1
|
Liu X, Tang SJ. Pathogenic mechanisms of human immunodeficiency virus (HIV)-associated pain. Mol Psychiatry 2023; 28:3613-3624. [PMID: 37857809 DOI: 10.1038/s41380-023-02294-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/25/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023]
Abstract
Chronic pain is a prevalent neurological complication among individuals living with human immunodeficiency virus (PLHIV) in the post-combination antiretroviral therapy (cART) era. These individuals experience malfunction in various cellular and molecular pathways involved in pain transmission and modulation, including the neuropathology of the peripheral sensory neurons and neurodegeneration and neuroinflammation in the spinal dorsal horn. However, the underlying etiologies and mechanisms leading to pain pathogenesis are complex and not fully understood. In this review, we aim to summarize recent progress in this field. Specifically, we will begin by examining neuropathology in the pain pathways identified in PLHIV and discussing potential causes, including those directly related to HIV-1 infection and comorbidities, such as antiretroviral drug use. We will also explore findings from animal models that may provide insights into the molecular and cellular processes contributing to neuropathology and chronic pain associated with HIV infection. Emerging evidence suggests that viral proteins and/or antiretroviral drugs trigger a complex pathological cascade involving neurons, glia, and potentially non-neural cells, and that interactions between these cells play a critical role in the pathogenesis of HIV-associated pain.
Collapse
Affiliation(s)
- Xin Liu
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Shao-Jun Tang
- Stony Brook University Pain and Analgesia Research Center (SPARC), Stony Brook University, Stony Brook, 11794, NY, USA.
- Department of Anesthesiology, Renaissance School of Medicine, Stony Brook University, Stony Brook, 11794, NY, USA.
| |
Collapse
|
2
|
Liu J, Jia S, Huang F, He H, Fan W. Peripheral role of glutamate in orofacial pain. Front Neurosci 2022; 16:929136. [PMID: 36440288 PMCID: PMC9682037 DOI: 10.3389/fnins.2022.929136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/10/2022] [Indexed: 09/10/2023] Open
Abstract
Glutamate is the principal excitatory neurotransmitter in the central nervous system. In the periphery, glutamate acts as a transmitter and involves in the signaling and processing of sensory input. Glutamate acts at several types of receptors and also interacts with other transmitters/mediators under various physiological and pathophysiological conditions including chronic pain. The increasing amount of evidence suggests that glutamate may play a role through multiple mechanisms in orofacial pain processing. In this study, we reviewed the current understanding of how peripheral glutamate mediates orofacial pain, how glutamate is regulated in the periphery, and how these findings are translated into therapies for pain conditions.
Collapse
Affiliation(s)
- Jinyue Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Temmermand R, Barrett JE, Fontana ACK. Glutamatergic systems in neuropathic pain and emerging non-opioid therapies. Pharmacol Res 2022; 185:106492. [PMID: 36228868 PMCID: PMC10413816 DOI: 10.1016/j.phrs.2022.106492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 01/14/2023]
Abstract
Neuropathic pain, a disease of the somatosensory nervous system, afflicts many individuals and adequate management with current pharmacotherapies remains elusive. The glutamatergic system of neurons, receptors and transporters are intimately involved in pain but, to date, there have been few drugs developed that therapeutically modulate this system. Glutamate transporters, or excitatory amino acid transporters (EAATs), remove excess glutamate around pain transmitting neurons to decrease nociception suggesting that the modulation of glutamate transporters may represent a novel approach to the treatment of pain. This review highlights and summarizes (1) the physiology of the glutamatergic system in neuropathic pain, (2) the preclinical evidence for dysregulation of glutamate transport in animal pain models, and (3) emerging novel therapies that modulate glutamate transporters. Successful drug discovery requires continuous focus on basic and translational methods to fully elucidate the etiologies of this disease to enable the development of targeted therapies. Increasing the efficacy of astrocytic EAATs may serve as a new way to successfully treat those suffering from this devastating disease.
Collapse
Affiliation(s)
- Rhea Temmermand
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andréia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.
| |
Collapse
|
4
|
Awad-Igbaria Y, Dadon S, Shamir A, Livoff A, Shlapobersky M, Bornstein J, Palzur E. Characterization of Early Inflammatory Events Leading to Provoked Vulvodynia Development in Rats. J Inflamm Res 2022; 15:3901-3923. [PMID: 35845089 PMCID: PMC9286136 DOI: 10.2147/jir.s367193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/23/2022] Open
Abstract
Background Provoked vulvodynia (PV) is the main cause of vulvar pain and dyspareunia. The etiology of PV has not yet been elucidated. However, PV is associated with a history of recurrent inflammation, and its often accompanied by increases in the numbers of mast cells (MCs) and sensory hyperinnervation in the vulva. Therefore, this study aimed to examine the role of MCs and the early inflammatory events in the development of chronic vulvar pain in a rat model of PV. Methods Mechanical and thermal vulvar sensitivity was measured for 5 months following zymosan vulvar challenges. Vulvar changes in glutamate and nerve growth factor (NGF) were analyzed using ELISA. Immunofluorescence (IF) staining of the vulvar section after 20, 81, and 160 days of the zymosan challenge were performed to test MCs accumulation, hyperinnervation, and expression of pain channels (transient receptor potential vanilloid/ankyrin-1-TRPV1 & TRPA1) in vulvar neurons. Changes in the development of vulvar pain were evaluated following the administration of the MCs stabilizer ketotifen fumarate (KF) during zymosan vulvar challenges. Results Zymosan-challenged rats developed significant mechanical and thermal vulvar sensitivity that persisted for over 160 days after the zymosan challenge. During inflammation, increased local concentrations of NGF and glutamate and a robust increase in MCs degranulation were observed in zymosan-challenged rats. In addition, zymosan-challenged rats displayed sensory hyperinnervation and an increase in the expression of TRPV1 and TRPA1. Treatment with KF attenuated the upregulated level of NGF during inflammation, modulated the neuronal modifications, reduced MCs accumulation, and enhanced mechanical hypersensitivity after repeated inflammation challenges. Conclusion The present findings suggest that vulvar hypersensitivity is mediated by MCs accumulation, nerve growth, and neuromodulation of TRPV1 and TRPA1. Hence, KF treatment during the critical period of inflammation contributes to preventing chronic vulvar pain development.
