1
|
Tabassum S, Wu S, Lee CH, Yang BSK, Gusdon AM, Choi HA, Ren XS. Mitochondrial-targeted therapies in traumatic brain injury: From bench to bedside. Neurotherapeutics 2024:e00515. [PMID: 39721917 DOI: 10.1016/j.neurot.2024.e00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality worldwide, with limited effective therapeutic options currently available. Recent research has highlighted the pivotal role of mitochondrial dysfunction in the pathophysiology of TBI, making mitochondria an attractive target for therapeutic intervention. This review comprehensively examines advancements in mitochondrial-targeted therapies for TBI, bridging the gap from basic research to clinical applications. We discuss the underlying mechanisms of mitochondrial damage in TBI, including oxidative stress, impaired bioenergetics, mitochondrial dynamics, and apoptotic pathways. Furthermore, we highlight the complex interplay between mitochondrial dysfunction, inflammation, and blood-brain barrier (BBB) integrity, elucidating how these interactions exacerbate injury and impede recovery. We also evaluate various preclinical studies exploring pharmacological agents, gene therapy, and novel drug delivery systems designed to protect and restore mitochondrial function. Clinical trials and their outcomes are assessed to evaluate the translational potential of mitochondrial-targeted therapies in TBI. By integrating findings from bench to bedside, this review emphasizes promising therapeutic avenues and addresses remaining challenges. It also provides guidance for future research to pave the way for innovative treatments that improve patient outcomes in TBI.
Collapse
Affiliation(s)
- Sidra Tabassum
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Silin Wu
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Chang-Hun Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Bosco Seong Kyu Yang
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Aaron M Gusdon
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Huimahn A Choi
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Xuefang S Ren
- Novel Treatments for Acute Brain Injury Institute, Texas Medical Center, TX, USA; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
2
|
Jin R, Wang M, Shukla M, Lei Y, An D, Du J, Li G. J147 treatment protects against traumatic brain injury by inhibiting neuronal endoplasmic reticulum stress potentially via the AMPK/SREBP-1 pathway. Transl Res 2024; 274:21-34. [PMID: 39245209 PMCID: PMC11563885 DOI: 10.1016/j.trsl.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024]
Abstract
Endoplasmic reticulum (ER) stress is recognized as a crucial contributor to the progression of traumatic brain injury (TBI) and represents a potential target for therapeutic intervention. This study aimed to assess the potential of J147, a novel neurotrophic compound, in alleviating ER stress by modulating related signaling pathways, thereby promoting functional recovery in TBI. To this end, adult mice underwent controlled cortical impact (CCI) injury to induce TBI, followed by oral administration of J147 one-hour post-injury, with daily dosing for 3 to 7 days. Multiple behavioral assessments were conducted over 35 days, revealing a significant, dose-dependent improvement in neurofunctional recovery with J147 treatment. The neuropathological analysis demonstrated reduced acute neurodegeneration (observed at three days through FJC staining), enhanced long-term neuron survival (H&E and Nissl staining), and improved neuroplasticity (Golgi staining) at 35 days post-TBI. At the molecular level, TBIinduced AMP-activated protein kinase (AMPK) dephosphorylation, sterol regulatory element binding protein-1 (SREBP-1) activation, and upregulation of ER stress marker proteins, including phosphorylated eukaryotic initiation factor-2α (p-eIF2a), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in perilesional cortex neurons at three days post-injury. Notably, the J147 treatment significantly attenuated AMPK dephosphorylation, SERBP-1 activation, and expression of the ER stress markers. In summary, this study reveals the therapeutic promise of J147 in mitigating secondary brain damage associated with TBI and improving long-term functional recovery by modulating ER stress pathways.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| | - Min Wang
