collapse
Affiliation(s)
- Catherine M. Early
- Biology Department, Science Museum of Minnesota, Saint Paul, MN, United States of America
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
- Department of Biological Sciences, Ohio University, Athens, OH, United States of America
- Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
| | - Ashley C. Morhardt
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO, United States of America
| | - Timothy P. Cleland
- Museum Conservation Institute, Smithsonian Institution, Washington, D.C., United States of America
| | - Christopher M. Milensky
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| | - Gwénaëlle M. Kavich
- Museum Conservation Institute, Smithsonian Institution, Washington, D.C., United States of America
| | - Helen F. James
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., United States of America
| |
Collapse
|
46
|
diceCT: A Valuable Technique to Study the Nervous System of Fish. eNeuro 2020; 7:ENEURO.0076-20.2020. [PMID: 32471849 PMCID: PMC7642124 DOI: 10.1523/eneuro.0076-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/31/2022] Open
Abstract
Contrast-enhanced X-ray imaging provides a non-destructive and flexible approach to optimizing contrast in soft tissues, especially when incorporated with Lugol's solution (aqueous I2KI), a technique currently referred to as diffusible iodine-based contrast-enhanced computed tomography (diceCT). This stain exhibits high rates of penetration and results in excellent contrast between and within soft tissues, including the central nervous system. Here, we present a staining method for optimizing contrast in the brain of a cartilaginous fish, the brownbanded bamboo shark, Chiloscyllium punctatum, and a bony fish, the common goldfish, Carassius auratus, using diceCT. The aim of this optimization procedure is to provide suitable contrast between neural tissue and background tissue(s) of the head, thereby facilitating digital segmentation and volumetric analysis of the central nervous system. Both species were scanned before staining and were rescanned at time (T) intervals, either every 48 h (C. punctatum) or every 24 h (C. auratus), to assess stain penetration and contrast enhancement. To compare stain intensities, raw X-ray CT data were reconstructed using air and water calibration phantoms that were scanned under identical conditions to the samples. Optimal contrast across the brain was achieved at T = 240 h for C. punctatum and T = 96 h for C. auratus Higher resolution scans of the whole brain were obtained at the two optimized staining times for all the corresponding specimens. The use of diceCT provides a new and valuable tool for visualizing differences in the anatomic organization of both the central and peripheral nervous systems of fish.
Collapse
|
47
|
Murillo-González JA, Notario B, Maldonado E, Martinez-Sanz E, Barrio MC, Herrera M. Connections between the internal and the external capsules and the globus pallidus in the sheep: A dichromate stain X-ray microtomographic study. Anat Histol Embryol 2020; 50:84-92. [PMID: 32794251 DOI: 10.1111/ahe.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/24/2020] [Indexed: 11/28/2022]
Abstract
Sheep are recognized as useful species for translational neurodegeneration research, in particular for the study of Huntington disease. There is a lack of information regarding the detailed anatomy and connections of the basal ganglia of sheep, in normal myeloarchitectonics and in tract-tracing studies. In this work, the organization of the corticostriatal projections at the level of the putamen and globus pallidus (GP) are explored. For the first time, the myeloarchitectonic pattern of connections between the internal (IC) and the external (EC) capsules with the GP have been investigated in the sheep. Formaldehyde-fixed blocks of the striatum were treated with a metallic stain containing potassium dichromate and visualized using micro-CT (µ-CT). The trivalent chromium (Cr3+), attached to myelin phospholipids, imparts a differential contrast to the grey and white matter compartments, which allows the visualization of myelinated fascicles in µ-CT images. The fascicles were classified according to their topographical location in dorsal supreme fascicles (X, Y, apex) arising from the IC and EC; pre-commissurally, basal fascicles connecting the ventral part of the EC with the lateral zone of the ventral pallidum (VP) and, post-commissurally, superior (Z1 ), middle (Z2 ) and lower (Z3 ) fascicles, connecting at different levels the EC with the GP. The results suggest that the presumptive cortical efferent and afferent fibres to the pallidum could be organized according to a dorsal to ventrolateral topography in the sheep, similar to that seen in other mammals. The proposed methodology has the potential to delineate the myeloarchitectonic patterns of nervous systems and tracts.
Collapse
Affiliation(s)
| | - Belen Notario
- Microcomputed Tomography Lab, Centro Nacional de Investigación sobre la Evolución Humana, CENIEH, Burgos, Spain
| | - Estela Maldonado
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Elena Martinez-Sanz
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - M Carmen Barrio
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Manuel Herrera
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
48
|
Karimipour-Fard P, Naeem I, Mohany A, Pop-Iliev R, Rizvi G. Enhancing the accuracy and efficiency of characterizing polymeric cellular structures using 3D-based computed tomography. J CELL PLAST 2020. [DOI: 10.1177/0021955x20948556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Characterizing the morphology of polymeric foams is crucial for determining their practical applicability. The internal cellular structure of polymeric foams is typically analyzed by 2 D imaging techniques, such as Scanning Electron Microscopy (SEM) and optical microscopy. The problem with these techniques is that their tests are tedious, destructive, and the accuracy of the obtained results is questionable. The objective of this paper is to establish and experimentally verify an efficient 3- dimensional (3 D) Microcomputed-tomography based methodology for reliably estimating and characterizing each of the phases commonly present in multiple types of polymeric foam samples, such as the open, the closed, and the solid phase. A comparative study was carried out between morphology data obtained from 2-dimensional (2 D) analysis and those obtained from 3 D analysis to investigate the reliability of the 2 D analysis results. In this context, the experimental results revealed that by using a 2 D method the open porosity was underestimated at the expense of closed porosity, which in turn was overestimated, while the total porosity was not impacted. Also, visualization of the internal structure of polymer foams by using Micro-CT provides details about the 3 D space which cannot be obtained from SEM images. The analysis of foamed specimen demonstrated that the polymeric foam phases extracted from Micro-CT images were in agreement with the experimentally measured values of total porosity of the samples. In an effort to reduce computational requirements, the effects of reducing data size on the accuracy of results has also been studied by averaging image pixels in 3 D space and the results were compared for multiple types of foam structures. This method reduced the processing time considerably, and yielded comparable porosity values. However, the number of detected pores were lowered due to the inability of this method to detect very small cells after 3 D averaging of image pixels.