Collapse
Affiliation(s)
- Yaseen Awad-Igbaria
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Shilo Dadon
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Alon Shamir
- Psychobiology Research Laboratory, Mazor Mental Health Center, Akko, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alejandro Livoff
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Mark Shlapobersky
- Pathology Department, Barzilai University Medical Center, Ashkelon, Israel
| | - Jacob Bornstein
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,The Research Institute of Galilee Medical Center, Nahariya, Israel
| | - Eilam Palzur
- The Research Institute of Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
5
|
Zhou X, Liang J, Wang J, Fei Z, Qin G, Zhang D, Zhou J, Chen L. Up-regulation of astrocyte excitatory amino acid transporter 2 alleviates central sensitization in a rat model of chronic migraine. J Neurochem 2020; 155:370-389. [PMID: 31872442 DOI: 10.1111/jnc.14944] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022]
Abstract
Central sensitization is the potential pathogenesis of chronic migraine (CM) and is related to persistent neuronal hyperexcitability. Dysfunction of excitatory amino acid transporter 2 (EAAT2) leads to the accumulation of glutamate in the synaptic cleft, which may contribute to central sensitization by overactivating glutamate N-methyl-D-aspartate receptors and enhancing synaptic plasticity. However, the therapeutic potential of CM by targeting glutamate clearance remains largely unexplored. The purpose of this study was to investigate the role of EAAT2 in CM central sensitization and explore the effect of EAAT2 expression enhancer LDN-212320 in CM rats. The glutamate concentration was measured by high-performance liquid chromatography in a rat model of CM. Then, q-PCR and western blots were performed to detect EAAT2 expression, and the immunoreactivity of astrocytes was detected by immunofluorescence staining. To understand the effect of EAAT2 on central sensitization of CM, mechanical and thermal hyperalgesia and central sensitization-associated proteins were examined after administration of LDN-212320. In addition, the expression of synaptic-associated proteins was examined and Golgi-Cox staining was used to observe the dendritic spine density of trigeminal nucleus caudalis neurons. Also, the synaptic ultrastructure was observed by transmission electron microscope (TEM) to explore the changes of synaptic plasticity. In our study, elevated glutamate concentration and decreased EAAT2 expression were found in the trigeminal nucleus caudalis of CM rats, administration of LDN-212320 greatly up-regulated the protein expression of EAAT2, alleviated hyperalgesia, decreased the concentration of glutamate and the activation of astrocytes. Furthermore, reductions in calcitonin gene-related peptide, substance P(SP), and phosphorylated NR2B were examined after administration of LDN-212320. Moreover evaluation of the synaptic structure, synaptic plasticity-, and central sensitization-related proteins indicated that EAAT2 might participate in the CM central sensitization process by regulating synaptic plasticity. Taken together, up-regulation of EAAT2 expression has a protective effect in CM rats, and LDN-212320 may have clinical therapeutic potential. Cover Image for this issue: https://doi.org/10.1111/jnc.14769.
Collapse
Affiliation(s)
- Xue Zhou
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Liang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang Wang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhaoyang Fei
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Deftu AF, Suter MR. Glia and Pain in Spinal Cord. THE SENSES: A COMPREHENSIVE REFERENCE 2020:235-248. [DOI: 10.1016/b978-0-12-809324-5.24214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Wu P, Bjørn-Yoshimoto WE, Staudt M, Jensen AA, Bunch L. Identification and Structure-Activity Relationship Study of Imidazo[1,2- a]pyridine-3-amines as First Selective Inhibitors of Excitatory Amino Acid Transporter Subtype 3 (EAAT3). ACS Chem Neurosci 2019; 10:4414-4429. [PMID: 31573179 DOI: 10.1021/acschemneuro.9b00447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the present study, screening of a library of 49,087 compounds at the excitatory amino acid transporter subtype 3 (EAAT3) led to the identification of 2-(furan-2-yl)-8-methyl-N-(o-tolyl)imidazo[1,2-a]pyridin-3-amine (3a) which showed a >20-fold preference for inhibition of EAAT3 (IC50 = 13 μM) over EAAT1,2,4 (EAAT1: IC50 ∼ 250 μM; EAAT2,4: IC50 > 250 μM). It was shown that a small lipophilic substituent (methyl or bromine) at the 7- and/or 8-position was essential for activity. Furthermore, the substitution pattern of the o-tolyl group (compound 5b) and the chemical nature of the substituent in the 2-position (compound 7b) were shown to be essential for the selectivity toward EAAT3 over EAAT1,2. The most prominent analogues to come out of this study are 3a and 3e that display ∼35-fold selectivity for EAAT3 (IC50 = 7.2 μM) over EAAT1,2,4 (IC50 ∼ 250 μM).
Collapse
Affiliation(s)
- Peng Wu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Walden E. Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Markus Staudt
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| |
Collapse
|
8
|
Farghaly HSM, Elbadr MM, Ahmed MA, Abdelhaffez AS. Effect of single and repeated administration of amitriptyline on neuropathic pain model in rats: Focus on glutamatergic and upstream nitrergic systems. Life Sci 2019; 233:116752. [PMID: 31415770 DOI: 10.1016/j.lfs.2019.116752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
AIMS Few studies have compared the interaction of single and repeated administration of amitriptyline (amit) with the nitrergic system and glutamatergic system in the experimental model of neuropathic pain. We aimed to evaluate the antinociceptive effect of single and repeated administration of amit and to assess whether glutamate preceded inducible nitric oxide synthase (iNOS) inhibition as a mechanism of the analgesic effect of amit in the neuropathic model of pain. MATERIALS AND METHODS Male Wistar rats were subjected to left sciatic nerve ligation. The effect of single (25 mg kg-1) and repeated (10 mg kg-1 daily for 3 weeks) administration of amit intraperitoneally (i.p.) alone or in combination with aminoguanidine (AG i.p., 100 mg kg-1 for 3 days, a selective iNOS inhibitor) and MK-801 (0.05 mg kg-1 i.p., NMDA antagonist) on resting paw posture and mechanical hyperalgesia were studied. Glutamate level and iNOS protein expression in hippocampus were detected. KEY FINDINGS Single and repeated administration of amit alone or in combination with AG or MK-801 demonstrated a significant decrease in resting pain score and increase in the pain threshold. Both glutamate and nitrite levels decreased in the hippocampi of single and repeated amit + MK-801 groups. Immunohistochemistry showed a marked decrease in iNOS immunoreactivity in rats treated with single and repeated amit + MK-801. SIGNIFICANCE Our results suggest that glutamate-dependent mechanisms are involved in the analgesic responses to amit administration. Importantly, glutamatergic system and its upstream nitrergic system play an important role in the antinociceptive action of amit.