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Manish Shukla
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Yuguo Lei
- Department of Biomedical Engineering, Pennsylvania State University; University Park, PA, 16802, USA
| | - Dong An
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Jiwen Du
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Guohong Li
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
3
|
Golovachev N, Siebold L, Sutton RL, Ghavim S, Harris NG, Bartnik-Olson B. Metabolic-driven analytics of traumatic brain injury and neuroprotection by ethyl pyruvate. J Neuroinflammation 2024; 21:294. [PMID: 39538295 PMCID: PMC11562096 DOI: 10.1186/s12974-024-03280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Research on traumatic brain injury (TBI) highlights the significance of counteracting its metabolic impact via exogenous fuels to support metabolism and diminish cellular damage. While ethyl pyruvate (EP) treatment shows promise in normalizing cellular metabolism and providing neuroprotection, there is a gap in understanding the precise metabolic pathways involved. Metabolomic analysis of the acute post-injury metabolic effects, with and without EP treatment, aims to deepen our knowledge by identifying and comparing the metabolite profiles, thereby illuminating the injury's effects and EP's therapeutic potential. METHODS In the current study, an untargeted metabolomics approach was used to reveal brain metabolism changes in rats 24 h after a controlled cortical impact (CCI) injury, with or without EP treatment. Using principal component analysis (PCA), volcano plots, Random Forest and pathway analysis we differentiated the brain metabolomes of CCI and sham injured animals treated with saline (Veh) or EP, identifying key metabolites and pathways affected by injury. Additionally, the effect of EP on the non-injured brain was also explored. RESULTS PCA showed a clear separation of the four study groups (sham-Veh, CCI-Veh, sham-EP, CCI-EP) based on injury. Following CCI injury (CCI-Veh), 109 metabolites belonging to the amino acid, carbohydrate, lipid, nucleotide, and xenobiotic families exhibited a twofold change at 24 h compared to the sham-Veh group, with 93 of these significantly increasing and 16 significantly decreasing (p < 0.05). CCI animals were treated with EP (CCI-EP) showed only 5 metabolites in the carbohydrate, amino acids, peptides, nucleotides, lipids, and xenobiotics super families that exhibited a twofold change, compared to the CCI-Veh group (p < 0.05). In the non-injured brain, EP treatment (sham-EP) resulted in a twofold change in 6 metabolites within the amino acid, peptide, nucleotide, and lipid super families compared to saline treated sham animals (sham-Veh, p < 0.05). CONCLUSIONS This study delineates the unique metabolic signatures resulting from a CCI injury and those related to EP treatment in both the injured and non-injured brain, underscoring the metabolic adaptations to brain injury and the effects of EP. Our analysis uncovers significant shifts in metabolites associated with inflammation, energy metabolism, and neuroprotection after injury, and demonstrates how EP intervention after injury alters metabolites associated with mitigating inflammation and oxidative damage.
Collapse
Affiliation(s)
- Nikita Golovachev
- School of Medicine, Loma Linda University, 11175 Campus St, Loma Linda, CA, 92350, USA
| | - Lorraine Siebold
- School of Medicine, Loma Linda University, 11175 Campus St, Loma Linda, CA, 92350, USA
| | - Richard L Sutton
- David Geffen School of Medicine, Neurotrauma Laboratory, University of California Los Angeles, 58-125 CHS, 650 Charles E. Young Dr. S., Los Angeles, CA, 90095, USA
| | - Sima Ghavim
- David Geffen School of Medicine, Neurotrauma Laboratory, University of California Los Angeles, 58-125 CHS, 650 Charles E. Young Dr. S., Los Angeles, CA, 90095, USA
| | - Neil G Harris
- David Geffen School of Medicine, Neurotrauma Laboratory, University of California Los Angeles, 58-125 CHS, 650 Charles E. Young Dr. S., Los Angeles, CA, 90095, USA
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University, 11234 Anderson St, Room B623 MRI, Loma Linda, CA, 92354, USA.
