1
|
Sollazzo R, Li Puma DD, Aceto G, Paciello F, Colussi C, Vita MG, Giuffrè GM, Pastore F, Casamassa A, Rosati J, Novelli A, Maietta S, Tiziano FD, Marra C, Ripoli C, Grassi C. Structural and functional alterations of neurons derived from sporadic Alzheimer's disease hiPSCs are associated with downregulation of the LIMK1-cofilin axis. Alzheimers Res Ther 2024; 16:267. [PMID: 39702316 DOI: 10.1186/s13195-024-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by the accumulation of pathological proteins and synaptic dysfunction. This study aims to investigate the molecular and functional differences between human induced pluripotent stem cells (hiPSCs) derived from patients with sporadic AD (sAD) and age-matched controls (healthy subjects, HS), focusing on their neuronal differentiation and synaptic properties in order to better understand the cellular and molecular mechanisms underlying AD pathology. METHODS Skin fibroblasts from sAD patients (n = 5) and HS subjects (n = 5) were reprogrammed into hiPSCs using non-integrating Sendai virus vectors. Through karyotyping, we assessed pluripotency markers (OCT4, SOX2, TRA-1-60) and genomic integrity. Neuronal differentiation was evaluated by immunostaining for MAP2 and NEUN. Electrophysiological properties were measured using whole-cell patch-clamp, while protein expression of Aβ, phosphorylated tau, Synapsin-1, Synaptophysin, PSD95, and GluA1 was quantified by western blot. We then focused on PAK1-LIMK1-Cofilin signaling, which plays a key role in regulating synaptic structure and function, both of which are disrupted in neurodegenerative diseases such as AD. RESULTS sAD and HS hiPSCs displayed similar stemness features and genomic stability. However, they differed in neuronal differentiation and function. sAD-derived neurons (sAD-hNs) displayed increased levels of AD-related proteins, including Aβ and phosphorylated tau. Electrophysiological analyses revealed that while both sAD- and HS-hNs generated action potentials, sAD-hNs exhibited decreased spontaneous synaptic activity. Significant reductions in the expression of synaptic proteins such as Synapsin-1, Synaptophysin, PSD95, and GluA1 were found in sAD-hNs, which are also characterized by reduced neurite length, indicating impaired differentiation. Notably, sAD-hNs demonstrated a marked reduction in LIMK1 phosphorylation, which could be the underlying cause for the changes in cytoskeletal dynamics that we found, leading to the morphological and functional modifications observed in sAD-hNs. To further investigate the involvement of the LIMK1 pathway in the morphological and functional changes observed in sAD neurons, we conducted perturbation experiments using the specific LIMK1 inhibitor, BMS-5. Neurons obtained from healthy subjects treated with the inhibitor showed similar morphological changes to those observed in sAD neurons, confirming that LIMK1 activity is crucial for maintaining normal neuronal structure. Furthermore, administration of the inhibitor to sAD neurons did not exacerbate the morphological alterations, suggesting that LIMK1 activity is already compromised in these cells. CONCLUSION Our findings demonstrate that although sAD- and HS-hiPSCs are similar in their stemness and genomic stability, sAD-hNs exhibit distinct functional and structural anomalies mirroring AD pathology. These anomalies include synaptic dysfunction, altered cytoskeletal organization, and accumulation of AD-related proteins. Our study underscores the usefulness of hiPSCs in modeling AD and provides insights into the disease's molecular underpinnings, thus highlighting potential therapeutic targets.
Collapse
Affiliation(s)
- Raimondo Sollazzo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giuseppe Aceto
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto Di Analisi Dei Sistemi Ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | | | | | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Alessia Casamassa
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa, Sollievo Della Sofferenza, 71013 - San Giovanni, Rotondo, Italy
- Saint Camillus International, University of Health Sciences, 00131, Rome, Italy
| | - Agnese Novelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Sabrina Maietta
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Francesco Danilo Tiziano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Camillo Marra
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
2
|
Fang F, Guan YN, Zhong MJ, Wen JY, Chen ZW. H 2S protects rat cerebral ischemia-reperfusion injury by inhibiting expression and activation of hippocampal ROCK 2 at the Thr436 and Ser575 sites. Eur J Pharmacol 2024; 985:177079. [PMID: 39486769 DOI: 10.1016/j.ejphar.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND H2S is an endogenous gas signal molecule, which protects cerebral ischemia/reperfusion (I/R) injury by phosphorylating rho-associated coiled coil-containing protein kinase 2 (ROCK2) at Tyr722, and inhibiting ROCK2 protein expression and activities. We previously reported that H2S protected rat neurons from hypoxia/reoxygenation injury in vitro through inhibiting phosphorylation of ROCK2 at Thr436 and Ser575, but it is unclear whether these two sites are involved in protection of H2S against cerebral I/R injury. METHOD Rats transfected with wild-type and mutant eukaryotic plasmids of ROCK2 in hippocampus were used to establish I/R model by ligating bilateral common carotid artery. Rat behavioral deficit was detected by water maze assay, and ROCK2, lactate dehydrogenase (LDH), nerve-specific enolase (NSE) and reactive oxygen species (ROS) were determined by ELISA. ROCK2 expressions was examined by western-blot assay, and bcl-2 and Bax mRNAs were examined by RT-qPCR. RESULTS NaHS (4.8 mg/kg) significantly inhibited the I/R-increased serum LDH, NSE and ROS in the ROCK2wild-pEGFP-N1-transfected rats, but had no obvious effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats; inhibitions of NaHS on the I/R-increased escape latency and the I/R-decreased percentage of target quadrant distance to total distance were markedly attenuated or abolished in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats compared with those in the ROCK2wild-pEGFP-N1-transfected rats; NaHS obviously inhibited the I/R-increased hippocampal ROCK2 and GFP-ROCK2 proteins, Bax mRNA, and ROCK2 activity, as well as the I/R-decreased hippocampal bcl-2 mRNA in the hippocampus of the ROCK2wild-pEGFP-N1-transfected rats, but had no significant effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats. CONCLUSION H2S protects cerebral I/R injury in rats by inhibiting expression and activation of hippocampal ROCK2 via the Thr436 and Ser575 sites.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi-Ning Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Mei-Jing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Ji-Yue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| | - Zhi-Wu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| |
Collapse
|
3
|
Ye Q, Li X, Gao W, Gao J, Zheng L, Zhang M, Yang F, Li H. Role of Rho-associated kinases and their inhibitor fasudil in neurodegenerative diseases. Front Neurosci 2024; 18:1481983. [PMID: 39628659 PMCID: PMC11613983 DOI: 10.3389/fnins.2024.1481983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis of NDDs is complex, and currently, there is no cure available. With the increase in aging population, over 20 million people are affected by common NDDs alone (Alzheimer's disease and Parkinson's disease). Therefore, NDDs have profound negative impacts on patients, their families, and society, making them a major global health concern. Rho-associated kinases (ROCKs) belong to the serine/threonine protein kinases family, which modulate diverse cellular processes (e.g., apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington's disease, Parkinson's disease, and Alzheimer's disease) by disrupting synaptic plasticity and promoting inflammatory responses. Therefore, ROCK inhibitors have been regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage and promotes axonal regeneration. Thus, the current review summarizes the relationship between ROCKs and NDDs and the mechanism by which fasudil inhibits ROCKs to provide new ideas for the treatment of NDDs.
Collapse
Affiliation(s)
- Qiuyan Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu College of Nursing, Huaian, China
| | - Jiayue Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Zheng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miaomiao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengge Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honglin Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Song C, Huang W, Zhang P, Shi J, Yu T, Wang J, Hu Y, Zhao L, Zhang R, Wang G, Zhang Y, Chen H, Wang H. Critical role of ROCK1 in AD pathogenesis via controlling lysosomal biogenesis and acidification. Transl Neurodegener 2024; 13:54. [PMID: 39497162 PMCID: PMC11533276 DOI: 10.1186/s40035-024-00442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Lysosomal homeostasis and functions are essential for the survival of neural cells. Impaired lysosomal biogenesis and acidification in Alzheimer's disease (AD) pathogenesis leads to proteolytic dysfunction and neurodegeneration. However, the key regulatory factors and mechanisms of lysosomal homeostasis in AD remain poorly understood. METHODS ROCK1 expression and its co-localization with LAMP1 and SQSTM1/p62 were detected in post-mortem brains of healthy controls and AD patients. Lysosome-related fluorescence probe staining, transmission electron microscopy and immunoblotting were performed to evaluate the role of ROCK1 in lysosomal biogenesis and acidification in various neural cell types. The interaction between ROCK1 and TFEB was confirmed by surface plasmon resonance and in situ proximity ligation assay (PLA). Moreover, we performed AAV-mediated ROCK1 downregulation followed by immunofluorescence, enzyme-linked immunosorbent assay (ELISA) and behavioral tests to unveil the effects of the ROCK1-TFEB axis on lysosomes in APP/PS1 transgenic mice. RESULTS ROCK1 level was significantly increased in the brains of AD individuals, and was positively correlated with lysosomal markers and Aβ. Lysosomal proteolysis was largely impaired by the high abundance of ROCK1, while ROCK1 knockdown mitigated the lysosomal dysfunction in neurons and microglia. Moreover, we verified ROCK1 as a previously unknown upstream kinase of TFEB independent of m-TOR or GSK-3β. ROCK1 elevation resulted in abundant extracellular Aβ deposition which in turn bound to Aβ receptors and activated RhoA/ROCK1, thus forming a vicious circle of AD pathogenesis. Genetically downregulating ROCK1 lowered its interference with TFEB, promoted TFEB nuclear distribution, lysosomal biogenesis and lysosome-mediated Aβ clearance, and eventually prevented pathological traits and cognitive deficits in APP/PS1 mice. CONCLUSION In summary, our results provide a mechanistic insight into the critical role of ROCK1 in lysosomal regulation and Aβ clearance in AD by acting as a novel upstream serine kinase of TFEB.
Collapse
Affiliation(s)
- Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongbo Hu
- Department of Neurology, Chang-Hai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gang Wang
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shuguang Lab of Future Health, Shanghai Frontiers Science Center of TCM Chemical Biology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
5
|
Pala D, Clark D, Edwards C, Pasqua E, Tigli L, Pioselli B, Malysa P, Facchinetti F, Rancati F, Accetta A. Design and synthesis of novel 8-(azaindolyl)-benzoazepinones as potent and selective ROCK inhibitors. RSC Med Chem 2024:d4md00313f. [PMID: 39297059 PMCID: PMC11406669 DOI: 10.1039/d4md00313f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
We report the characterization of potent and selective ROCK inhibitors identified through a core-hopping strategy. A virtual screening workflow, combining ligand- and structure-based methods, was applied on a known series of ROCK inhibitors bearing an acetamido-thiazole scaffold. The most promising replacement of the central core was represented by a benzoazepinone ring, which was selected as a starting point for a subsequent chemical exploration. The overall design approach exploited previous SARs available for congeneric series and crystallographic information to optimize the hinge-binding group as well as the terminal aromatic moiety interacting with the glycine-rich loop. The introduction of elongated and flexible charged groups led to compound 15, which exhibited sub-nanomolar potencies in biochemical and cellular assays, as well as a remarkable selectivity over PKA. HDX studies not only supported the postulated binding mode of compound 15 but also confirmed the crucial role of specific ROCK peptide segments in driving ligand selectivity.