Collapse
Affiliation(s)
- Hanan S M Farghaly
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt.
| | - Mohamed M Elbadr
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Marwa A Ahmed
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Azza S Abdelhaffez
- Physiology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
9
|
Wu X, Wang Q, Zhang F, Liu H, Lu T, Zhang Q. Preparation and In Vivo Antinociceptive Behavior of Four New 2‐Amino‐6‐trifuromethoxybenzothiazole Carboxylic Acid Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xianglong Wu
- Key Laboratory for Space Bioscience and BiotechnologySchool of Life SciencesNorthwestern Polytechnical University Xi'an 710072 P. R. China
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| | - Qingchuan Wang
- Key Laboratory for Space Bioscience and BiotechnologySchool of Life SciencesNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Fei Zhang
- Key Laboratory for Space Bioscience and BiotechnologySchool of Life SciencesNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Hao Liu
- Key Laboratory for Space Bioscience and BiotechnologySchool of Life SciencesNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Tingli Lu
- Key Laboratory for Space Bioscience and BiotechnologySchool of Life SciencesNorthwestern Polytechnical University Xi'an 710072 P. R. China
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
10
|
Hermanns H, Hollmann MW, Stevens MF, Lirk P, Brandenburger T, Piegeler T, Werdehausen R. Molecular mechanisms of action of systemic lidocaine in acute and chronic pain: a narrative review. Br J Anaesth 2019; 123:335-349. [DOI: 10.1016/j.bja.2019.06.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
|
11
|
Gazerani P. Identification of novel analgesics through a drug repurposing strategy. Pain Manag 2019; 9:399-415. [DOI: 10.2217/pmt-2018-0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The identification of new indications for approved or failed drugs is a process called drug repositioning or drug repurposing. The motivation includes overcoming the productivity gap that exists in drug development, which is a high-cost–high-risk process. Repositioning also includes rescuing drugs that have safely entered the market but have failed to demonstrate sufficient efficiency for the initial clinical indication. Considering the high prevalence of chronic pain, the lack of sufficient efficacy and the safety issues of current analgesics, repositioning seems to be an attractive approach. This review presents example of drugs that already have been repositioned and highlights new technologies that are available for the identification of additional compounds to stimulate the curiosity of readers for further exploration.
Collapse
Affiliation(s)
- Parisa Gazerani
- Biomedicine, Department of Health Science & Technology, Aalborg University, Frederik Bajers Vej 3 B, 9220 Aalborg East, Denmark
| |
Collapse
|
12
|
Gegelashvili G, Bjerrum OJ. Glutamate transport system as a key constituent of glutamosome: Molecular pathology and pharmacological modulation in chronic pain. Neuropharmacology 2019; 161:107623. [PMID: 31047920 DOI: 10.1016/j.neuropharm.2019.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/07/2023]
Abstract
Neural uptake of glutamate is executed by the structurally related members of the SLC1A family of solute transporters: GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, ASCT2. These plasma membrane proteins ensure supply of glutamate, aspartate and some neutral amino acids, including glutamine and cysteine, for synthetic, energetic and signaling purposes, whereas effective removal of glutamate from the synaptic cleft shapes excitatory neurotransmission and prevents glutamate toxicity. Glutamate transporters (GluTs) possess also receptor-like properties and can directly initiate signal transduction. GluTs are physically linked to other glutamate signaling-, transporting- and metabolizing molecules (e.g., glutamine transporters SNAT3 and ASCT2, glutamine synthetase, NMDA receptor, synaptic vesicles), as well as cellular machineries fueling the transmembrane transport of glutamate (e.g., ion gradient-generating Na/K-ATPase, glycolytic enzymes, mitochondrial membrane- and matrix proteins, glucose transporters). We designate this supramolecular functional assembly as 'glutamosome'. GluTs play important roles in the molecular pathology of chronic pain, due to the predominantly glutamatergic nature of nociceptive signaling in the spinal cord. Down-regulation of GluTs often precedes or occurs simultaneously with development of pain hypersensitivity. Pharmacological inhibition or gene knock-down of spinal GluTs can induce/aggravate pain, whereas enhancing expression of GluTs by viral gene transfer can mitigate chronic pain. Thus, functional up-regulation of GluTs is turning into a prospective pharmacotherapeutic approach for the management of chronic pain. A number of novel positive pharmacological regulators of GluTs, incl. pyridazine derivatives and β-lactams, have recently been introduced. However, design and development of new analgesics based on this principle will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of the glutamate transport system in nociceptive circuits. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Georgi Gegelashvili
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark; Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia.