| |
Collapse
|
4
|
Ahmed ME, Akhter N, Fatima S, Ahmad S, Giri S, Hoda MN, Ahmad AS. Therapeutic utility of Perfluorocarbon Oxygent in limiting the severity of subarachnoid hemorrhage in mice. Sci Rep 2024; 14:26638. [PMID: 39496694 PMCID: PMC11535447 DOI: 10.1038/s41598-024-77321-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
Subarachnoid hemorrhage (SAH) is the deadliest form of hemorrhagic stroke; however, effective therapies are still lacking. Perfluorocarbons (PFCs) are lipid emulsion particles with great flexibility and their much smaller size as compared to red blood cells (RBCs) allows them to flow more efficiently within the blood circulation. Due to their ability to carry oxygen, a specific PFC-based emulsion, PFC-Oxygent, has been used as a blood substitute; however, its role in cerebral blood flow regulation is unknown. Adult C57BL/6 wildtype male mice were subjected to an endovascular perforation model of SAH followed by an intravenous (i.v.) injection of 9 ml/kg PFC-Oxygent or no treatment at 5 h after SAH. At 48 h after SAH, functional and anatomical outcomes were assessed. We found that SAH resulted in significant neurologic and motor deficits which were prevented by PFC-Oxygent treatment. We found that SAH-induced vasospasm, reduced RBC deformability, and augmented endothelial dysfunction were also restricted by PFC-Oxygent treatment. Moreover, mitochondrial activity and fusion proteins were also markedly decreased as assessed by oxidative phosphorylation (OXPHOS) after SAH. Interestingly, PFC-Oxygent treatment brought the mitochondrial activity close to the basal level. Moreover, SAH attenuated the level of phosphorylated AMP-activated protein kinase (pAMPK), whereas PFC treatment improved pAMPK levels. These data show the beneficial effects of PFC-Oxygent in limiting the severity of SAH. Further studies are needed to fully understand the mechanism through which PFC-Oxygent exerts its beneficial effects in limiting SAH severity.
Collapse
Affiliation(s)
- Mohammad Ejaz Ahmed
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Naseem Akhter
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Sumbul Fatima
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Saif Ahmad
- Department of Neurosurgery and Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Md Nasrul Hoda
- Department of Neurology, Henry Ford Health, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | | |
Collapse
|
5
|
Zima L, Moore AN, Smolen P, Kobori N, Noble B, Robinson D, Hood KN, Homma R, Al Mamun A, Redell JB, Dash PK. The evolving pathophysiology of TBI and the advantages of temporally-guided combination therapies. Neurochem Int 2024; 180:105874. [PMID: 39366429 DOI: 10.1016/j.neuint.2024.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Several clinical and experimental studies have demonstrated that traumatic brain injury (TBI) activates cascades of biochemical, molecular, structural, and pathological changes in the brain. These changes combine to contribute to the various outcomes observed after TBI. Given the breadth and complexity of changes, combination treatments may be an effective approach for targeting multiple detrimental pathways to yield meaningful improvements. In order to identify targets for therapy development, the temporally evolving pathophysiology of TBI needs to be elucidated in detail at both the cellular and molecular levels, as it has been shown that the mechanisms contributing to cognitive dysfunction change over time. Thus, a combination of individual mechanism-based therapies is likely to be effective when maintained based on the time courses of the cellular and molecular changes being targeted. In this review, we will discuss the temporal changes of some of the key clinical pathologies of human TBI, the underlying cellular and molecular mechanisms, and the results from preclinical and clinical studies aimed at mitigating their consequences. As most of the pathological events that occur after TBI are likely to have subsided in the chronic stage of the disease, combination treatments aimed at attenuating chronic conditions such as cognitive dysfunction may not require the initiation of individual treatments at a specific time. We propose that a combination of acute, subacute, and chronic interventions may be necessary to maximally improve health-related quality of life (HRQoL) for persons who have sustained a TBI.