Collapse
Affiliation(s)
- Daniele Pala
- Global Research and Preclinical Development, Chiesi Farmaceutici S.p.A Parma 43122 Italy
| | - David Clark
- Charles River Laboratories 8-9 Spire Green Centre Harlow CM19 5TR UK
| | - Christine Edwards
- Charles River Laboratories 8-9 Spire Green Centre Harlow CM19 5TR UK
| | - Elisa Pasqua
- Charles River Laboratories 8-9 Spire Green Centre Harlow CM19 5TR UK
| | - Laura Tigli
- Global Research and Preclinical Development, Chiesi Farmaceutici S.p.A Parma 43122 Italy
| | - Barbara Pioselli
- Global Research and Preclinical Development, Chiesi Farmaceutici S.p.A Parma 43122 Italy
| | - Piotr Malysa
- Chemistry Department, Selvita S.A. Kraków Poland
| | - Fabrizio Facchinetti
- Global Research and Preclinical Development, Chiesi Farmaceutici S.p.A Parma 43122 Italy
| | - Fabio Rancati
- Global Research and Preclinical Development, Chiesi Farmaceutici S.p.A Parma 43122 Italy
| | - Alessandro Accetta
- Global Research and Preclinical Development, Chiesi Farmaceutici S.p.A Parma 43122 Italy
| |
Collapse
|
6
|
Walker CK, Liu E, Greathouse KM, Adamson AB, Wilson JP, Poovey EH, Curtis KA, Muhammad HM, Weber AJ, Bennett DA, Seyfried NT, Gaiteri C, Herskowitz JH. Dendritic spine head diameter predicts episodic memory performance in older adults. SCIENCE ADVANCES 2024; 10:eadn5181. [PMID: 39110801 PMCID: PMC11305389 DOI: 10.1126/sciadv.adn5181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
Episodic memory in older adults is varied and perceived to rely on numbers of synapses or dendritic spines. We analyzed 2157 neurons among 128 older individuals from the Religious Orders Study and Rush Memory and Aging Project. Analysis of 55,521 individual dendritic spines by least absolute shrinkage and selection operator regression and nested model cross-validation revealed that the dendritic spine head diameter in the temporal cortex, but not the premotor cortex, improved the prediction of episodic memory performance in models containing β amyloid plaque scores, neurofibrillary tangle pathology, and sex. These findings support the emerging hypothesis that, in the temporal cortex, synapse strength is more critical than quantity for memory in old age.
Collapse
Affiliation(s)
- Courtney K. Walker
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Evan Liu
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelsey M. Greathouse
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ashley B. Adamson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Julia P. Wilson
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily H. Poovey
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kendall A. Curtis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hamad M. Muhammad
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Audrey J. Weber
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Christopher Gaiteri
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jeremy H. Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Góral I, Wichur T, Sługocka E, Godyń J, Szałaj N, Zaręba P, Głuch-Lutwin M, Mordyl B, Panek D, Więckowska A. Connecting GSK-3β Inhibitory Activity with IKK-β or ROCK-1 Inhibition to Target Tau Aggregation and Neuroinflammation in Alzheimer's Disease-Discovery, In Vitro and In Cellulo Activity of Thiazole-Based Inhibitors. Molecules 2024; 29:2616. [PMID: 38893493 PMCID: PMC11173485 DOI: 10.3390/molecules29112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
GSK-3β, IKK-β, and ROCK-1 kinases are implicated in the pathomechanism of Alzheimer's disease due to their involvement in the misfolding and accumulation of amyloid β (Aβ) and tau proteins, as well as inflammatory processes. Among these kinases, GSK-3β plays the most crucial role. In this study, we present compound 62, a novel, remarkably potent, competitive GSK-3β inhibitor (IC50 = 8 nM, Ki = 2 nM) that also exhibits additional ROCK-1 inhibitory activity (IC50 = 2.3 µM) and demonstrates anti-inflammatory and neuroprotective properties. Compound 62 effectively suppresses the production of nitric oxide (NO) and pro-inflammatory cytokines in the lipopolysaccharide-induced model of inflammation in the microglial BV-2 cell line. Furthermore, it shows neuroprotective effects in an okadaic-acid-induced tau hyperphosphorylation cell model of neurodegeneration. The compound also demonstrates the potential for further development, characterized by its chemical and metabolic stability in mouse microsomes and fair solubility.
Collapse
Affiliation(s)
- Izabella Góral
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., 31-530 Krakow, Poland
| | - Tomasz Wichur
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Emilia Sługocka
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 16 Lazarza St., 31-530 Krakow, Poland
| | - Justyna Godyń
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Natalia Szałaj
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Paula Zaręba
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (M.G.-L.); (B.M.)
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (M.G.-L.); (B.M.)
| | - Dawid Panek
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| | - Anna Więckowska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland; (I.G.); (T.W.); (E.S.); (J.G.); (N.S.); (P.Z.); (D.P.)
| |
Collapse
|
8
|
Zhang C, Liu YC, Wang D, Wang Y. Discovery of a novel ROCK2 ATP competitive inhibitor by DNA-encoded library selection. Biochem Biophys Res Commun 2024; 699:149537. [PMID: 38280309 DOI: 10.1016/j.bbrc.2024.149537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 01/14/2024] [Indexed: 01/29/2024]
Abstract
Neurodegeneration disorders, such as Alzheimer's disease (AD), have garnered significant attention due to their impact on individuals and society as a whole. Understanding the mechanisms behind these disorders and developing effective therapy strategies is of utmost importance. One potential therapeutic target that has emerged is Rho-associated coiled-coil containing protein kinase 2 (ROCK2), as its accumulation and activity have been closely linked to memory loss. In this report, we present the findings of a recent discovery involving a new molecule that has the ability to competitively inhibit ROCK2 activity. This molecule was identified through the utilization of a DNA-encoded library (DEL) screening platform. Following selection against ROCK2, an off-DNA compound was synthesized and examined to ascertain its inhibitory properties, selectivity, mechanism of action, and binding mode analysis. From the screening, compound CH-2 has demonstrated an IC50 value of 28 nM against ROCK2, while exhibiting a 5-fold selectivity over ROCK1. Further analysis through molecular docking has provided insights into the specific binding modes of this compound. Our findings suggest that DEL selection offers a rapid method for identifying new inhibitors. Among these, the CH-2 compound shows promise as a potential ROCK2 inhibitor and warrants further investigation.
Collapse
Affiliation(s)
- Chenhua Zhang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, 76 YanTa XiLu, Xi'an, Shaanxi, 710061, China
| | - Yu-Chih Liu
- TandemAI Technology Shanghai Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Depu Wang
- Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University, 76 YanTa XiLu, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
9
|
Ouyang X, Collu R, Benavides GA, Tian R, Darley-Usmar V, Xia W, Zhang J. ROCK Inhibitor Fasudil Attenuates Neuroinflammation and Associated Metabolic Dysregulation in the Tau Transgenic Mouse Model of Alzheimer's Disease. Curr Alzheimer Res 2024; 21:183-200. [PMID: 38910422 DOI: 10.2174/0115672050317608240531130204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND The pathological manifestations of Alzheimer's disease (AD) include not only brain amyloid β protein (Aβ) containing neuritic plaques and hyperphosphorylated tau (p-- tau) containing neurofibrillary tangles but also microgliosis, astrocytosis, and neurodegeneration mediated by metabolic dysregulation and neuroinflammation. METHODS While antibody-based therapies targeting Aβ have shown clinical promise, effective therapies targeting metabolism, neuroinflammation, and p-tau are still an urgent need. Based on the observation that Ras homolog (Rho)-associated kinases (ROCK) activities are elevated in AD, ROCK inhibitors have been explored as therapies in AD models. This study determines the effects of fasudil, a ROCK inhibitor, on neuroinflammation and metabolic regulation in the P301S tau transgenic mouse line PS19 that models neurodegenerative tauopathy and AD. Using daily intraperitoneal (i.p.) delivery of fasudil in PS19 mice, we observed a significant hippocampal-specific decrease of the levels of phosphorylated tau (pTau Ser202/Thr205), a decrease of GFAP+ cells and glycolytic enzyme Pkm1 in broad regions of the brain, and a decrease in mitochondrial complex IV subunit I in the striatum and thalamic regions. RESULTS Although no overt detrimental phenotype was observed, mice dosed with 100 mg/kg/day for 2 weeks exhibited significantly decreased mitochondrial outer membrane and electron transport chain (ETC) protein abundance, as well as ETC activities. CONCLUSION Our results provide insights into dose-dependent neuroinflammatory and metabolic responses to fasudil and support further refinement of ROCK inhibitors for the treatment of AD.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Roberto Collu
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Ran Tian
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, USA
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
- Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL35294, USA
| |
Collapse
|
10
|
Liu M, Wang W, Zhang Y, Xu Z. Effects of combined electroacupuncture and medication therapy on the RhoA/ROCK-2 signaling pathway in the striatal region of rats afflicted by cerebral ischemia. Brain Res Bull 2023; 205:110828. [PMID: 38029846 DOI: 10.1016/j.brainresbull.2023.110828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To investigate the effects of electroacupuncture(EA), gastrodin(Gas), and their combination on the signaling pathways involving Ras homologous gene family member A (RhoA) and Rho-associated frizzled helix protein kinase (ROCK-2) within the striatal region of rats subjected to cerebral ischemia. Additionally, we aim to elucidate the therapeutic effects and potential underlying mechanisms associated with the concurrent application of electroacupuncture and medication in the treatment of cerebral ischemia. METHODS Rats were randomly assigned to one of five groups, namely, the sham operation (Sham) group, model group, EA group, Gas group, and the EA combined with Gas group (referred to as the "EA+Gas group"). Each group consisted of ten rats. Following the induction of cerebral ischemia, the EA group and EA+Gas group received EA stimulation at the Baihui(GV20) and Zusanli(ST36) acupoints for 30 min per session, administered once daily for 14 consecutive days. The Gas group and EA+Gas group were intraperitoneally injected with Gas at a dosage of 10 mg/kg, also administered once daily for 14 consecutive days. Nissl staining was employed to observe morphological alterations in the striatal nerve cells of rats in each group. Immunohistochemistry and western blot techniques were employed to evaluate the expression levels of striatal RhoA and ROCK-2 proteins. RESULTS In comparison to the Sham group, the model group exhibited a substantial reduction in the number of striatal nerve cells on the ischemic side, accompanied by notable changes in cell morphology, characterized by reduced cytoplasm, defective and atrophied cytosol, solidified nuclei, loosely arranged cells, and enlarged intercellular spaces. Additionally, there was a notable increase in the positive expression of RhoA and ROCK-2. In contrast, when compared to the model group, the EA, Gas, and EA+Gas groups demonstrated an elevated number of normal nerve cells within the ischemic striatal region, with a significant improvement in cell count and morphology. Furthermore, positive expression levels of RhoA and ROCK-2 were notably reduced in these groups. Compared with the EA group or the GAS group, the number of normal nerve cells in the striatum on the ischemic side of the EA+GAS group was further increased, and the positive expression level of RhoA and ROCK-2 were both further reduced. CONCLUSION The protective mechanism underlying the therapeutic efficacy of EA combined with Gas against cerebral ischemic striatal injury in rats may be associated with the inhibition of the activation of the RhoA/ROCK-2 signaling pathway. Importantly, the therapeutic effects observed with the combination of electroacupuncture and medication were superior to those achieved with EA alone or the sole administration of Gas.
Collapse
Affiliation(s)
- Min Liu
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Wei Wang
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Yegui Zhang
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, Wannan Medical College, 241002 Wuhu, Anhui, China.
| |
Collapse
|
11
|
Chu GG, Wang J, Ding ZB, Yin JZ, Song LJ, Wang Q, Huang JJ, Xiao BG, Ma CG. Hydroxyfasudil regulates immune balance and suppresses inflammatory responses in the treatment of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2023; 124:110791. [PMID: 37619413 DOI: 10.1016/j.intimp.2023.110791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) disease with complicated etiology. Multifocal demyelination and invasion of inflammatory cells are its primary pathological features. Fasudil has been confirmed to improve experimental autoimmune encephalomyelitis (EAE), an animal model of MS. However, Fasudil is accompanied by several shortcomings in the clinical practice. Hydroxyfasudil is a metabolite of Fasudil in the body with better pharmaceutical properties. Therefore, we attempted to study the influence of Hydroxyfasudil upon EAE mice. The results demonstrated that Hydroxyfasudil relieved the symptoms of EAE and the associated pathological damage, reduced the adhesion molecules and chemokines, decreased the invasion of peripheral immune cells. Simultaneously, Hydroxyfasudil modified the rebalance of peripheral T cells. Moreover, Hydroxyfasudil shifted the M1 phenotype to M2 polarization, inhibited inflammatory signaling cascades as well as inflammatory factors, and promoted anti-inflammatory factors in the CNS. In the end, mice in the Hydroxyfasudil group expressed more tight junction proteins, indirectly indicating that the blood-brain barrier (BBB) was protected. Our results indicate that Hydroxyfasudil may be a prospective treatment for MS.