| | - Ole Jannik Bjerrum
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Li N, Li L, Zhang Y, Ferraris Araneta M, Johnson C, Shen J. Quantification of in vivo transverse relaxation of glutamate in the frontal cortex of human brain by radio frequency pulse-driven longitudinal steady state. PLoS One 2019; 14:e0215210. [PMID: 30995237 PMCID: PMC6469797 DOI: 10.1371/journal.pone.0215210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/28/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE The principal excitatory neurotransmitter glutamate plays an important role in many central nervous system disorders. Because glutamate resides predominantly in glutamatergic neurons, its relaxation properties reflect the intracellular environment of glutamatergic neurons. This study developed an improved echo time-independent technique for measuring transverse relaxation time and demonstrated that this radio frequency (RF)-driven longitudinal steady state technique can reliably measure glutamate transverse relaxation in the frontal cortex, where structural and functional abnormalities have been associated with psychiatric symptoms. METHOD Bloch and Monte Carlo simulations were performed to improve and optimize the RF-driven, longitudinal, steady-state (MARzss) technique to significantly shorten scan time and increase measurement precision. Optimized four-flip angle measurements at 0°,12°, 24°, and 36° with matched repetition time were used in nine human subjects (6F, 3M; 27-49 years old) at 7 Tesla. Longitudinal and transverse relaxation rates for glutamate were measured from a 2 x 2 x 2 cm3 voxel placed in three different brain regions: gray matter-dominated medial prefrontal lobe, white matter-dominated left frontal lobe, and gray matter-dominated occipital lobe. RESULTS Compared to the original MARzss technique, the scan time per voxel for measuring glutamate transverse relaxation was shortened by more than 50%. In the medial frontal, left frontal, and occipital voxels, the glutamate T2 was found to be 117.5±12.9 ms (mean ± standard deviation, n = 9), 107.3±12.1 (n = 9), and 124.4±16.6 ms (n = 8), respectively. CONCLUSIONS The improvements described in this study make the MARZSS technique a viable tool for reliably measuring glutamate relaxation from human subjects in a typical clinical setting. It is expected that this improved technique can be applied to characterize the intracellular environment of glutamatergic neurons in a variety of brain disorders.
Collapse
Affiliation(s)
- Ningzhi Li
- Section on Magnetic Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Linqing Li
- Functional Magnetic Resonance Imaging Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Zhang
- Magnetic Resonance Spectroscopy Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maria Ferraris Araneta
- Magnetic Resonance Spectroscopy Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher Johnson
- Section on Magnetic Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jun Shen
- Section on Magnetic Spectroscopy, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
- Magnetic Resonance Spectroscopy Core, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
14
|
Wang C, Wang Z, Liu W, Ai Z. CD133 promotes the self-renewal capacity of thyroid cancer stem cells through activation of glutamate aspartate transporter SLC1A3 expression. Biochem Biophys Res Commun 2019; 511:87-91. [DOI: 10.1016/j.bbrc.2019.02.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
|
15
|
Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology 2019; 161:107550. [PMID: 30822498 DOI: 10.1016/j.neuropharm.2019.02.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, glutamate is released and binds to specific membrane receptors and transporters activating, in the one hand, a wide variety of signal transduction cascades, while in the other hand, its removal from the synaptic cleft. Extracellular glutamate concentrations are maintained within physiological levels mainly by glia glutamate transporters. Inefficient clearance of this amino acid is neurotoxic due to a prolonged hyperactivation of its postsynaptic receptors, exacerbating a wide array of intracellular events linked to an ionic imbalance, that results in neuronal cell death. This process is known as excitotoxicity and is the underlying mechanisms of an important number of neurodegenerative diseases. Therefore, it is important to understand the regulation of glutamate transporters function. The transporter activity can be regulated at different levels: gene expression, transporter protein targeting and trafficking, and post-translational modifications of the transporter protein. The identification of these mechanisms has paved the way to our current understanding the role of glutamate transporters in brain physiology and will certainly provide the needed biochemical information for the development of therapeutic strategies towards the establishment of novel therapeutic approaches for the treatment and/or prevention of pathologies associated with excitotoxicity insults. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - Donají Chí-Castañeda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
16
|
Zhao Z, Hiraoka Y, Ogawa H, Tanaka K. Region-specific deletions of the glutamate transporter GLT1 differentially affect nerve injury-induced neuropathic pain in mice. Glia 2018; 66:1988-1998. [DOI: 10.1002/glia.23452] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Zhuoyang Zhao
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| | - Yuichi Hiraoka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| | - Hiroshi Ogawa
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
- Center for Brain Integration Research (CBIR), TMDU, 1-5-45 Yushima; Bunkyo-ku Tokyo 113-8510 Japan
| |
Collapse
|
17
|
Wu XL, Liu L, Li YJ, Luo J, Gai DW, Lu TL, Mei QB. Synthesis, crystal structure, and antinociceptive effects of some new riluzole derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Naß J, Efferth T. Pharmacogenetics and Pharmacotherapy of Military Personnel Suffering from Post-traumatic Stress Disorder. Curr Neuropharmacol 2018; 15:831-860. [PMID: 27834145 PMCID: PMC5652029 DOI: 10.2174/1570159x15666161111113514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/23/2016] [Accepted: 11/08/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Posttraumatic stress disorder (PTSD) is a severe problem among soldiers with combating experience difficult to treat. The pathogenesis is still not fully understood at the psychological level. Therefore, genetic research became a focus of interest. The identification of single nucleotide polymorphisms (SNPs) may help to predict, which persons are at high risk to develop PTSD as a starting point to develop novel targeted drugs for treatment. Methods: We conducted a systematic review on SNPs in genes related to PTSD pathology and development of targeted pharmacological treatment options based on PubMed database searches. We focused on clinical trials with military personnel. Results: SNPs in 22 human genes have been linked to PTSD. These genes encode proteins acting as neurotransmitters and receptors, downstream signal transducers and metabolizing enzymes. Pharmacological inhibitors may serve as drug candidates for PTSD treatment, e.g. β2 adrenoreceptor antagonists, dopamine antagonists, partial dopamine D2 receptor agonists, dopamine β hydroxylase inhibitors, fatty acid amid hydrolase antagonists, glucocorticoid receptor agonists, tropomyosin receptor kinase B agonists, selective serotonin reuptake inhibitors, catechol-O-methyltransferase inhibitors, gamma-amino butyric acid receptor agonists, glutamate receptor inhibitors, monoaminoxidase B inhibitors, N-methyl-d-aspartate receptor antagonists. Conclusion: The combination of genetic and pharmacological research may lead to novel target-based drug developments with improved specificity and efficacy to treat PTSD. Specific SNPs may be identified as reliable biomarkers to assess individual disease risk. Focusing on soldiers suffering from PTSD will not only help to improve treatment options for this specific group, but for all PTSD patients and the general population.