Collapse
Affiliation(s)
- Laura Zima
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Anthony N Moore
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Paul Smolen
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Nobuhide Kobori
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Brian Noble
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Dustin Robinson
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Kimberly N Hood
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Ryota Homma
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Amar Al Mamun
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - John B Redell
- Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA
| | - Pramod K Dash
- Departments of Neurosurgery, The University of Texas McGovern Medical School, Houston, TX, USA; Departments of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
6
|
Redell JB, Maynard ME, Hylin MJ, Hood KN, Sedlock A, Maric D, Zhao J, Moore AN, Roysam B, Pati S, Dash PK. A Combination of Low Doses of Lithium and Valproate Improves Cognitive Outcomes after Mild Traumatic Brain Injury. J Neurotrauma 2024. [PMID: 39463282 DOI: 10.1089/neu.2024.0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
The prevalence of mild traumatic brain injury (mTBI) is high compared with moderate and severe TBI, comprising almost 80% of all brain injuries. mTBI activates a complex cascade of biochemical, molecular, structural, and pathological changes that can result in neurological and cognitive impairments. These impairments can manifest even in the absence of overt brain damage. Given the complexity of changes triggered by mTBI, a combination of drugs that target multiple TBI-activated cascades may be required to improve mTBI outcomes. It has been previously demonstrated that cotreatment with the U.S. Food and Drug Administration (FDA)-approved drugs lithium plus valproate (Li + VPA) for 3 weeks after a moderate-to-severe controlled cortical impact injury reduced cortical tissue loss and improved motor function. Since both lithium and valproate can exhibit toxicity at high doses, it would be beneficial to determine if this combination treatment is effective when administered at low doses and for a shorter duration, and if it can improve cognitive function, after a mild diffuse TBI. In the present study, we tested if the combination of low doses of lithium (1 mEq/kg or 0.5 mEq/kg) plus valproate (20 mg/kg) administered for 3 days after a mild fluid percussion injury can improve hippocampal-dependent learning and memory. Our data show that the combination of low-dose Li + VPA improved spatial learning and memory, effects not seen when either drug was administered alone. In addition, postinjury Li + VPA treatment improved recognition memory and sociability and reduced fear generalization. Postinjury Li + VPA also reduced the number of anti-ionized calcium binding adaptor molecule 1 (Iba1)-positive microglia counted using a convolutional neural network, indicating a reduction in neuroinflammation. These findings indicate that low-dose Li + VPA administered acutely after mTBI may have translational utility to reduce pathology and improve cognitive function.
Collapse
Affiliation(s)
- John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E Maynard
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Michael J Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Andrea Sedlock
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, Maryland, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Badrinath Roysam
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Shibani Pati
- Departments of Pathology and Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
Ates G, Tamer S, Ozkok E, Yorulmaz H, Gundogan GI, Aksu A, Balkis N. Utility of melatonin on brain injury, synaptic transmission, and energy metabolism in rats with sepsis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03337-8. [PMID: 39105798 DOI: 10.1007/s00210-024-03337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Melatonin is a powerful endogenous antioxidant hormone. Its healing effects on energy balance and neuronal damage associated with oxidative metabolism disorders have been reported in pathologic conditions. We aimed to determinate the utility of melatonin on neuronal damage, synaptic transmission, and energy balance in the brain tissue of rats with sepsis induced with LPS. Rats was divided into four groups such as control, LPS (20 mg/kg i.p.), melatonin (10 mg/kg i.p. × 3), and LPS + Melatonin (LPS + Mel). After 6 h from the first injection, rats were decapitated, and also tissue and serum samples were taken. Lipid peroxidation and neuron-specific enolase (NSE) levels were determined from the serum in all group. High energy compounds, creatine, and creatine phosphate are measured by HPLC methods from the homogenized tissue. Counts of living neurons are marked with NeuN (neuronal nuclei), degenerated neurons are marked with S100-ß and synaptic vesicles transmission is analyzed with synaptophysin antibodies immunoreactivities. One-way ANOVA and post hoc Tukey tests were used to statistical analysis. In LPS group, AMP, ATP, creatine, and creatine phosphate levels were significantly decreased (p < 0.05), and also ADP levels were significantly increased compared with the other groups (p < 0.01). Living neurons counts were significantly decreased in LPS (p < 0.01), melatonin, and LPS + Melatonin (p < 0.05) groups compared with control. Degenerated neurons counts were increased in LPS group compared with control (p < 0.01) and also decreased in both of melatonin and LPS + Melatonin groups (p < 0.01). Synaptophysin immunoreactivity was decreased in LPS group compared with the other groups (p < 0.05). We observed that melatonin administration prevents neuronal damage, regulates energy metabolism, and protects synaptic vesicle proteins from sepsis-induced reduction.