Collapse
Affiliation(s)
- Guo-Guo Chu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Jing Wang
- Dept. of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Zhi-Bin Ding
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jin-Zhu Yin
- Dept. of Neurosurgery/The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China; Dept. of Neurosurgery/The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Qing Wang
- Dept. of Neurology, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jian-Jun Huang
- Dept. of Neurosurgery/The Key Laboratory of Prevention and Treatment of Neurological Disease of Shanxi Provincial Health Commission, Sinopharm Tongmei General Hospital, Datong 037003, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200433, China.
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
12
|
Benarroch E. What Is the Role of the Rho-ROCK Pathway in Neurologic Disorders? Neurology 2023; 101:536-543. [PMID: 37722862 PMCID: PMC10516277 DOI: 10.1212/wnl.0000000000207779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023] Open
|
13
|
Huang YR, Xie XX, Yang J, Sun XY, Niu XY, Yang CG, Li LJ, Zhang L, Wang D, Liu CY, Hou SJ, Jiang CY, Xu YM, Liu RT. ArhGAP11A mediates amyloid-β generation and neuropathology in an Alzheimer's disease-like mouse model. Cell Rep 2023; 42:112624. [PMID: 37302068 DOI: 10.1016/j.celrep.2023.112624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 04/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Amyloid-β (Aβ) plays an important role in the neuropathology of Alzheimer's disease (AD), but some factors promoting Aβ generation and Aβ oligomer (Aβo) neurotoxicity remain unclear. We here find that the levels of ArhGAP11A, a Ras homology GTPase-activating protein, significantly increase in patients with AD and amyloid precursor protein (APP)/presenilin-1 (PS1) mice. Reducing the ArhGAP11A level in neurons not only inhibits Aβ generation by decreasing the expression of APP, PS1, and β-secretase (BACE1) through the RhoA/ROCK/Erk signaling pathway but also reduces Aβo neurotoxicity by decreasing the expressions of apoptosis-related p53 target genes. In APP/PS1 mice, specific reduction of the ArhGAP11A level in neurons significantly reduces Aβ production and plaque deposition and ameliorates neuronal damage, neuroinflammation, and cognitive deficits. Moreover, Aβos enhance ArhGAP11A expression in neurons by activating E2F1, which thus forms a deleterious cycle. Our results demonstrate that ArhGAP11A may be involved in AD pathogenesis and that decreasing ArhGAP11A expression may be a promising therapeutic strategy for AD treatment.
Collapse
Affiliation(s)
- Ya-Ru Huang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Xiu Xie
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Yang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Henan Medical Key Laboratory of Neurogenetic and Neurodegenerative Disease, Zhengzhou 450052, Henan, China
| | - Xiao-Ying Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Yun Niu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Ningxia University, Yinchuan 750021, Ningxia, China
| | - Cheng-Gang Yang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, China; Department of Research and Development, Gu'an Bojian Bio-Technology Co., Ltd., Langfang 065000, Hebei, China
| | - Ling-Jie Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lun Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dan Wang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., Ltd., Beijing 100081, China
| | - Chun-Yu Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Shandong Agricultural University, Tai'an 271000, Shandong, China
| | - Sheng-Jie Hou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen-Yang Jiang
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yu-Ming Xu
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Key Laboratory of Cerebrovascular Disease of Henan Province, Zhengzhou 450052, Henan, China.
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
14
|
Hurst C, Pugh DA, Abreha MH, Duong DM, Dammer EB, Bennett DA, Herskowitz JH, Seyfried NT. Integrated Proteomics to Understand the Role of Neuritin (NRN1) as a Mediator of Cognitive Resilience to Alzheimer's Disease. Mol Cell Proteomics 2023; 22:100542. [PMID: 37024090 PMCID: PMC10233303 DOI: 10.1016/j.mcpro.2023.100542] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
The molecular mechanisms and pathways enabling certain individuals to remain cognitively normal despite high levels of Alzheimer's disease (AD) pathology remain incompletely understood. These cognitively normal people with AD pathology are described as preclinical or asymptomatic AD (AsymAD) and appear to exhibit cognitive resilience to the clinical manifestations of AD dementia. Here we present a comprehensive network-based approach from cases clinically and pathologically defined as asymptomatic AD to map resilience-associated pathways and extend mechanistic validation. Multiplex tandem mass tag MS (TMT-MS) proteomic data (n = 7787 proteins) was generated on brain tissue from Brodmann area 6 and Brodmann area 37 (n = 109 cases, n = 218 total samples) and evaluated by consensus weighted gene correlation network analysis. Notably, neuritin (NRN1), a neurotrophic factor previously linked to cognitive resilience, was identified as a hub protein in a module associated with synaptic biology. To validate the function of NRN1 with regard to the neurobiology of AD, we conducted microscopy and physiology experiments in a cellular model of AD. NRN1 provided dendritic spine resilience against amyloid-β (Aβ) and blocked Aβ-induced neuronal hyperexcitability in cultured neurons. To better understand the molecular mechanisms of resilience to Aβ provided by NRN1, we assessed how exogenous NRN1 alters the proteome by TMT-MS (n = 8238 proteins) of cultured neurons and integrated the results with the AD brain network. This revealed overlapping synapse-related biology that linked NRN1-induced changes in cultured neurons with human pathways associated with cognitive resilience. Collectively, this highlights the utility of integrating the proteome from the human brain and model systems to advance our understanding of resilience-promoting mechanisms and prioritize therapeutic targets that mediate resilience to AD.
Collapse
Affiliation(s)
- Cheyenne Hurst
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - Derian A Pugh
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
| | - Measho H Abreha
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - Duc M Duong
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Jeremy H Herskowitz
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory School of Medicine, Emory Goizueta Alzheimer's Disease Research Center, Atlanta, Georgia, USA.
| |
Collapse
|
15
|
Chen L, Jia P, Liu Y, Wang R, Yin Z, Hu D, Ning H, Ge Y. Fluoride exposure disrupts the cytoskeletal arrangement and ATP synthesis of HT-22 cell by activating the RhoA/ROCK signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114718. [PMID: 36950989 DOI: 10.1016/j.ecoenv.2023.114718] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Fluoride, an environmental contaminant, is ubiquitously present in air, water, and soil. It usually enters the body through drinking water and may cause structural and functional disorders in the central nervous system in humans and animals. Fluoride exposure affects cytoskeleton and neural function, but the mechanism is not clear. METHODS The specific neurotoxic mechanism of fluoride was explored in HT-22 cells. Cellular proliferation and toxicity detection were investigated by CCK-8, CCK-F, and cytotoxicity detection kits. The development morphology of HT-22 cells was observed under a light microscope. Cell membrane permeability and neurotransmitter content were determined using lactate dehydrogenase (LDH) and glutamate content determination kits, respectively. The ultrastructural changes were detected by transmission electron microscopy, and actin homeostasis was observed by laser confocal microscopy. ATP enzyme and ATP activity were determined using the ATP content kit and ultramicro-total ATP enzyme content kit, respectively. The expression levels of GLUT1 and 3 were assessed by Western Blot assays and qRT-PCR. RESULTS Our results showed that fluoride reduced the proliferation and survival rates of HT-22 cells. Cytomorphology showed that dendritic spines became shorter, cellular bodies became rounder, and adhesion decreased gradually after fluoride exposure. LDH results showed that fluoride exposure increased the membrane permeability of HT-22 cells. Transmission electron microscopy results showed that fluoride caused cells to swell, microvilli content decreased, cellular membrane integrity was damaged, chromatin was sparse, mitochondria ridge gap became wide, and microfilament and microtubule density decreased. Western Blot and qRT-PCR analyses showed that RhoA/ROCK/LIMK/Cofilin signaling pathway was activated by fluoride. F-actin/G-actin fluorescence intensity ratio remarkably increased in 0.125 and 0.5 mM NaF, and the mRNA expression of MAP2 was significantly decreased. Further studies showed that GLUT3 significantly increased in all fluoride groups, while GLUT1 decreased (p < 0.05). ATP contents remarkably increased, and ATP enzyme activity substantially decreased after NaF treatment with the control. CONCLUSION Fluoride activates the RhoA/ROCK/LIMK/Cofilin signaling pathway, impairs the ultrastructure, and depresses the connection of synapses in HT-22 cells. Moreover, fluoride exposure affects the expression of glucose transporters (GLUT1 and 3) and ATP synthesis. Sum up fluoride exposure disrupts actin homeostasis, ultimately affecting structure, and function in HT-22 cells. These findings support our previous hypothesis and provide a new perspective on the neurotoxic mechanism of fluorosis.
Collapse
Affiliation(s)
- Lingli Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China; Postdoctoral Research and Development Base, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Penghuan Jia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Yuye Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Rui Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Zhihong Yin
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Dongfang Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Hongmei Ning
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, Henan Provence 453003, China.
| |
Collapse
|
16
|
Taha M, Eldemerdash OM, Elshaffei IM, Yousef EM, Soliman AS, Senousy MA. Apigenin Attenuates Hippocampal Microglial Activation and Restores Cognitive Function in Methotrexate-Treated Rats: Targeting the miR-15a/ROCK-1/ERK1/2 Pathway. Mol Neurobiol 2023; 60:3770-3787. [PMID: 36943623 DOI: 10.1007/s12035-023-03299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
Microglial activation underpins the methotrexate (MTX)-induced neurotoxicity; however, the precise mechanism remains unclear. This study appraised the potential impact of apigenin (Api), a neuroprotective flavonoid, in MTX-induced neurotoxicity in rats in terms of microglial activation through targeting the miR-15a/Rho-associated protein kinase-1 (ROCK-1)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Male Sprague Dawley rats were randomly divided into 4 groups: Normal control (saline i.p. daily and i.v. on days 8 and 15); Api control (20 mg/kg, p.o.) daily for 30 days; MTX-alone (75 mg/kg, i.v.) on days 8 and 15, then four i.p. injections of leucovorin (LCV): 6 mg/kg after 18 h, then three doses (3 mg/kg) every 8 h post-MTX; and Api co-treated (20 mg/kg/day, p.o.) throughout the model for 30 days, with administration of MTX and LCV as in group 3. MTX administration elevated hippocampal ionized calcium-binding adaptor protein-1 (Iba-1) immunostaining, indicating microglial activation. This was accompanied by neuroinflammation, oxidative stress, and enhanced apoptosis manifested by elevated hippocampal interleukin-1β, malondialdehyde, and caspase-3, and decreased reduced glutathione levels. Concurrently, abated miR-15a expression, overexpression of its target ROCK-1, diminished downstream ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation, and decreased hippocampal brain-derived neurotrophic factor (BDNF) levels were observed. Api mitigated the MTX-induced neurotoxicity by reversing the biochemical, histopathological, and behavioral derangements tested by novel object recognition and Morris water maze tests. Conclusively, Api lessens MTX-induced neuroinflammation, oxidative stress, and apoptosis and boosts cognitive function through inhibiting microglial activation via modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Graphical abstract showing the effects of methotrexate and apigenin co-treatment in MTX-induced neurotoxicity model. On the left, methotrexate (MTX) administration to rats resulted in hippocampal miR-15a downregulation, which triggered an enhanced expression of its target ROCK-1, consequently inhibiting the downstream ERK1/2/CREB/BDNF pathway, instigating a state of microglial activation, neuroinflammation, oxidative stress, and apoptosis. On the other hand, apigenin (Api) co-treatment restored miR-15a, inhibited ROCK-1 expression, and activated the ERK1/2/CREB/BDNF pathway, leading to diminished hippocampal microglial activation, neuroinflammation, and apoptosis, and restoration of the redox balance, along with improvement in memory and cognitive function of the MTX-treated rats.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt.
| | - Omar Mohsen Eldemerdash
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Ismail Mohamed Elshaffei
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Einas Mohamed Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Ayman S Soliman
- Medical Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud Ahmed Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|
17
|
Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, Doudeau M, Godin F, Bénédetti H, Vallée B. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells 2023; 12:cells12050805. [PMID: 36899941 PMCID: PMC10000741 DOI: 10.3390/cells12050805] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.