Collapse
Affiliation(s)
- Janine Naß
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz. Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz. Germany
| |
Collapse
|
19
|
Divers TJ, Gardner RB, Madigan JE, Witonsky SG, Bertone JJ, Swinebroad EL, Schutzer SE, Johnson AL. Borrelia burgdorferi Infection and Lyme Disease in North American Horses: A Consensus Statement. J Vet Intern Med 2018; 32:617-632. [PMID: 29469222 PMCID: PMC5866975 DOI: 10.1111/jvim.15042] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/14/2017] [Indexed: 11/27/2022] Open
Abstract
Borrelia burgdorferi infection is common in horses living in Lyme endemic areas and the geographic range for exposure is increasing. Morbidity after B. burgdorferi infection in horses is unknown. Documented, naturally occurring syndromes attributed to B. burgdorferi infection in horses include neuroborreliosis, uveitis, and cutaneous pseudolymphoma. Although other clinical signs such as lameness and stiffness are reported in horses, these are often not well documented. Diagnosis of Lyme disease is based on exposure to B. burgdorferi, cytology or histopathology of infected fluid or tissue and antigen detection. Treatment of Lyme disease in horses is similar to treatment of humans or small animals but treatment success might not be the same because of species differences in antimicrobial bioavailability and duration of infection before initiation of treatment. There are no approved equine label Lyme vaccines but there is strong evidence that proper vaccination could prevent infection in horses.
Collapse
Affiliation(s)
- T J Divers
- Department of Clinical Sciences, Cornell University, Ithaca, NY
| | | | - J E Madigan
- Department of Medicine and Epidemiology, University of California - Davis, CA
| | - S G Witonsky
- Department of Large Animal Clinical Sciences, Virginia-Maryland Region CVM, Blacksburg, VA
| | - J J Bertone
- CVMm Western University of Health Sciences, Pomona, CA
| | | | - S E Schutzer
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ
| | - A L Johnson
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, Kennett Square, PA
| |
Collapse
|
20
|
Chi-Castañeda D, Ortega A. Glial Cells in the Genesis and Regulation of Circadian Rhythms. Front Physiol 2018; 9:88. [PMID: 29483880 PMCID: PMC5816069 DOI: 10.3389/fphys.2018.00088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/26/2018] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms are biological oscillations with a period of ~24 h. These rhythms are orchestrated by a circadian timekeeper in the suprachiasmatic nucleus of the hypothalamus, the circadian "master clock," which exactly adjusts clock outputs to solar time via photic synchronization. At the molecular level, circadian rhythms are generated by the interaction of positive and negative feedback loops of transcriptional and translational processes of the so-called "clock genes." A large number of clock genes encode numerous proteins that regulate their own transcription and that of other genes, collectively known as "clock-controlled genes." In addition to the sleep/wake cycle, many cellular processes are regulated by circadian rhythms, including synaptic plasticity in which an exquisite interplay between neurons and glial cells takes place. In particular, there is compelling evidence suggesting that glial cells participate in and regulate synaptic plasticity in a circadian fashion, possibly representing the missing cellular and physiological link between circadian rhythms with learning and cognition processes. Here we review recent studies in support of this hypothesis, focusing on the interplay between glial cells, synaptic plasticity, and circadian rhythmogenesis.
Collapse
Affiliation(s)
- Donají Chi-Castañeda
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.,Soluciones para un México Verde S.A. de C.V., Ciudad de Mexico, Mexico
| | - Arturo Ortega
- Laboratorio de Neurotoxicología, Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
21
|
Abstract
Pain is essential for avoidance of tissue damage and for promotion of healing. Notwithstanding the survival value, pain brings about emotional suffering reflected in fear and anxiety, which in turn augment pain thus giving rise to a self-sustaining feedforward loop. Given such reciprocal relationships, the present article uses neuroscientific conceptualizations of fear and anxiety as a theoretical framework for hitherto insufficiently understood pathophysiological mechanisms underlying chronic pain. To that end, searches of PubMed-indexed journals were performed using the following Medical Subject Headings' terms: pain and nociception plus amygdala, anxiety, cognitive, fear, sensory, and unconscious. Recursive sets of scientific and clinical evidence extracted from this literature review were summarized within the following key areas: (1) parallelism between acute pain and fear and between chronic pain and anxiety; (2) all are related to the evasion of sensory-perceived threats and are subserved by subcortical circuits mediating automatic threat-induced physiologic responses and defensive actions in conjunction with higher order corticolimbic networks (e.g., thalamocortical, thalamo-striato-cortical and amygdalo-cortical) generating conscious representations and valuation-based adaptive behaviors; (3) some instances of chronic pain and anxiety conditions are driven by the failure to diminish or block respective nociceptive information or unconscious treats from reaching conscious awareness; and (4) the neural correlates of pain-related conscious states and cognitions may become autonomous (i.e., dissociated) from the subcortical activity/function leading to the eventual chronicity. Identifying relative contributions of the diverse neuroanatomical sources, thus, offers prospects for the development of novel preventive, diagnostic, and therapeutic strategies in chronic pain patients.