Collapse
Affiliation(s)
- Gulten Ates
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Yilanlı Ayazma St, Cevizlibag, Istanbul, 34010, Turkey.
| | - Sule Tamer
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Elif Ozkok
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hatice Yorulmaz
- Faculty of Health Science, Halic University, Istanbul, Turkey
| | - Gul Ipek Gundogan
- Department of Histology and Embryology, Faculty of Medicine, Biruni University, Istanbul, Turkey
| | - Abdullah Aksu
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| | - Nuray Balkis
- Department of Chemical Oceanography, Institute of Marine Sciences and Management, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Houle S, Tapp Z, Dobres S, Ahsan S, Reyes Y, Cotter C, Mitsch J, Zimomra Z, Peng J, Rowe RK, Lifshitz J, Sheridan J, Godbout J, Kokiko-Cochran ON. Sleep fragmentation after traumatic brain injury impairs behavior and conveys long-lasting impacts on neuroinflammation. Brain Behav Immun Health 2024; 38:100797. [PMID: 38803369 PMCID: PMC11128763 DOI: 10.1016/j.bbih.2024.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/29/2024] Open
Abstract
Traumatic brain injury (TBI) causes a prolonged inflammatory response in the central nervous system (CNS) driven by microglia. Microglial reactivity is exacerbated by stress, which often provokes sleep disturbances. We have previously shown that sleep fragmentation (SF) stress after experimental TBI increases microglial reactivity and impairs hippocampal function 30 days post-injury (DPI). The neuroimmune response is highly dynamic the first few weeks after TBI, which is also when injury induced sleep-wake deficits are detected. Therefore, we hypothesized that even a few weeks of TBI SF stress would synergize with injury induced sleep-wake deficits to promote neuroinflammation and impair outcome. Here, we investigated the effects of environmental SF in a lateral fluid percussion model of mouse TBI. Half of the mice were undisturbed, and half were exposed to 5 h of SF around the onset of the light cycle, daily, for 14 days. All mice were then undisturbed 15-30 DPI, providing a period for SF stress recovery (SF-R). Mice exposed to SF stress slept more than those in control housing 7-14 DPI and engaged in more total daily sleep bouts during the dark period. However, SF stress did not exacerbate post-TBI sleep deficits. Testing in the Morris water maze revealed sex dependent differences in spatial reference memory 9-14 DPI with males performing worse than females. Post-TBI SF stress suppressed neurogenesis-related gene expression and increased inflammatory signaling in the cortex at 14 DPI. No differences in sleep behavior were detected between groups during the SF stress recovery period 15-30 DPI. Microscopy revealed cortical and hippocampal IBA1 and CD68 percent-area increased in TBI SF-R mice 30 DPI. Additionally, neuroinflammatory gene expression was increased, and synaptogenesis-related gene expression was suppressed in TBI-SF mice 30 DPI. Finally, IPA canonical pathway analysis showed post-TBI SF impaired and delayed activation of synapse-related pathways between 14 and 30 DPI. These data show that transient SF stress after TBI impairs recovery and conveys long-lasting impacts on neuroimmune function independent of continuous sleep deficits. Together, these finding support that even limited exposure to post-TBI SF stress can have lasting impacts on cognitive recovery and regulation of the immune response to trauma.
Collapse
Affiliation(s)
- Samuel Houle
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Zoe Tapp
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
| | - Shannon Dobres
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Sakeef Ahsan
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Yvanna Reyes
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Christopher Cotter
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Jessica Mitsch
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
| | - Zachary Zimomra
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
| | - Juan Peng
- Center for Biostatistics, The Ohio State University, 320-55 Lincoln Tower, 1800 Cannon Drive, 43210, Columbus, OH, USA
| | - Rachel K. Rowe
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Jonathan Lifshitz
- Phoenix VA Health Care System and University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - John Sheridan
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Division of Biosciences, College of Dentistry, The Ohio State University, 305 W. 12th Ave, 43210, Columbus, OH, USA
| | - Jonathan Godbout
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, 43210, Columbus, OH, USA
| | - Olga N. Kokiko-Cochran
- Dept. of Neuroscience, College of Medicine, The Ohio State University, 1858 Neil Ave, 43210, Columbus, OH, USA
- Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, 460 Medical Center Drive, 43210, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 190 North Oval Mall, 43210, Columbus, OH, USA
| |
Collapse
|
9
|
Syzdykbayev M, Kazymov M, Aubakirov M, Kurmangazina A, Kairkhanov E, Kazangapov R, Bryzhakhina Z, Imangazinova S, Sheinin A. A Modern Approach to the Treatment of Traumatic Brain Injury. MEDICINES (BASEL, SWITZERLAND) 2024; 11:10. [PMID: 38786549 PMCID: PMC11123131 DOI: 10.3390/medicines11050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/27/2024] [Indexed: 05/25/2024]
Abstract
Background: Traumatic brain injury manifests itself in various forms, ranging from mild impairment of consciousness to severe coma and death. Traumatic brain injury remains one of the leading causes of morbidity and mortality. Currently, there is no therapy to reverse the effects associated with traumatic brain injury. New neuroprotective treatments for severe traumatic brain injury have not achieved significant clinical success. Methods: A literature review was performed to summarize the recent interdisciplinary findings on management of traumatic brain injury from both clinical and experimental perspective. Results: In the present review, we discuss the concepts of traditional and new approaches to treatment of traumatic brain injury. The recent development of different drug delivery approaches to the central nervous system is also discussed. Conclusions: The management of traumatic brain injury could be aimed either at the pathological mechanisms initiating the secondary brain injury or alleviating the symptoms accompanying the injury. In many cases, however, the treatment should be complex and include a variety of medical interventions and combination therapy.