Collapse
Affiliation(s)
- Elodie Villalonga
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Christine Mosrin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Thierry Normand
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Caroline Girardin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Amandine Serrano
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Bojan Žunar
- Laboratory for Biochemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Michel Doudeau
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Fabienne Godin
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Hélène Bénédetti
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
| | - Béatrice Vallée
- Centre de Biophysique Moléculaire; UPR4301, CNRS, University of Orleans and INSERM, CEDEX 2, 45071 Orleans, France
- Correspondence: ; Tel.: +33-(0)2-38-25-76-11
| |
Collapse
|
18
|
Mankhong S, Kim S, Moon S, Choi SH, Kwak HB, Park DH, Shah P, Lee PH, Yang SW, Kang JH. Circulating micro-RNAs Differentially Expressed in Korean Alzheimer's Patients With Brain Aβ Accumulation Activate Amyloidogenesis. J Gerontol A Biol Sci Med Sci 2023; 78:292-303. [PMID: 35532940 DOI: 10.1093/gerona/glac106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Roles for extracellular vesicles (EVs) enriched with micro-RNAs (miRNAs) have been proposed in Alzheimer's disease (AD) pathogenesis, leading to the discovery of blood miRNAs as AD biomarkers. However, the diagnostic utility of specific miRNAs is not consistent. This study aimed to discover blood miRNAs that are differentially expressed in Korean AD patients, evaluate their clinical performance, and investigate their role in amyloidogenesis. METHODS We discovered miRNAs differentially expressed in AD (N = 8) from cognitively normal participants (CN, N = 7) or Parkinson's disease (PD) patients (N = 8). We evaluated the clinical performance of these miRNAs in plasma of subgroup (N = 99) and in plasma EVs isolated from the total cohort (N = 251). The effects of miRNAs on amyloidogenesis and on the regulation of their target genes were investigated in vitro. RESULTS Among 17 upregulated and one downregulated miRNAs in AD (>twofold), miR-122-5p, miR-210-3p, and miR-590-5p were differentially expressed compared with CN or PD. However, the diagnostic performance of the selected plasma or EV miRNAs in total participants were limited (area under the curve < 0.8). Nevertheless, levels of 3 miRNAs in plasma or plasma EVs of participants who were amyloid positron emission tomography (Aβ-PET) positive were significantly higher than those from the Aβ-PET negative participants (p < .05). The selected miRNAs induced Aβ production (p < .05) through activation of β-cleavage of amyloid precursor protein (CTF-β; p < .01), and downregulated their target genes (ADAM metallopeptidase domain 10, Brain-derived neurotrophic factor, and Jagged canonical notch ligand 1; p < .05), which was further supported by pathway enrichment analysis of target genes of the miRNAs. CONCLUSION In conclusion, despite of the limited diagnostic utility of selected miRNAs as plasma or plasma EV biomarkers, the discovered miRNAs may play a role in amyloidogenesis during AD onset and progression.
Collapse
Affiliation(s)
- Sakulrat Mankhong
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea.,Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| | - Sujin Kim
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Seong-Hye Choi
- Department of Neurology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea.,Department of Kinesiology, Inha University, Incheon, Republic of Korea
| | - Pratik Shah
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon, Republic of Korea.,Program in Biomedical Science and Engineering, Inha University, Incheon, South Korea
| |
Collapse
|
19
|
Nuñez-Diaz C, Pocevičiūtė D, Schultz N, Welinder C, Swärd K, Wennström M. Contraction of human brain vascular pericytes in response to islet amyloid polypeptide is reversed by pramlintide. Mol Brain 2023; 16:25. [PMID: 36793056 PMCID: PMC9933335 DOI: 10.1186/s13041-023-01013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/05/2023] [Indexed: 02/17/2023] Open
Abstract
The islet amyloid polypeptide (IAPP), a pancreas-produced peptide, has beneficial functions in its monomeric form. However, IAPP aggregates, related to type 2 diabetes mellitus (T2DM), are toxic not only for the pancreas, but also for the brain. In the latter, IAPP is often found in vessels, where it is highly toxic for pericytes, mural cells that have contractile properties and regulate capillary blood flow. In the current study, we use a microvasculature model, where human brain vascular pericytes (HBVP) are co-cultured together with human cerebral microvascular endothelial cells, to demonstrate that IAPP oligomers (oIAPP) alter the morphology and contractility of HBVP. Contraction and relaxation of HBVP was verified using the vasoconstrictor sphingosine-1-phosphate (S1P) and vasodilator Y27632, where the former increased, and the latter decreased, the number of HBVP with round morphology. Increased number of round HBVP was also seen after oIAPP stimulation, and the effect was reverted by the IAPP analogue pramlintide, Y27632, and the myosin inhibitor blebbistatin. Inhibition of the IAPP receptor with the antagonist AC187 only reverted IAPP effects partially. Finally, we demonstrate by immunostaining of human brain tissue against laminin that individuals with high amount of brain IAPP levels show significantly lower capillary diameter and altered mural cell morphology compared to individuals with low brain IAPP levels. These results indicate that HBVP, in an in vitro model of microvasculature, respond morphologically to vasoconstrictors, dilators, and myosin inhibitors. They also suggest that oIAPP induces contraction of these mural cells and that pramlintide can reverse such contraction.
Collapse
Affiliation(s)
- Cristina Nuñez-Diaz
- grid.4514.40000 0001 0930 2361Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Dovilė Pocevičiūtė
- grid.4514.40000 0001 0930 2361Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Nina Schultz
- grid.4514.40000 0001 0930 2361Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - The Netherlands Brain Bank
- grid.419918.c0000 0001 2171 8263Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Charlotte Welinder
- grid.4514.40000 0001 0930 2361Faculty of Medicine, Department of Clinical Sciences, Lund, Mass Spectrometry, Lund University, Lund, Sweden
| | - Karl Swärd
- grid.4514.40000 0001 0930 2361Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Malin Wennström
- Cognitive Disorder Research Unit, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| |
Collapse
|
20
|
Nik Akhtar S, Bunner WP, Brennan E, Lu Q, Szatmari EM. Crosstalk between the Rho and Rab family of small GTPases in neurodegenerative disorders. Front Cell Neurosci 2023; 17:1084769. [PMID: 36779014 PMCID: PMC9911442 DOI: 10.3389/fncel.2023.1084769] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/06/2023] [Indexed: 01/28/2023] Open
Abstract
Neurodegeneration is associated with defects in cytoskeletal dynamics and dysfunctions of the vesicular trafficking and sorting systems. In the last few decades, studies have demonstrated that the key regulators of cytoskeletal dynamics are proteins from the Rho family GTPases, meanwhile, the central hub for vesicle sorting and transport between target membranes is the Rab family of GTPases. In this regard, the role of Rho and Rab GTPases in the induction and maintenance of distinct functional and morphological neuronal domains (such as dendrites and axons) has been extensively studied. Several members belonging to these two families of proteins have been associated with many neurodegenerative disorders ranging from dementia to motor neuron degeneration. In this analysis, we attempt to present a brief review of the potential crosstalk between the Rab and Rho family members in neurodegenerative pathologies such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington disease, and amyotrophic lateral sclerosis (ALS).
Collapse
Affiliation(s)
- Shayan Nik Akhtar
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Wyatt P. Bunner
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Elizabeth Brennan
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States
| | - Qun Lu
- The Harriet and John Wooten Laboratory for Alzheimer’s and Neurodegenerative Diseases Research, Brody School of Medicine, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| | - Erzsebet M. Szatmari
- Laboratory of Neuroscience, Department of Physical Therapy, College of Allied Health Sciences, East Carolina University, Greenville, NC, United States,*Correspondence: Erzsebet M. Szatmari Qun Lu
| |
Collapse
|
21
|
Seyedaghamiri F, Rajabi M, Mohaddes G. Targeting Novel microRNAs in Developing Novel Alzheimer's Disease Treatments. Neurochem Res 2023; 48:26-38. [PMID: 36048350 DOI: 10.1007/s11064-022-03734-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is considered a multifactorial disease and a significant cause of dementia during aging. This neurodegenerative disease process is classically divided into two different pathologies cerebral accumulation of amyloid-β and hyperphosphorylated neurofibrillary tau tangles. In recent years, massive efforts have been made to treat AD by decreasing amyloid-β and tau in the brains of patients with AD, with no success. The dysfunction of a wide range of microRNAs promotes the generation and insufficient clearance of amyloid-β (Aβ) and increases tau plaques which are the pathophysiological markers of AD. Disturbance of these microRNAs is associated with mitochondrial dysfunction, oxidative damage, inflammation, apolipoprotein E4 (APOE4) pathogenic process, synaptic loss, and cognitive deficits induced by AD. Targeting a specific microRNA to restore AD-induced impairments at multiple stages might provide a promising approach for developing new drugs and therapeutic strategies for patients with AD. This review focuses on different mechanisms of microRNAs in AD pathophysiology.
Collapse
Affiliation(s)
| | - Mojgan Rajabi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14756, Iran
| | - Gisou Mohaddes
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14756, Iran.
| |
Collapse
|
22
|
Wang Q, Song LJ, Ding ZB, Chai Z, Yu JZ, Xiao BG, Ma CG. Advantages of Rho-associated kinases and their inhibitor fasudil for the treatment of neurodegenerative diseases. Neural Regen Res 2022; 17:2623-2631. [PMID: 35662192 PMCID: PMC9165373 DOI: 10.4103/1673-5374.335827] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/01/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Ras homolog (Rho)-associated kinases (ROCKs) belong to the serine-threonine kinase family, which plays a pivotal role in regulating the damage, survival, axon guidance, and regeneration of neurons. ROCKs are also involved in the biological effects of immune cells and glial cells, as well as the development of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Previous studies by us and others confirmed that ROCKs inhibitors attenuated the symptoms and progression of experimental models of the abovementioned neurodegenerative diseases by inhibiting neuroinflammation, regulating immune imbalance, repairing the blood-brain barrier, and promoting nerve repair and myelin regeneration. Fasudil, the first ROCKs inhibitor to be used clinically, has a good therapeutic effect on neurodegenerative diseases. Fasudil increases the activity of neural stem cells and mesenchymal stem cells, thus optimizing cell therapy. This review will systematically describe, for the first time, the effects of abnormal activation of ROCKs on T cells, B cells, microglia, astrocytes, oligodendrocytes, and pericytes in neurodegenerative diseases of the central nervous system, summarize the therapeutic potential of fasudil in several experimental models of neurodegenerative diseases, and clarify the possible cellular and molecular mechanisms of ROCKs inhibition. This review also proposes that fasudil is a novel potential treatment, especially in combination with cell-based therapy. Findings from this review add support for further investigation of ROCKs and its inhibitor fasudil for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Qing Wang
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Li-Juan Song
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Zhi-Bin Ding
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Zhi Chai
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jie-Zhong Yu
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, China
- Department of Neurology, Datong Fifth People’s Hospital, Datong, Shanxi Province, China
| | - Bao-Guo Xiao
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- Research Center of Neurobiology, The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Shanxi Datong University, Datong, Shanxi Province, China
| |
Collapse
|
23
|
Bharthur Sanjay A, Patania A, Yan X, Svaldi D, Duran T, Shah N, Nemes S, Chen E, Apostolova LG. Characterization of gene expression patterns in mild cognitive impairment using a transcriptomics approach and neuroimaging endophenotypes. Alzheimers Dement 2022; 18:2493-2508. [PMID: 35142026 PMCID: PMC10078657 DOI: 10.1002/alz.12587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Identification of novel therapeutics and risk assessment in early stages of Alzheimer's disease (AD) is a crucial aspect of addressing this complex disease. We characterized gene-expression patterns at the mild cognitive impairment (MCI) stage to identify critical mRNA measures and gene clusters associated with AD pathogenesis. METHODS We used a transcriptomics approach, integrating magnetic resonance imaging (MRI) and peripheral blood-based gene expression data using persistent homology (PH) followed by kernel-based clustering. RESULTS We identified three clusters of genes significantly associated with diagnosis of amnestic MCI. The biological processes associated with each cluster were mitochondrial function, NF-kB signaling, and apoptosis. Cluster-level associations with cortical thickness displayed canonical AD-like patterns. Driver genes from clusters were also validated in an external dataset for prediction of amyloidosis and clinical diagnosis. DISCUSSION We found a disease-relevant transcriptomic signature sensitive to prodromal AD and identified a subset of potential therapeutic targets associated with AD pathogenesis.