Collapse
Affiliation(s)
- Igor Elman
- Boonshoft School of Medicine, Wright State University, Dayton VA Medical Center, Dayton, OH, United States
| | - David Borsook
- Harvard Medical School, Center for Pain and the Brain, Boston Children's Hospital, Massachusetts General Hospital, McLean Hospital, Boston, MA, United States
| |
Collapse
|
22
|
Kristensen PJ, Gegelashvili G, Munro G, Heegaard AM, Bjerrum OJ. The β-lactam clavulanic acid mediates glutamate transport-sensitive pain relief in a rat model of neuropathic pain. Eur J Pain 2017; 22:282-294. [PMID: 28984398 DOI: 10.1002/ejp.1117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Following nerve injury, down-regulation of astroglial glutamate transporters (GluTs) with subsequent extracellular glutamate accumulation is a key factor contributing to hyperexcitability within the spinal dorsal horn. Some β-lactam antibiotics can up-regulate GluTs, one of which, ceftriaxone, displays analgesic effects in rodent chronic pain models. METHODS Here, the antinociceptive actions of another β-lactam clavulanic acid, which possesses negligible antibiotic activity, were compared with ceftriaxone in rats with chronic constriction injury (CCI)-induced neuropathic pain. In addition, the protein expression of glutamate transporter-1 (GLT1), its splice variant GLT1b and glutamate-aspartate transporter (GLAST) was measured in the spinal cord of CCI rats. Finally, protein expression of the same GluTs was evaluated in cultured astrocytes obtained from rodents and humans. RESULTS Repeated injection of ceftriaxone or clavulanic acid over 10 days alleviated CCI-induced mechanical hypersensitivity, whilst clavulanic acid was additionally able to affect the thermal hypersensitivity. In addition, clavulanic acid up-regulated expression of GLT1b within the spinal cord of CCI rats, whereas ceftriaxone failed to modulate expression of any GluTs in this model. However, both clavulanic acid and ceftriaxone up-regulated GLT1 expression in rat cortical and human spinal astrocyte cultures. Furthermore, clavulanic acid increased expression of GLT1b and GLAST in rat astrocytes in a dose-dependent manner. CONCLUSIONS Thus, clavulanic acid up-regulates GluTs in cultured rodent- and human astroglia and alleviates CCI-induced hypersensitivity, most likely through up-regulation of GLT1b in spinal dorsal horn. SIGNIFICANCE Chronic dosing of clavulanic acid alleviates neuropathic pain in rats and up-regulates glutamate transporters both in vitro and in vivo. Crucially, a similar up-regulation of glutamate transporters in human spinal astrocytes by clavulanic acid supports the development of novel β-lactam-based analgesics, devoid of antibacterial activity, for the clinical treatment of chronic pain.
Collapse
Affiliation(s)
- P J Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Department of In Vivo Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - G Gegelashvili
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,Institute of Chemical Biology, Ilia State University, Tbilisi, Georgia
| | - G Munro
- Department of In Vivo Neurodegeneration, H. Lundbeck A/S, Valby, Denmark
| | - A M Heegaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - O J Bjerrum
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|
23
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Excessive spinal glutamate transmission is involved in oxaliplatin-induced mechanical allodynia: a possibility for riluzole as a prophylactic drug. Sci Rep 2017; 7:9661. [PMID: 28851920 PMCID: PMC5574967 DOI: 10.1038/s41598-017-08891-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
Oxaliplatin, a chemotherapy medication, causes severe peripheral neuropathy. Although oxaliplatin-induced peripheral neuropathy is a dose-limiting toxicity, a therapeutic strategy against its effects has not been established. We previously reported the involvement of N-methyl-D-aspartate receptors and their intracellular signalling pathway in oxaliplatin-induced mechanical allodynia in rats. The aim of this study was to clarify the involvement of spinal glutamate transmission in oxaliplatin-induced mechanical allodynia. In vivo spinal microdialysis revealed that the baseline glutamate concentration was elevated in oxaliplatin-treated rats, and that mechanical stimulation of the hind paw markedly increased extracellular glutamate concentration in the same rats. In these rats, the expression of glutamate transporter 1 (GLT-1), which plays a major role in glutamate uptake, was decreased in the spinal cord. Moreover, we explored the potential of pharmacological therapy targeting maintenance of extracellular glutamate homeostasis. The administration of riluzole, an approved drug for amyotrophic lateral sclerosis, suppressed the increase of glutamate concentration, the decrease of GLT-1 expression and the development of mechanical allodynia. These results suggest that oxaliplatin disrupts the extracellular glutamate homeostasis in the spinal cord, which may result in neuropathic symptoms, and support the use of riluzole for prophylaxis of oxaliplatin-induced mechanical allodynia.
Collapse
|
25
|
Chen K, Kardys A, Chen Y, Flink S, Tabakoff B, Shih JC. Altered gene expression in early postnatal monoamine oxidase A knockout mice. Brain Res 2017; 1669:18-26. [PMID: 28535982 PMCID: PMC5531263 DOI: 10.1016/j.brainres.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022]
Abstract
We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors.
Collapse
Affiliation(s)
- Kevin Chen
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States
| | - Abbey Kardys
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA 90089, United States
| | - Stephen Flink
- University of Colorado Health Science Center, Denver, CO 80262, United States
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO 80262, United States
| | - Jean C Shih
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, CA 90089, United States; Dept. of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
26
|
Regulation of Glutamate Transporter Expression in Glial Cells. ADVANCES IN NEUROBIOLOGY 2017; 16:199-224. [DOI: 10.1007/978-3-319-55769-4_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Glutamate Transport System as a Novel Therapeutic Target in Chronic Pain: Molecular Mechanisms and Pharmacology. ADVANCES IN NEUROBIOLOGY 2017; 16:225-253. [PMID: 28828613 DOI: 10.1007/978-3-319-55769-4_11] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The vast majority of peripheral neurons sensing noxious stimuli and conducting pain signals to the dorsal horn of the spinal cord utilize glutamate as a chemical transmitter of excitation. High-affinity glutamate transporter subtypes GLAST/EAAT1, GLT1/EAAT2, EAAC1/EAAT3, and EAAT4, differentially expressed on sensory neurons, postsynaptic spinal interneurons, and neighboring glia, ensure fine modulation of glutamate neurotransmission in the spinal cord. The glutamate transport system seems to play important roles in molecular mechanisms underlying chronic pain and analgesia. Downregulation of glutamate transporters (GluTs) often precedes or occurs simultaneously with development of hypersensitivity to thermal or tactile stimuli in various models of chronic pain. Moreover, antisense knockdown or pharmacological inhibition of these membrane proteins can induce or aggravate pain. In contrast, upregulation of GluTs by positive pharmacological modulators or by viral gene transfer to the spinal cord can reverse the development of such pathological hypersensitivity. Furthermore, some multi-target drugs displaying analgesic properties (e.g., tricyclic antidepressant amitriptyline, riluzole, anticonvulsant valproate, tetracycline antibiotic minocycline, β-lactam antibiotic ceftriaxone and its structural analog devoid of antibacterial activity, clavulanic acid) can significantly increase the spinal glutamate uptake. Thus, mounting evidence points at GluTs as prospective therapeutic target for chronic pain treatment. However, design and development of new analgesics based on the modulation of glutamate uptake will require more precise knowledge of molecular mechanisms underlying physiological or aberrant functioning of this transport system in the spinal cord.