Collapse
Affiliation(s)
- Pedram Karimipour-Fard
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Ibrahim Naeem
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Atef Mohany
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Remon Pop-Iliev
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Ghaus Rizvi
- Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| |
Collapse
|
49
|
Simcock IC, Hutchinson JC, Shelmerdine SC, Matos JN, Sebire NJ, Fuentes VL, Arthurs OJ. Investigation of optimal sample preparation conditions with potassium triiodide and optimal imaging settings for microfocus computed tomography of excised cat hearts. Am J Vet Res 2020; 81:326-333. [PMID: 32228254 DOI: 10.2460/ajvr.81.4.326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine optimal sample preparation conditions with potassium triiodide (I2KI) and optimal imaging settings for microfocus CT (micro-CT) of excised cat hearts. SAMPLE 7 excised hearts (weight range, 10 to 17.6 g) obtained from healthy adult cats after euthanasia by IV injection of pentobarbital sodium. PROCEDURES Following excision, the hearts were preserved in 10% formaldehyde solution. Six hearts were immersed in 1.25% I2KI solution (n = 3) or 2.5% I2KI solution (3) for a 12-day period. Micro-CT images were acquired at time 0 (prior to iodination) then approximately every 24 and 48 hours thereafter to determine optimal sample preparation conditions (ie, immersion time and concentration of I2KI solution). Identified optimal conditions were then used to prepare the seventh heart for imaging; changes in voltage, current, exposure time, and gain on image quality were evaluated to determine optimal settings (ie, maximal signal-to-noise and contrast-to-noise ratios). Images were obtained at a voxel resolution of 30 μm. A detailed morphological assessment of the main cardiac structures of the seventh heart was then performed. RESULTS Immersion in 2.5% I2KI solution for 48 hours was optimal for sample preparation. The optimal imaging conditions included a tube voltage of 100 kV, current of 150 μA, and exposure time of 354 milliseconds; scan duration was 12 minutes. CONCLUSIONS AND CLINICAL RELEVANCE Results provided an optimal micro-CT imaging protocol for excised cat hearts prepared with I2KI solution that could serve as a basis for future studies of micro-CT for high resolution 3-D imaging of cat hearts.
Collapse
|
50
|
Taylor JA, Jones MB, Besch-Williford CL, Berendzen AF, Ricke WA, vom Saal FS. Interactive Effects of Perinatal BPA or DES and Adult Testosterone and Estradiol Exposure on Adult Urethral Obstruction and Bladder, Kidney, and Prostate Pathology in Male Mice. Int J Mol Sci 2020; 21:ijms21113902. [PMID: 32486162 PMCID: PMC7313472 DOI: 10.3390/ijms21113902] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Obstructive voiding disorder (OVD) occurs during aging in men and is often, but not always, associated with increased prostate size, due to benign prostatic hyperplasia (BPH), prostatitis, or prostate cancer. Estrogens are known to impact the development of both OVD and prostate diseases, either during early urogenital tract development in fetal–neonatal life or later in adulthood. To examine the potential interaction between developmental and adult estrogen exposure on the adult urogenital tract, male CD-1 mice were perinatally exposed to bisphenol A (BPA), diethylstilbestrol (DES) as a positive control, or vehicle negative control, and in adulthood were treated for 4 months with Silastic capsules containing testosterone and estradiol (T+E2) or empty capsules. Animals exposed to BPA or DES during perinatal development were more likely than negative controls to have urine flow/kidney problems and enlarged bladders, as well as enlarged prostates. OVD in adult T+E2-treated perinatal BPA and DES animals was associated with dorsal prostate hyperplasia and prostatitis. The results demonstrate a relationship between elevated exogenous estrogen levels during urogenital system development and elevated estradiol in adulthood and OVD in male mice. These findings support the two-hit hypothesis for the development of OVD and prostate diseases.
Collapse
Affiliation(s)
- Julia A. Taylor
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
| | - Maren Bell Jones
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
| | | | - Ashley F. Berendzen
- Biomolecular Imaging Center, Harry S Truman VA Hospital and University of Missouri, Columbia, MO 65211, USA;
| | - William A. Ricke
- George M. O’Brien Center of Research Excellence, Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA;
| | - Frederick S. vom Saal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA; (J.A.T.); (M.B.J.)
- Correspondence: ; Tel.: +1-(573)-356-9621
| |
Collapse
|