Collapse
Affiliation(s)
| | - Alice Patania
- Indiana University Network Sciences InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Xiaoran Yan
- Indiana University Network Sciences InstituteIndiana UniversityBloomingtonIndianaUSA
| | - Diana Svaldi
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Tugce Duran
- Department of Internal Medicine, Section of Gerontology & Geriatric MedicineWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Niraj Shah
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Sara Nemes
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Eric Chen
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| |
Collapse
|
24
|
Jeong A, Auger SA, Maity S, Fredriksen K, Zhong R, Li L, Distefano MD. In Vivo Prenylomic Profiling in the Brain of a Transgenic Mouse Model of Alzheimer's Disease Reveals Increased Prenylation of a Key Set of Proteins. ACS Chem Biol 2022; 17:2863-2876. [PMID: 36109170 PMCID: PMC9799064 DOI: 10.1021/acschembio.2c00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dysregulation of protein prenylation has been implicated in many diseases, including Alzheimer's disease (AD). Prenylomic analysis, the combination of metabolic incorporation of an isoprenoid analogue (C15AlkOPP) into prenylated proteins with a bottom-up proteomic analysis, has allowed the identification of prenylated proteins in various cellular models. Here, transgenic AD mice were administered with C15AlkOPP through intracerebroventricular (ICV) infusion over 13 days. Using prenylomic analysis, 36 prenylated proteins were enriched in the brains of AD mice. Importantly, the prenylated forms of 15 proteins were consistently upregulated in AD mice compared to nontransgenic wild-type controls. These results highlight the power of this in vivo metabolic labeling approach to identify multiple post-translationally modified proteins that may serve as potential therapeutic targets for a disease that has proved refractory to treatment thus far. Moreover, this method should be applicable to many other types of protein modifications, significantly broadening its scope.
Collapse
Affiliation(s)
- Angela Jeong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Sanjay Maity
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | | - Rui Zhong
- University of Minnesota, Minneapolis, MN, 55455 USA
| | - Ling Li
- University of Minnesota, Minneapolis, MN, 55455 USA
| | | |
Collapse
|
25
|
Wurz AI, Schulz AM, O’Bryant CT, Sharp JF, Hughes RM. Cytoskeletal dysregulation and neurodegenerative disease: Formation, monitoring, and inhibition of cofilin-actin rods. Front Cell Neurosci 2022; 16:982074. [PMID: 36212686 PMCID: PMC9535683 DOI: 10.3389/fncel.2022.982074] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 12/04/2022] Open
Abstract
The presence of atypical cytoskeletal dynamics, structures, and associated morphologies is a common theme uniting numerous diseases and developmental disorders. In particular, cytoskeletal dysregulation is a common cellular feature of Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. While the numerous activators and inhibitors of dysregulation present complexities for characterizing these elements as byproducts or initiators of the disease state, it is increasingly clear that a better understanding of these anomalies is critical for advancing the state of knowledge and plan of therapeutic attack. In this review, we focus on the hallmarks of cytoskeletal dysregulation that are associated with cofilin-linked actin regulation, with a particular emphasis on the formation, monitoring, and inhibition of cofilin-actin rods. We also review actin-associated proteins other than cofilin with links to cytoskeleton-associated neurodegenerative processes, recognizing that cofilin-actin rods comprise one strand of a vast web of interactions that occur as a result of cytoskeletal dysregulation. Our aim is to present a current perspective on cytoskeletal dysregulation, connecting recent developments in our understanding with emerging strategies for biosensing and biomimicry that will help shape future directions of the field.
Collapse
Affiliation(s)
- Anna I. Wurz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Anna M. Schulz
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Collin T. O’Bryant
- Department of Chemistry, East Carolina University, Greenville, NC, United States
| | - Josephine F. Sharp
- Department of Chemistry, Notre Dame College, South Euclid, OH, United States
| | - Robert M. Hughes
- Department of Chemistry, East Carolina University, Greenville, NC, United States
- *Correspondence: Robert M. Hughes,
| |
Collapse
|
26
|
FAK-Mediated Signaling Controls Amyloid Beta Overload, Learning and Memory Deficits in a Mouse Model of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23169055. [PMID: 36012331 PMCID: PMC9408823 DOI: 10.3390/ijms23169055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The non-receptor focal adhesion kinase (FAK) is highly expressed in the central nervous system during development, where it regulates neurite outgrowth and axon guidance, but its role in the adult healthy and diseased brain, specifically in Alzheimer's disease (AD), is largely unknown. Using the 3xTg-AD mouse model, which carries three mutations associated with familial Alzheimer's disease (APP KM670/671NL Swedish, PSEN1 M146V, MAPT P301L) and develops age-related progressive neuropathology including amyloid plaques and Tau tangles, we describe here, for the first time, the in vivo role of FAK in AD pathology. Our data demonstrate that while site-specific knockdown in the hippocampi of 3xTg-AD mice has no effect on learning and memory, hippocampal overexpression of the protein leads to a significant decrease in learning and memory capabilities, which is accompanied by a significant increase in amyloid β (Aβ) load. Furthermore, neuronal morphology is altered following hippocampal overexpression of FAK in these mice. High-throughput proteomics analysis of total and phosphorylated proteins in the hippocampi of FAK overexpressing mice indicates that FAK controls AD-like phenotypes by inhibiting cytoskeletal remodeling in neurons which results in morphological changes, by increasing Tau hyperphosphorylation, and by blocking astrocyte differentiation. FAK activates cell cycle re-entry and consequent cell death while downregulating insulin signaling, thereby increasing insulin resistance and leading to oxidative stress. Our data provide an overview of the signaling networks by which FAK regulates AD pathology and identify FAK as a novel therapeutic target for treating AD.
Collapse
|
27
|
Zhang H, Ben Zablah Y, Zhang H, Liu A, Gugustea R, Lee D, Luo X, Meng Y, Li S, Zhou C, Xin T, Jia Z. Inhibition of Rac1 in ventral hippocampal excitatory neurons improves social recognition memory and synaptic plasticity. Front Aging Neurosci 2022; 14:914491. [PMID: 35936771 PMCID: PMC9354987 DOI: 10.3389/fnagi.2022.914491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022] Open
Abstract
Rac1 is critically involved in the regulation of the actin cytoskeleton, neuronal structure, synaptic plasticity, and memory. Rac1 overactivation is reported in human patients and animal models of Alzheimer’s disease (AD) and contributes to their spatial memory deficits, but whether Rac1 dysregulation is also important in other forms of memory deficits is unknown. In addition, the cell types and synaptic mechanisms involved remain unclear. In this study, we used local injections of AAV virus containing a dominant-negative (DN) Rac1 under the control of CaMKIIα promoter and found that the reduction of Rac1 hyperactivity in ventral hippocampal excitatory neurons improves social recognition memory in APP/PS1 mice. Expression of DN Rac1 also improves long-term potentiation, a key synaptic mechanism for memory formation. Our results suggest that overactivation of Rac1 in hippocampal excitatory neurons contributes to social memory deficits in APP/PS1 mice and that manipulating Rac1 activity may provide a potential therapeutic strategy to treat social deficits in AD.
Collapse
Affiliation(s)
- Haiwang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, China
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haorui Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Radu Gugustea
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Dongju Lee
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Xiao Luo
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yanghong Meng
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Song Li
- Department of Neurosurgery, Caoxian People’s Hospital, Caoxian, China
| | - Changxi Zhou
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Beijing, China
- *Correspondence: Changxi Zhou,
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, China
- Tao Xin,
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Zhengping Jia,
| |
Collapse
|
28
|
Ganne A, Balasubramaniam M, Griffin WST, Shmookler Reis RJ, Ayyadevara S. Glial Fibrillary Acidic Protein: A Biomarker and Drug Target for Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14071354. [PMID: 35890250 PMCID: PMC9322874 DOI: 10.3390/pharmaceutics14071354] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament structural protein involved in cytoskeleton assembly and integrity, expressed in high abundance in activated glial cells. GFAP is neuroprotective, as knockout mice are hypersensitive to traumatic brain injury. GFAP in cerebrospinal fluid is a biomarker of Alzheimer’s disease (AD), dementia with Lewy bodies, and frontotemporal dementia (FTD). Here, we present novel evidence that GFAP is markedly overexpressed and differentially phosphorylated in AD hippocampus, especially in AD with the apolipoprotein E [ε4, ε4] genotype, relative to age-matched controls (AMCs). Kinases that phosphorylate GFAP are upregulated in AD relative to AMC. A knockdown of these kinases in SH-SY5Y-APPSw human neuroblastoma cells reduced amyloid accrual and lowered protein aggregation and associated behavioral traits in C. elegans models of polyglutamine aggregation (as observed in Huntington’s disease) and of Alzheimer’s-like amyloid formation. In silico screening of the ChemBridge structural library identified a small molecule, MSR1, with stable and specific binding to GFAP. Both MSR1 exposure and GF AP-specific RNAi knockdown reduce aggregation with remarkably high concordance of aggregate proteins depleted. These data imply that GFAP and its phosphorylation play key roles in neuropathic aggregate accrual and provide valuable new biomarkers, as well as novel therapeutic targets to alleviate, delay, or prevent AD.
Collapse
Affiliation(s)
- Akshatha Ganne
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | - W. Sue T. Griffin
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Robert J. Shmookler Reis
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Biochemistry & Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| | - Srinivas Ayyadevara
- Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, USA; (A.G.); (M.B.); (W.S.T.G.)
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- BioInformatics Program, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: (R.J.S.R.); (S.A.); Tel.: +1-501-526-5820 (R.J.S.R.); +1-501-526-7282 (S.A.)
| |
Collapse
|
29
|
Yang L, Ball A, Liu J, Jain T, Li YM, Akhter F, Zhu D, Wang J. Cyclic microchip assay for measurement of hundreds of functional proteins in single neurons. Nat Commun 2022; 13:3548. [PMID: 35729174 PMCID: PMC9213506 DOI: 10.1038/s41467-022-31336-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/15/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the fact that proteins carry out nearly all cellular functions and mark the differences of cells, the existing single-cell tools can only analyze dozens of proteins, a scale far from full characterization of cells and tissue yet. Herein, we present a single-cell cyclic multiplex in situ tagging (CycMIST) technology that affords the comprehensive functional proteome profiling of single cells. We demonstrate the technology by detecting 182 proteins that include surface markers, neuron function proteins, neurodegeneration markers, signaling pathway proteins, and transcription factors. Further studies on cells derived from the 5XFAD mice, an Alzheimer's Disease (AD) model, validate the utility of our technology and reveal the deep heterogeneity of brain cells. Through comparison with control mouse cells, we have identified differentially expressed proteins in AD pathology. Our technology could offer new insights into cell machinery and thus may advance many fields including drug discovery, molecular diagnostics, and clinical studies.
Collapse
Affiliation(s)
- Liwei Yang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Avery Ball
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jesse Liu
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tanya Jain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Programs of Neurosciences, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jun Wang
- Multiplex Biotechnology Laboratory, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
30
|
Effect of GNE Mutations on Cytoskeletal Network Proteins: Potential Gateway to Understand Pathomechanism of GNEM. Neuromolecular Med 2022; 24:452-468. [PMID: 35503500 DOI: 10.1007/s12017-022-08711-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/09/2022] [Indexed: 12/27/2022]
Abstract
GNE myopathy is an inherited neuromuscular disorder caused by mutations in GNE (UDP-N-acetylglucosamine 2-epimerase/N-acetyl mannosamine kinase) gene catalyzing the sialic acid biosynthesis pathway. The characteristic features include muscle weakness in upper and lower extremities, skeletal muscle wasting, and rimmed vacuole formation. More than 200 GNE mutations in either epimerase or kinase domain have been reported worldwide. In Indian subcontinent, several GNE mutations have been recently identified with unknown functional correlation. Alternate role of GNE in various cellular processes such as cell adhesion, migration, apoptosis, protein aggregation, and cytoskeletal organization have been proposed in recent studies. We aim to understand and compare the effect of various GNE mutations from Indian origin on regulation of the cytoskeletal network. In particular, F-actin dynamics was determined quantitatively by determining F/G-actin ratios in immunoblots for specific proteins. The extent of F-actin polymerization was visualized by immunostaining with Phalloidin using confocal microscopy. The proteins regulating F-actin dynamics such as RhoA, cofilin, Arp2, and alpha-actinin were studied in various GNE mutants. The altered level of cytoskeletal organization network proteins affected cell migration of GNE mutant proteins as measured by wound healing assay. The functional comparison of GNE mutations will help in better understanding of the genotypic severity of the disease in the Indian population. Our study offers a potential for identification of therapeutic molecules regulating actin dynamics in GNE specific mutations.