Collapse
|
28
|
Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 2016; 136:3-16. [PMID: 28040508 DOI: 10.1016/j.brainresbull.2016.12.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
Abstract
Glutamate is the major excitatory transmitter in the vertebrate brain. After its release from presynaptic nerve terminals, it is rapidly taken up by high-affinity sodium-dependent plasma membrane transporters. While both neurons and glial cells express these excitatory amino acid transporters (EAATs), the majority of glutamate uptake is accomplished by astrocytes, which convert synaptically-released glutamate to glutamine or feed it into their own metabolism. Glutamate uptake by astrocytes not only shapes synaptic transmission by regulating the availability of glutamate to postsynaptic neuronal receptors, but also protects neurons from hyper-excitability and subsequent excitotoxic damage. In the present review, we provide an overview of the molecular and cellular characteristics of sodium-dependent glutamate transporters and their associated anion permeation pathways, with a focus on astrocytic glutamate transport. We summarize their functional properties and roles within tripartite synapses under physiological and pathophysiological conditions, exemplifying the intricate interactions and interrelationships between neurons and glial cells in the brain.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Verena Untiet
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| |
Collapse
|
29
|
GluN2B N-methyl-D-aspartate receptor and excitatory amino acid transporter 3 are upregulated in primary sensory neurons after 7 days of morphine administration in rats: implication for opiate-induced hyperalgesia. Pain 2016; 157:147-158. [PMID: 26335908 DOI: 10.1097/j.pain.0000000000000342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The contribution of the peripheral nervous system to opiate-induced hyperalgesia (OIH) is not well understood. In this study, we determined the changes in excitability of primary sensory neurons after sustained morphine administration for 7 days. Changes in the expression of glutamate receptors and glutamate transporters after morphine administration were ascertained in dorsal root ganglions. Patch clamp recordings from intact dorsal root ganglions (ex vivo preparation) of morphine-treated rats showed increased excitability of small diameter (≤30 μm) neurons with respect to rheobase and membrane threshold, whereas the excitability of large diameter (>30 μm) neurons remained unchanged. Small diameter neurons also displayed increased responses to glutamate, which were mediated mainly by GluN2B containing N-methyl-D-aspartate (NMDA) receptors, and to a lesser degree by the neuronal excitatory amino acid transporter 3/excitatory amino acid carrier 1. Coadministration in vivo of the GluN2B selective antagonist Ro 25-6981 with morphine for 7 days prevented the appearance of OIH and increased morphine-induced analgesia. Administration of morphine for 7 days led to an increased expression of GluN2B and excitatory amino acid transporter 3/excitatory amino acid carrier 1, but not of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionate, kainate, or group I metabotropic glutamate receptors, or of the vesicular glutamate transporter 2. These results suggest that peripheral glutamatergic neurotransmission contributes to OIH and that GluN2B subunit of NMDA receptors in the periphery may be a target for therapy.
Collapse
|
30
|
Chindo BA, Schröder H, Koeberle A, Werz O, Becker A. Analgesic potential of standardized methanol stem bark extract of Ficus platyphylla in mice: Mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:101-106. [PMID: 26945978 DOI: 10.1016/j.jep.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of the stem bark of Ficus platyphylla (FP) have been used in traditional the Nigerian medicine to treat psychoses, depression, epilepsy, pain and inflammation. Previous studies have revealed the analgesic and anti-inflammatory effects of FP in different assays including acetic acid-induced writhing, formalin-induced nociception, and albumin-induced oedema. PURPOSE/METHODS In this study, we assessed the effects of the standardised extract of FP on hot plate nociceptive threshold and vocalisation threshold in response to electrical stimulation of the tail root in order to confirm its acclaimed analgesic properties. We also investigated the molecular mechanisms underlying these effects, with the focus on opiate receptor binding and the key enzymes of eicosanoid biosynthesis, namely cyclooxygenase (COX) and 5-lipoxygenase (5-LO). RESULTS FP (i) increased the hot plate nociceptive threshold and vocalisation threshold. The increase in hot plate nociceptive threshold was detectable over a period of 30min whereas the increase in vocalisation threshold persisted over a period of 90min. (ii) FP showed an affinity for µ opiate receptors but not for δ or κ opiate receptors, and (iii) FP inhibited the activities of COX-2 and 5-LO but not of COX-1. CONCLUSIONS We provided evidence supporting the use of FP in Nigerian folk medicine for the treatment of different types of pain, and identified opioid and non-opioid targets. It is interesting to note that the dual inhibition of COX-2 and 5-LO appears favourable in terms of both efficacy and side effect profile.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria; Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, P. M. B. 21, Abuja, Nigeria
| | - Helmut Schröder
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
31
|
Yousuf MS, Kerr BJ. The Role of Regulatory Transporters in Neuropathic Pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 75:245-71. [PMID: 26920015 DOI: 10.1016/bs.apha.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neuropathic pain arises from an injury or disease of the somatosensory nervous system rather than stimulation of pain receptors. As a result, the fine balance between excitation and inhibition is perturbed leading to hyperalgesia and allodynia. Various neuropathic pain models provide considerable evidence that changes in the glutamatergic, GABAergic, and monoaminergic systems. Neurotransmitter reuptake transporter proteins have the potential to change the temporal and spatial profile of various neurotransmitters throughout the nervous system. This, in turn, can affect the downstream effects of these neurotransmitters and hence modulate pain. This chapter explores various reuptake transporter systems and implicates their role in pain processing. Understanding the transporter systems will enhance drug discovery targeting different facets of neuropathic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada; Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
32
|
|
33
|
Sisignano M, Parnham MJ, Geisslinger G. Drug Repurposing for the Development of Novel Analgesics. Trends Pharmacol Sci 2015; 37:172-183. [PMID: 26706620 DOI: 10.1016/j.tips.2015.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 01/12/2023]
Abstract
Drug development consumes huge amounts of time and money and the search for novel analgesics, which are urgently required, is particularly difficult, having resulted in many setbacks in the past. Drug repurposing - the identification of new uses for existing drugs - is an alternative approach, which bypasses most of the time- and cost-consuming components of drug development. Recent, unexpected findings suggest a role for several existing drugs, such as minocycline, ceftriaxone, sivelestat, and pioglitazone, as novel analgesics in chronic and neuropathic pain states. Here, we discuss these findings as well as their proposed antihyperalgesic mechanisms and outline the merits of pathway-based repurposing screens, in combination with bioinformatics and novel cellular reprogramming techniques, for the identification of novel analgesics.