Collapse
|
31
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
32
|
Tolomeu HV, Fraga CAM. The Outcomes of Small-Molecule Kinase Inhibitors and the Role of ROCK2 as a Molecular Target for the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:188-205. [PMID: 34414875 DOI: 10.2174/1871527320666210820092220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 02/17/2021] [Accepted: 03/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Alzheimer's disease is rapidly becoming a major threat to public health, with an increasing number of individuals affected as the world's population ages. In this sense, studies have been carried out aiming at the identification of new small-molecule kinase inhibitors useful for the treatment of Alzheimer's disease. OBJECTIVE In the present study, we investigated the compounds developed as inhibitors of different protein kinases associated with the pathogenesis of Alzheimer's disease. METHODS The applied methodology was the use of the Clarivate Analytics Integrity and ClinicalTrials. com databases. Moreover, we highlight ROCK2 as a promising target despite being little studied for this purpose. A careful structure-activity relationship analysis of the ROCK2 inhibitors was performed to identify important structural features and fragments for the interaction with the kinase active site, aiming to rationally design novel potent and selective inhibitors. RESULTS We were able to notice some structural characteristics that could serve as the basis to better guide the rational design of new ROCK2 inhibitors as well as some more in-depth characteristics regarding the topology of the active site of both isoforms of these enzymes, thereby identifying differences that could lead to planning more selective compounds. CONCLUSION We hope that this work can be useful to update researchers working in this area, enabling the emergence of new ideas and a greater direction of efforts for designing new ROCK2 inhibitors to identify new therapeutic alternatives for Alzheimer's disease.
Collapse
Affiliation(s)
- Heber Victor Tolomeu
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| | - Carlos Alberto Manssour Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil | Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941- 902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
33
|
Kim ML, Sung KR, Kwon J, Choi GW, Shin JA. Neuroprotective Effect of Statins in a Rat Model of Chronic Ocular Hypertension. Int J Mol Sci 2021; 22:12500. [PMID: 34830387 PMCID: PMC8621698 DOI: 10.3390/ijms222212500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Glaucoma is an optic neuropathy in which the degeneration of retinal ganglion cells (RGCs) results in irreversible vison loss. Therefore, neuroprotection of RGCs from glaucomatous afflictions is crucial for glaucoma treatment. In this study, we aimed to investigate the beneficial effects of statins in the protection of RGCs using a rat model. Glaucomatous injury was induced in rats by chronic ocular hypertension (OHT) achieved after performing a circumlimbal suture. The rats were given either statins such as simvastatin and atorvastatin or a solvent weekly for 6 weeks. Retina sections underwent hematoxylin and eosin, Brn3a, or cleaved casepase-3 staining to evaluate RGC survival. In addition, modulation of glial activation was assessed. While the retinas without statin treatment exhibited increased RGC death due to chronic OHT, statins promoted the survival of RGCs and reduced apoptosis. Statins also suppressed chronic OHT-mediated glial activation in the retina. Our results demonstrate that statins exert neuroprotective effects in rat retinas exposed to chronic OHT, which may support the prospect of statins being a glaucoma treatment.
Collapse
Affiliation(s)
- Mi-Lyang Kim
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea; (M.-L.K.); (G.W.C.); (J.A.S.)
| | - Kyung Rim Sung
- Department of Ophthalmology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea;
| | - Junki Kwon
- Department of Ophthalmology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea;
| | - Go Woon Choi
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea; (M.-L.K.); (G.W.C.); (J.A.S.)
| | - Jin A Shin
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul 05505, Korea; (M.-L.K.); (G.W.C.); (J.A.S.)
| |
Collapse
|
34
|
Weber AJ, Adamson AB, Greathouse KM, Andrade JP, Freeman CD, Seo JV, Rae RJ, Walker CK, Herskowitz JH. Conditional deletion of ROCK2 induces anxiety-like behaviors and alters dendritic spine density and morphology on CA1 pyramidal neurons. Mol Brain 2021; 14:169. [PMID: 34794469 PMCID: PMC8600782 DOI: 10.1186/s13041-021-00878-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/04/2021] [Indexed: 12/25/2022] Open
Abstract
Rho-associated kinase isoform 2 (ROCK2) is an attractive drug target for several neurologic disorders. A critical barrier to ROCK2-based research and therapeutics is the lack of a mouse model that enables investigation of ROCK2 with spatial and temporal control of gene expression. To overcome this, we generated ROCK2fl/fl mice. Mice expressing Cre recombinase in forebrain excitatory neurons (CaMKII-Cre) were crossed with ROCK2fl/fl mice (Cre/ROCK2fl/fl), and the contribution of ROCK2 in behavior as well as dendritic spine morphology in the hippocampus, medial prefrontal cortex (mPFC), and basolateral amygdala (BLA) was examined. Cre/ROCK2fl/fl mice spent reduced time in the open arms of the elevated plus maze and increased time in the dark of the light-dark box test compared to littermate controls. These results indicated that Cre/ROCK2fl/fl mice exhibited anxiety-like behaviors. To examine dendritic spine morphology, individual pyramidal neurons in CA1 hippocampus, mPFC, and the BLA were targeted for iontophoretic microinjection of fluorescent dye, followed by high-resolution confocal microscopy and neuronal 3D reconstructions for morphometry analysis. In dorsal CA1, Cre/ROCK2fl/fl mice displayed significantly increased thin spine density on basal dendrites and reduced mean spine head volume across all spine types on apical dendrites. In ventral CA1, Cre/ROCK2fl/fl mice exhibited significantly increased spine length on apical dendrites. Spine density and morphology were comparable in the mPFC and BLA between both genotypes. These findings suggest that neuronal ROCK2 mediates spine density and morphology in a compartmentalized manner among CA1 pyramidal cells, and that in the absence of ROCK2 these mechanisms may contribute to anxiety-like behaviors.
Collapse
Affiliation(s)
- Audrey J Weber
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Ashley B Adamson
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Kelsey M Greathouse
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Julia P Andrade
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Cameron D Freeman
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jung Vin Seo
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Rosaria J Rae
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Courtney K Walker
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA
| | - Jeremy H Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
35
|
Rabaglino MB, Wakabayashi M, Pearson JT, Jensen LJ. Effect of age on the vascular proteome in middle cerebral arteries and mesenteric resistance arteries in mice. Mech Ageing Dev 2021; 200:111594. [PMID: 34756926 DOI: 10.1016/j.mad.2021.111594] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/11/2021] [Accepted: 10/26/2021] [Indexed: 10/20/2022]
Abstract
Aging is associated with hypertension and brain blood flow dysregulation, which are major risk factors for cardiovascular and neurodegenerative diseases. Structural remodeling, endothelial dysfunction, or hypercontractility of resistance vessels may cause increased total peripheral resistance and hypertension. Recent studies showed that G protein- and RhoA/Rho-kinase pathways are involved in increased mean arterial pressure (MAP) and arterial tone in middle-aged mice. We aimed to characterize the age-dependent changes in the vascular proteome in normal laboratory mice using mass spectrometry and bioinformatics analyses on middle cerebral arteries and mesenteric resistance arteries from young (3 months) vs. middle-aged (14 months) mice. In total, 31 proteins were significantly affected by age whereas 172 proteins were differentially expressed by vessel type. Hierarchical clustering revealed that 207 proteins were significantly changed or clustered by age. Vitamin B6 pathway, Biosynthesis of antibiotics, Regulation of actin cytoskeleton and Endocytosis were the top enriched KEGG pathways by age. Several proteins in the RhoA/Rho-kinase pathway changed in a manner consistent with hypertension and dysregulation of cerebral perfusion. Although aging had a less profound effect than vessel type on the resistance artery proteome, regulation of actin cytoskeleton, including the RhoA/Rho-kinase pathway, is an important target for age-dependent hypertension.
Collapse
Affiliation(s)
- Maria Belen Rabaglino
- Dept. of Applied Mathematics and Computer Science, Danish Technical University, Denmark
| | - Masaki Wakabayashi
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - James Todd Pearson
- Dept. of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Lars Jørn Jensen
- Dept. of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
36
|
Inhibition of Soluble Epoxide Hydrolase Is Protective against the Multiomic Effects of a High Glycemic Diet on Brain Microvascular Inflammation and Cognitive Dysfunction. Nutrients 2021; 13:nu13113913. [PMID: 34836168 PMCID: PMC8622784 DOI: 10.3390/nu13113913] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Diet is a modifiable risk factor for cardiovascular disease (CVD) and dementia, yet relatively little is known about the effect of a high glycemic diet (HGD) on the brain’s microvasculature. The objective of our study was to determine the molecular effects of an HGD on hippocampal microvessels and cognitive function and determine if a soluble epoxide hydrolase (sEH) inhibitor (sEHI), known to be vasculoprotective and anti-inflammatory, modulates these effects. Wild type male mice were fed a low glycemic diet (LGD, 12% sucrose/weight) or an HGD (34% sucrose/weight) with/without the sEHI, trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), for 12 weeks. Brain hippocampal microvascular gene expression was assessed by microarray and data analyzed using a multi-omic approach for differential expression of protein and non-protein-coding genes, gene networks, functional pathways, and transcription factors. Global hippocampal microvascular gene expression was fundamentally different for mice fed the HGD vs. the LGD. The HGD response was characterized by differential expression of 608 genes involved in cell signaling, neurodegeneration, metabolism, and cell adhesion/inflammation/oxidation effects reversible by t-AUCB and hence sEH inhibitor correlated with protection against Alzheimer’s dementia. Ours is the first study to demonstrate that high dietary glycemia contributes to brain hippocampal microvascular inflammation through sEH.
Collapse
|
37
|
Long Non-coding RNA PVT1 Inhibits miR-30c-5p to Upregulate Rock2 to Modulate Cerebral Ischemia/Reperfusion Injury Through MAPK Signaling Pathway Activation. Mol Neurobiol 2021; 58:6032-6048. [PMID: 34436749 DOI: 10.1007/s12035-021-02539-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) play a key role in a variety of disease processes. Plasmacytoma variant translocation 1 (PVT1), a lncRNA, is known to regulate cell functions and play a key role in the pathogenesis of many malignant tumors. The function and molecular mechanisms of lncRNA-PVT1 in cerebral ischemia remain unknown. Real-time PCR (qRT-PCR) was used to detect lncRNA-PVT1 and microRNA-30c-5p (miR-30c-5p) expression in the brain tissues of mice underwent middle cerebral artery occlusion/reperfusion (MCAO/R) and oxygen-glucose deprivation/reperfusion (OGD/R)-treated mouse primary brain neurons. Gain- or loss-of-function approaches were used to manipulate PVT1, miR-30c-5p, and Rho-associated protein kinase 2 (Rock2). The mechanism of PVT1 in ischemic stroke was evaluated both in vivo and in vitro via bioinformatics analysis, CCK-8, flow cytometry, TUNEL staining, luciferase activity assay, RNA FISH, and Western blot. PVT1 was upregulated in the brain tissues of mice treated with MCAO/R and primary cerebral cortex neurons of mice treated with OGD/R. Mechanistically, PVT1 knockdown resulted in a lower infarct volume and ameliorated neurobehavior in MCAO mice. Consistent with in vivo results, PVT1 upregulation significantly decreased the viability and induced apoptosis of neurons cultured in OGD/R. Moreover, we demonstrated that PVT1 acts as a competitive endogenous RNA (ceRNA) that competes with miR-30c-5p, thereby negatively regulating its endogenous target Rock2. Overexpression of miR-30c-5p significantly promoted cell proliferation and inhibited apoptosis. Meanwhile, PVT1 was confirmed to target miR-30c-5p, thus activating Rock2 expression, which finally led to the activation of MAPK signaling. We demonstrated that PVT1, as a ceRNA of miR-30c-5p, could target and regulate the level of Rock2, which aggravates cerebral I/R injury via activation of the MAPK pathway. These findings reveal a new function of PVT1, which helps to broadly understand cerebral ischemic stroke and provide a new treatment strategy for this disease.