Collapse
Affiliation(s)
- Marco Sisignano
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, 60590 Frankfurt am Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, pharmazentrum Frankfurt/ZAFES, University Hospital of Goethe-University, 60590 Frankfurt am Main, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group Translational Medicine and Pharmacology (TMP), Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
34
|
Takahashi K, Foster JB, Lin CLG. Glutamate transporter EAAT2: regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci 2015; 72:3489-506. [PMID: 26033496 PMCID: PMC11113985 DOI: 10.1007/s00018-015-1937-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
Glutamate is the predominant excitatory neurotransmitter in the central nervous system. Excitatory amino acid transporter 2 (EAAT2) is primarily responsible for clearance of extracellular glutamate to prevent neuronal excitotoxicity and hyperexcitability. EAAT2 plays a critical role in regulation of synaptic activity and plasticity. In addition, EAAT2 has been implicated in the pathogenesis of many central nervous system disorders. In this review, we summarize current understanding of EAAT2, including structure, pharmacology, physiology, and functions, as well as disease relevancy, such as in stroke, Parkinson's disease, epilepsy, amyotrophic lateral sclerosis, Alzheimer's disease, major depressive disorder, and addiction. A large number of studies have demonstrated that up-regulation of EAAT2 protein provides significant beneficial effects in many disease models suggesting EAAT2 activation is a promising therapeutic approach. Several EAAT2 activators have been identified. Further understanding of EAAT2 regulatory mechanisms could improve development of drug-like compounds that spatiotemporally regulate EAAT2.
Collapse
Affiliation(s)
- Kou Takahashi
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Joshua B. Foster
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, The Ohio State University, 333 West 10th Avenue, Columbus, OH 43210 USA
| |
Collapse
|
35
|
Xiao KQ, Xiao M, Meng L, Du XY, Hu J, Gao BF, Yu WQ, Wang XJ, Ban YL. Effect of subarachnoid nerve block anesthesia on glutamate transporter GLAST and GLT-1 expressions in rabbits. ASIAN PAC J TROP MED 2015; 8:565-8. [PMID: 26276289 DOI: 10.1016/j.apjtm.2015.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022] Open
Abstract
OBJECTIVE To observe the effect of subarachnoid nerve block anesthesia on glutamate transporter glutamate-aspartate transporter (GLAST) and GLT-1 expressions in rabbits, and to investigate the effect of peripheral nerve anesthesia on the morphology and function of the spinal cord. METHODS Twenty healthy New Zealand white rabbits were randomly divided into two groups: the experimental group and control group; with 10 rabbits in each group. For spinal nerve anesthesia, 5 g/L of bupivacaine was used in the experimental group, and sterile saline was used in the control group. After 30 min of cardiac perfusion, GLAST and GLT-1 protein expression in spinal neurons were detected by immunohistochemistry and immunofluorescence staining. RESULTS GLAST and GLT-1 protein-positive cells increased in neurons in the experimental group, compared with the control group (P < 0.05). CONCLUSIONS After subarachnoid nerve block anesthesia, rabbit glutamate transporter GLAST and GLT-1 expression is increased; and spinal cord nerve cell function is inhibited.
Collapse
Affiliation(s)
- Ke-Qing Xiao
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China.
| | - Mei Xiao
- Division of Preventive Medicine, Third People's Hospital of Pingdu City, Qingdao, Shandong 266753, China
| | - Li Meng
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Xiang-Yang Du
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Jing Hu
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Bao-Feng Gao
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Wen-Qiang Yu
- Department of Anesthesiology, Shandong Provincial Hospital, Jinan, Shandong 250031, China
| | - Xin-Jie Wang
- Shandong Province Chest Hospital, Department of Respiratory Diseases of Jinan City, Shandong 250 013, China
| | - Yan-Lin Ban
- Department of Anesthesiology, Qianfoshan Hospital Affiliated to Shandong University in Shandong Province, Jinan, Shandong 250014, China
| |
Collapse
|
36
|
Fontana ACK. Current approaches to enhance glutamate transporter function and expression. J Neurochem 2015; 134:982-1007. [DOI: 10.1111/jnc.13200] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
37
|
Glutamatergic Transmission: A Matter of Three. Neural Plast 2015; 2015:787396. [PMID: 26345375 PMCID: PMC4539489 DOI: 10.1155/2015/787396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication.
Collapse
|
38
|
Steere AC, Arvikar SL. Editorial commentary: what constitutes appropriate treatment of post-Lyme disease symptoms and other pain and fatigue syndromes? Clin Infect Dis 2015; 60:1783-5. [PMID: 25852123 DOI: 10.1093/cid/civ187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 02/25/2015] [Indexed: 12/17/2022] Open
Affiliation(s)
- Allen C Steere
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sheila L Arvikar
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|