Collapse
|
38
|
Chuang Y, Van I, Zhao Y, Xu Y. Icariin ameliorate Alzheimer's disease by influencing SIRT1 and inhibiting Aβ cascade pathogenesis. J Chem Neuroanat 2021; 117:102014. [PMID: 34407393 DOI: 10.1016/j.jchemneu.2021.102014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Of all types of dementia, Alzheimer's disease is the type that has the highest proportion of cases and is the cause of substantial medical and economic burden. The mechanism of Alzheimer's disease is closely associated with the aggregation of amyloid-β protein and causes neurotoxicity and extracellular accumulation in the brain and to intracellular neurofibrillary tangles caused by tau protein hyperphosphorylation in the brain tissue. Previous studies have demonstrated that sirtuin1 downregulation is involved in the pathological mechanism of Alzheimer's disease. The decrease of sirtuin1 level would cause Alzheimer's disease by means of promoting the amyloidogenic pathway to generate amyloid-β species and thereby triggering amyloid-β cascade reaction, such as tau protein hyperphosphorylation, neuron autophagy, neuroinflammation, oxidative stress, and neuron apoptosis. Currently, there is no effective treatment for Alzheimer's disease, it is necessary to develop new treatment strategies. According to the theory of traditional Chinese medicine and based on the mechanism of the disease, tonifying the kidneys is one of the principles for the treatment of Alzheimer's disease and Epimedium is a well-known Chinese medicine for tonifying kidney. Therefore, investigating the influence of the components of Epimedium on the pathological characteristics of Alzheimer's disease may provide a reference for the treatment of Alzheimer's disease in the future. In this article, we summarise the effects and mechanism of icariin, the main ingredient extracted from Epimedium, in ameliorating Alzheimer's disease by regulating sirtuin1 to inhibit amyloid-β protein and improve other amyloid-β cascade pathogenesis.
Collapse
Affiliation(s)
- Yaochen Chuang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; Kiang Wu Nursing College of Macau, Macao, 999078, China
| | - Iatkio Van
- Kiang Wu Nursing College of Macau, Macao, 999078, China.
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China.
| |
Collapse
|
39
|
LIM-Kinases in Synaptic Plasticity, Memory, and Brain Diseases. Cells 2021; 10:cells10082079. [PMID: 34440848 PMCID: PMC8391678 DOI: 10.3390/cells10082079] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
Learning and memory require structural and functional modifications of synaptic connections, and synaptic deficits are believed to underlie many brain disorders. The LIM-domain-containing protein kinases (LIMK1 and LIMK2) are key regulators of the actin cytoskeleton by affecting the actin-binding protein, cofilin. In addition, LIMK1 is implicated in the regulation of gene expression by interacting with the cAMP-response element-binding protein. Accumulating evidence indicates that LIMKs are critically involved in brain function and dysfunction. In this paper, we will review studies on the roles and underlying mechanisms of LIMKs in the regulation of long-term potentiation (LTP) and depression (LTD), the most extensively studied forms of long-lasting synaptic plasticity widely regarded as cellular mechanisms underlying learning and memory. We will also discuss the involvement of LIMKs in the regulation of the dendritic spine, the structural basis of synaptic plasticity, and memory formation. Finally, we will discuss recent progress on investigations of LIMKs in neurological and mental disorders, including Alzheimer’s, Parkinson’s, Williams–Beuren syndrome, schizophrenia, and autism spectrum disorders.
Collapse
|
40
|
Martín-Cámara O, Cores Á, López-Alvarado P, Menéndez JC. Emerging targets in drug discovery against neurodegenerative diseases: Control of synapsis disfunction by the RhoA/ROCK pathway. Eur J Med Chem 2021; 225:113742. [PMID: 34388381 DOI: 10.1016/j.ejmech.2021.113742] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 01/11/2023]
Abstract
Synaptic spine morphology is controlled by the activity of Rac1, Cdc42 and RhoA, which need to be finely balanced, and in particular RhoA/ROCK prevents the formation of new protrusions by stabilizing actin formation. These processes are crucial to the maturation process, slowing the de novo generation of new spines. The RhoA/ROCK also influences plasticity processes, and selective modulation by ROCK1 of MLC-dependent actin dynamics leads to neurite retraction, but not to spine retraction. ROCK1 is also responsible for the reduction of the readily releasable pool of synaptic vesicles. These and other evidences suggest that ROCK1 is the main isoform acting on the presynaptic neuron. On the other hand, ROCK2 seems to have broad effects on LIMK/cofilin-dependent plasticity processes such as cofilin-dependent PSD changes. The RhoA/ROCK pathway is an important factor in several different brain-related pathologies via both downstream and upstream pathways. In the aggregate, these evidences show that the RhoA/ROCK pathway has a central role in the etiopathogenesis of a large group of CNS diseases, which underscores the importance of the pharmacological modulation of RhoA/ROCK as an important pathway to drug discovery in the neurodegenerative disease area. This article aims at providing the first review of the role of compounds acting on the RhoA/ROCK pathway in the control of synaptic disfunction.
Collapse
Affiliation(s)
- Olmo Martín-Cámara
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Ángel Cores
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - Pilar López-Alvarado
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas. Facultad de Farmacia, Universidad Complutense, 28040, Madrid, Spain.
| |
Collapse
|
41
|
Zhang H, Ben Zablah Y, Liu A, Lee D, Zhang H, Meng Y, Zhou C, Liu X, Wang Y, Jia Z. Overexpression of LIMK1 in hippocampal excitatory neurons improves synaptic plasticity and social recognition memory in APP/PS1 mice. Mol Brain 2021; 14:121. [PMID: 34315506 PMCID: PMC8314529 DOI: 10.1186/s13041-021-00833-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 01/22/2023] Open
Abstract
Accumulating evidence indicates that the actin regulator cofilin is overactivated in Alzheimer's Disease (AD), but whether this abnormality contributes to synaptic and cognitive impairments in AD is unclear. In addition, the brain region and cell types involved remain unknown. In this study, we specifically manipulate LIMK1, the key protein kinase that phosphorylates and inactivates cofilin, in the hippocampus of APP/PS1 transgenic mice. Using local injections of the AAV virus containing LIMK1 under the control of the CaMKIIα promoter, we show that expression of LIMK1 in hippocampal excitatory neurons increases cofilin phosphorylation (i.e., decreases cofilin activity), rescues impairments in long-term potentiation, and improves social memory in APP/PS1 mice. Our results suggest that deficits in LIMK1/cofilin signaling in the hippocampal excitatory neurons contribute to AD pathology and that manipulations of LIMK1/cofilin activity provide a potential therapeutic strategy to treat AD.
Collapse
Affiliation(s)
- Haiwang Zhang
- Guizhou Medical University, Guiyang, 550000, Guizhou, China.,Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5S 1A8, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Youssif Ben Zablah
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5S 1A8, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Dongju Lee
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5S 1A8, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Haorui Zhang
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5S 1A8, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Yanghong Meng
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5S 1A8, Canada.,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Changxi Zhou
- Department of Geriatrics, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, China
| | - Xingde Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Yiming Wang
- Department of Psychiatry, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China. .,Mental Health Education and Counseling Center for College Students, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Zhengping Jia
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON, M5S 1A8, Canada. .,Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
42
|
Jeong A, Cheng S, Zhong R, Bennett DA, Bergö MO, Li L. Protein farnesylation is upregulated in Alzheimer's human brains and neuron-specific suppression of farnesyltransferase mitigates pathogenic processes in Alzheimer's model mice. Acta Neuropathol Commun 2021; 9:129. [PMID: 34315531 PMCID: PMC8314463 DOI: 10.1186/s40478-021-01231-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/16/2021] [Indexed: 11/10/2022] Open
Abstract
The pathogenic mechanisms underlying the development of Alzheimer's disease (AD) remain elusive and to date there are no effective prevention or treatment for AD. Farnesyltransferase (FT) catalyzes a key posttranslational modification process called farnesylation, in which the isoprenoid farnesyl pyrophosphate is attached to target proteins, facilitating their membrane localization and their interactions with downstream effectors. Farnesylated proteins, including the Ras superfamily of small GTPases, are involved in regulating diverse physiological and pathological processes. Emerging evidence suggests that isoprenoids and farnesylated proteins may play an important role in the pathogenesis of AD. However, the dynamics of FT and protein farnesylation in human brains and the specific role of neuronal FT in the pathogenic progression of AD are not known. Here, using postmortem brain tissue from individuals with no cognitive impairment (NCI), mild cognitive impairment (MCI), or Alzheimer's dementia, we found that the levels of FT and membrane-associated H-Ras, an exclusively farnesylated protein, and its downstream effector ERK were markedly increased in AD and MCI compared with NCI. To elucidate the specific role of neuronal FT in AD pathogenesis, we generated the transgenic AD model APP/PS1 mice with forebrain neuron-specific FT knockout, followed by a battery of behavioral assessments, biochemical assays, and unbiased transcriptomic analysis. Our results showed that the neuronal FT deletion mitigates memory impairment and amyloid neuropathology in APP/PS1 mice through suppressing amyloid generation and reversing the pathogenic hyperactivation of mTORC1 signaling. These findings suggest that aberrant upregulation of protein farnesylation is an early driving force in the pathogenic cascade of AD and that targeting FT or its downstream signaling pathways presents a viable therapeutic strategy against AD.
Collapse
|
43
|
Cai R, Wang Y, Huang Z, Zou Q, Pu Y, Yu C, Cai Z. Role of RhoA/ROCK signaling in Alzheimer's disease. Behav Brain Res 2021; 414:113481. [PMID: 34302876 DOI: 10.1016/j.bbr.2021.113481] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 07/17/2021] [Indexed: 12/11/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK), a serine/threonine kinase regulated by the small GTPase RhoA, is involved in regulating cell migration, proliferation, and survival. Numerous studies have shown that the RhoA/ROCK signaling pathway can promote Alzheimer's disease (AD) occurrence. ROCK activation increases β-secretase activity and promotes amyloid-beta (Aβ) production; moreover, Aβ further activates ROCK. This is suggestive of a possible positive feedback role for Aβ and ROCK. Moreover, ROCK activation promotes the formation of neurofibrillary tangles and abnormal synaptic contraction. Additionally, ROCK activation can promote the neuroinflammatory response by activating microglia and astrocytes to release inflammatory cytokines. Therefore, ROCK is a promising drug target in AD; further, there is a need to elucidate the specific mechanism of action.
Collapse
Affiliation(s)
- RuoLan Cai
- Zunyi Medical University, Zunyi, 563003, China; Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - YangYang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - ZhenTing Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - YinShuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China.
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China; Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China.
| |
Collapse
|
44
|
Zhang H, Liu W, Ge H, Li K. Aberrant expression of miR-148a-3p in Alzheimer's disease and its protective role against amyloid-β induced neurotoxicity. Neurosci Lett 2021; 756:135953. [PMID: 33979697 DOI: 10.1016/j.neulet.2021.135953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2021] [Accepted: 05/07/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The current study investigated the expression change and clinical value of miR-148a-3p in AD patients, and further examined the role of miR-148a-3p in Aβ-induced neurotoxicity in SH-SY5Y cells. MATERIAL AND METHODS qRT-PCR was used for the measurement of miR-148a-3p expression levels. ROC curve was established to calculate the diagnostic value of serum miR-148a-3p for AD. CCK-8 and flow cytometry assay was applied for the detection of cell viability and apoptosis. Additionally, the luciferase reporter assay was performed to confirm the target relationship between ROCK1 and miR-148a-3p. RESULTS Serum miR-148a-3p was downregulated in AD patients compared with that in healthy controls, and was positively associated with the MMSE score in AD patients. Serum miR-148a-3p had the potential to distinguish AD patients from healthy controls, and the diagnostic sensitivity and specificity were respectively 85.5 % and 87.0 % at a cutoff value of 0.827. MiR-148a-3p attenuated Aβ25-35 induced neurotoxicity in SH-SY5Y cells, and ROCK1 was the target gene. CONCLUSION Serum miR-148a-3p is correlated with MMSE score in AD patients, and it might be helpful for the AD diagnosis. Overexpression of miR-148a-3p attenuated Aβ induced neurotoxicity in AD by targeting ROCK1.
Collapse
Affiliation(s)
- Hao Zhang
- The First Department of Neurology, Rizhao People's Hospital, Rizhao, 276800, Shandong, China
| | - Wei Liu
- Department of Neurology, Zhucheng People's Hospital, Zhucheng, 262200, Shandong, China
| | - Hongliang Ge
- Department of Neurology, Shanxian Central Hospital, Heze, 274300, Shandong, China
| | - Kun Li
- Department of Neurology, Shanxian Central Hospital, Heze, 274300, Shandong, China.
| |
Collapse
|
45
|
Lim Lam VK, Hin Wong JY, Chew SY, Chan BP. Rac1-GTPase regulates compression-induced actin protrusions (CAPs) of mesenchymal stem cells in 3D collagen micro-tissues. Biomaterials 2021; 274:120829. [PMID: 33933985 DOI: 10.1016/j.biomaterials.2021.120829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 01/19/2023]
Abstract
Cells can sense mechanical signals through cytoskeleton reorganization. We previously discovered the formation of omni-directional actin protrusions upon compression loading, namely compression-induced actin protrusions (CAPs), in human mesenchymal stem cells (MSCs) in 3D micro-tissues. Here, the regulatory roles of three RhoGTPases (CDC42, Rac1 and RhoA) in the formation of CAPs were investigated. Upon compression loading, extensive formation of CAPs was found, significantly associated with an upregulated mRNA expression of Rac1 only, but not CDC42, nor RhoA. Upon chemical inhibition of these RhoGTPase activity during compression, only Rac1 activity was significantly suppressed, associating with the reduced CAP formation. Silencing the upstream regulators of these RhoGTPase pathways including Rac1 by specific siRNA dramatically disrupted actin cytoskeleton, distorted cell morphology and aborted CAP formation. Silencing cortactin (CTTN), a downstream effector of the Rac1 pathway, induced a compensatory upregulation of Rac1, enabling the MSCs to respond to the compression loading stimulus in terms of CAP formation, although at a reduced number. The importance of Rac1 signalling in CAP formation and the corresponding upregulation of lamellipodial markers also suggest that these CAPs are lamellipodia in nature. This study delineates the mechanism of compression-induced cytoskeleton reorganization, contributing to rationalizing mechanical loading regimes for functional tissue engineering.
Collapse
Affiliation(s)
- Vincent Kwok Lim Lam
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Johnny Yu Hin Wong
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
| | - Sing Yian Chew
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Barbara Pui Chan
- Tissue Engineering Laboratory, Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China.
| |
Collapse
|
46
|
Weber AJ, Herskowitz JH. Perspectives on ROCK2 as a Therapeutic Target for Alzheimer's Disease. Front Cell Neurosci 2021; 15:636017. [PMID: 33790742 PMCID: PMC8005730 DOI: 10.3389/fncel.2021.636017] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Rho-associated coiled-coil containing kinase isoform 2 (ROCK2) is a member of the AGC family of serine/threonine kinases and an extensively studied regulator of actin-mediated cytoskeleton contractility. Over the past decade, new evidence has emerged that suggests ROCK2 regulates autophagy. Recent studies indicate that dysregulation of autophagy contributes to the development of misfolded tau aggregates among entorhinal cortex (EC) excitatory neurons in early Alzheimer's disease (AD). While the accumulation of tau oligomers and fibrils is toxic to neurons, autophagy facilitates the degradation of these pathologic species and represents a major cellular pathway for tau disposal in neurons. ROCK2 is expressed in excitatory neurons and pharmacologic inhibition of ROCK2 can induce autophagy pathways. In this mini-review, we explore potential mechanisms by which ROCK2 mediates autophagy and actin dynamics and discuss how these pathways represent therapeutic avenues for Alzheimer's disease.
Collapse
Affiliation(s)
| | - Jeremy H. Herskowitz
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
47
|
Jianjun Z, Baochun Z, Limei M, Lijun L. Exploring the beneficial role of ROCK inhibitors in sepsis-induced cerebral and cognitive injury in rats. Fundam Clin Pharmacol 2021; 35:882-891. [PMID: 33440039 DOI: 10.1111/fcp.12645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
Sepsis-induced cerebral injury is a systemic inflammatory response associated with high mortality rate and cognitive impairment. Rho/ROCK pathway activation is involved in initiating the inflammatory response and promoting cerebral dysfunction. The present study explored the beneficial effects of ROCK inhibitors in sepsis-induced cerebral injury and cognitive impairment in rats. The model of sepsis was established by employing cecal ligation and puncture (CLP). CLP significantly augmented cerebral injury assessed in terms of intensified activity of caspases-3 and decrease in BCL-2 in the brain along with the release of S100β and NSE, and assessed on day 7. Significant increase in inflammatory biomarkers IL-1β and TNF-α as well as increase in the protein levels of ROCK1 and ROCK2 was observed in the brain. A significant decrease in learning and memory ability was observed because of increased escape latency time on day 4 and significant decrease in time spent in the target quadrant on day 7 in CLP-subjected rats. Administration of nonselective ROCK inhibitor, fasudil (10 and 30 mg/kg), and selective ROCK1 inhibitor, Y27632 (10 and 30 mg/kg), attenuated the sepsis-induced increase in the S100β and NSE, IL-1β, TNF-α, BCL-2, caspase-3, ROCK1 and ROCK2 in septic rats and significantly memory and learning.The beneficial effects of Y27632 and fasudil were comparable suggesting the key role of ROCK1 in sepsis-induced deleterious effects. It may be concluded that sepsis may increase cerebral and cognitive injury through Rho-kinase/ROCK pathway in septic rats, and ROCK inhibitors may be potentially employed to overcome sepsis-induced deleterious effects in the brain.
Collapse
Affiliation(s)
- Zhu Jianjun
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhou Baochun
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ma Limei
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Lijun
- Intensive Care Unit, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
48
|
Ruan Z, Li Y, He R, Li X. Inhibition of microRNA-10b-5p up-regulates HOXD10 to attenuate Alzheimer's disease in rats via the Rho/ROCK signalling pathway. J Drug Target 2021; 29:531-540. [PMID: 33307856 DOI: 10.1080/1061186x.2020.1864739] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE It is believed that microRNAs (miRNAs) participate in the pathogenesis of Alzheimer's disease (AD), but the specified function of miR-10b-5p in the disease has not been thoroughly understood. Thereafter, this research aimed to assess the function of miR-10b-5p in AD. METHODS Rat AD models were established by injected with amyloid-β1-42 (Aβ1-42), which were mainly treated with lentivirus-miR-10b-5p inhibitor, or lentivirus-overexpressed homeobox D10 (HOXD10). MiR-10b-5p, HOXD10, RhoA, ROCK1 and ROCK2 expression in rat hippocampal tissues were determined. Afterwards, the behaviour of rats was tested, and neuronal apoptosis, pathological injury, and inflammatory factors and oxidative stress-related factors were all assessed. Finally, the target relation between miR-10b-5p and HOXD10 was detected. RESULTS MiR-10b-5p was upregulated while HOXD10 was downregulated, and the Rho/ROCK signalling pathway was activated in hippocampal tissues of rats with AD. Inhibition of miR-10b-5p could attenuate the neuronal apoptosis, pathological injury, inflammation reaction, and oxidative stress by elevating HOXD10 and inhibiting the Rho/ROCK signalling pathway in AD rats. Moreover, HOXD10 was targeted by miR-10b-5p. CONCLUSION Inhibited miR-10b-5p decelerated the development of AD by promoting HOXD10 and inactivating the Rho/ROCK signalling pathway, and our findings may contribute to the exploration of AD treatment.
Collapse
Affiliation(s)
- Zhongfan Ruan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Rongzhang He
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, Hunan, China
| | - Xuewei Li
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
49
|
Saal KA, Warth Pérez Arias C, Roser AE, Christoph Koch J, Bähr M, Rizzoli SO, Lingor P. Rho-kinase inhibition by fasudil modulates pre-synaptic vesicle dynamics. J Neurochem 2021; 157:1052-1068. [PMID: 33341946 DOI: 10.1111/jnc.15274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 11/30/2022]
Abstract
The Rho kinase (ROCK) signaling pathway is an attractive therapeutic target in neurodegeneration since it has been linked to the prevention of neuronal death and neurite regeneration. The isoquinoline derivative fasudil is a potent ROCK inhibitor, which is already approved for chronic clinical treatment in humans. However, the effects of chronic fasudil treatments on neuronal function are still unknown. We analyzed here chronic fasudil treatment in primary rat hippocampal cultures. Neurons were stimulated with 20 Hz field stimulation and we investigated pre-synaptic mechanisms and parameters regulating synaptic transmission after fasudil treatment by super resolution stimulated emission depletion (STED) microscopy, live-cell fluorescence imaging, and western blotting. Fasudil did not affect basic synaptic function or the amount of several synaptic proteins, but it altered the chronic dynamics of the synaptic vesicles. Fasudil reduced the proportion of the actively recycling vesicles, and shortened the vesicle lifetime, resulting overall in a reduction of the synaptic response upon stimulation. We conclude that fasudil does not alter synaptic structure, accelerates vesicle turnover, and decreases the number of released vesicles. This broadens the known spectrum of effects of this drug, and suggests new potential clinical uses.
Collapse
Affiliation(s)
- Kim Ann Saal
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Carmina Warth Pérez Arias
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Anna-Elisa Roser
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Jan Christoph Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany
| | - Silvio O Rizzoli
- Department of Neurophysiology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,DFG Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration (BIN), Göttingen, Germany.,Department of Neurology, Rechts der Isar Hospital of the Technical University Munich, Munich, Germany
| |
Collapse
|
50
|
De Simone A, Tumiatti V, Andrisano V, Milelli A. Glycogen Synthase Kinase 3β: A New Gold Rush in Anti-Alzheimer's Disease Multitarget Drug Discovery? J Med Chem 2020; 64:26-41. [PMID: 33346659 PMCID: PMC8016207 DOI: 10.1021/acs.jmedchem.0c00931] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Alzheimer’s
disease (AD), like other multifactorial diseases,
is the result of a systemic breakdown of different physiological networks.
As result, several lines of evidence suggest that it could be more
efficiently tackled by molecules directed toward different dysregulated
biochemical targets or pathways. In this context, the selection of
targets to which the new molecules will be directed is crucial. For
years, the design of such multitarget-directed ligands (MTDLs) has
been based on the selection of main targets involved in the “cholinergic”
and the “β-amyloid” hypothesis. Recently, there
have been some reports on MTDLs targeting the glycogen synthase kinase
3β (GSK-3β) enzyme, due to its appealing properties. Indeed,
this enzyme is involved in tau hyperphosphorylation, controls a multitude
of CNS-specific signaling pathways, and establishes strict connections
with several factors implicated in AD pathogenesis. In the present
Miniperspective, we will discuss the reasons behind the development
of GSK-3β-directed MTDLs and highlight some of the recent efforts
to obtain these new classes of MTDLs as potential disease-modifying
agents.
Collapse
Affiliation(s)
- Angela De Simone
- Department of Drug Science and Technology, University of Turin, Via Giuria 9, 10125 Torino, Italy
| | - Vincenzo Tumiatti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Vincenza Andrisano
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d' Augusto 237, 47921 Rimini, Italy
| |
Collapse
|