Collapse
Affiliation(s)
- Marat Syzdykbayev
- Department of Hospital Surgery, Anesthesiology and Reanimatology, Semey Medical University, Semey 071400, Kazakhstan
| | - Maksut Kazymov
- Department of General Practitioners, Semey Medical University, Semey 071400, Kazakhstan
| | - Marat Aubakirov
- Department of Pediatric Surgery, Semey Medical University, Semey 071400, Kazakhstan
| | - Aigul Kurmangazina
- Committee for Medical and Pharmaceutical Control of the Ministry of Health of the Republic of Kazakhstan for East Kazakhstan Region, Ust-Kamenogorsk 070004, Kazakhstan
| | - Ernar Kairkhanov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Rustem Kazangapov
- Pavlodar Branch of Semey Medical University, Pavlodar S03Y3M1, Kazakhstan
| | - Zhanna Bryzhakhina
- Department Psychiatry and Narcology, Semey Medical University, Semey 071400, Kazakhstan
| | - Saule Imangazinova
- Department of Therapy, Astana Medical University, Astana 010000, Kazakhstan
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
10
|
Lu G, Xiao S, Meng F, Zhang L, Chang Y, Zhao J, Gao N, Su W, Guo X, Liu Y, Li C, Tang W, Zou L, Yu S, Liu R. AMPK activation attenuates central sensitization in a recurrent nitroglycerin-induced chronic migraine mouse model by promoting microglial M2-type polarization. J Headache Pain 2024; 25:29. [PMID: 38454376 PMCID: PMC10921743 DOI: 10.1186/s10194-024-01739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Energy metabolism disorders and neurogenic inflammation play important roles in the central sensitization to chronic migraine (CM). AMP-activated protein kinase (AMPK) is an intracellular energy sensor, and its activation regulates inflammation and reduces neuropathic pain. However, studies on the involvement of AMPK in the regulation of CM are currently lacking. Therefore, this study aimed to explore the mechanism underlying the involvement of AMPK in the central sensitization to CM. METHODS Mice with recurrent nitroglycerin (NTG)-induced CM were used to detect the expression of AMPK protein in the trigeminal nucleus caudalis (TNC). Following intraperitoneal injection of the AMPK activator 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and inhibitor compound C, the mechanical pain threshold, activity level, and pain-like behaviors in the mice were measured. The expression of calcitonin gene-related peptide (CGRP) and cytokines, M1/M2 microglia, and NF-κB pathway activation were detected after the intervention. RESULTS Repeated NTG injections resulted in a gradual decrease in AMPK protein expression, and the negative regulation of AMPK by increased ubiquitin-like plant homeodomain and RING finger domain 1 (UHRF1) expression may counteract AMPK activation by increasing ADP/ATP. AICAR can reduce the hyperalgesia and pain-like behaviors of CM mice, improve the activity of mice, reduce the expression of CGRP, IL-1β, IL-6, and TNF-α in the TNC region, and increase the expression of IL-4 and IL-10. Moreover, AMPK in TNC was mainly located in microglia. AICAR could reduce the expression of inducible NO synthase (iNOS) in M1 microglia and increase the expression of Arginase 1 (Arg1) in M2 microglia by inhibiting the activation of NF-κB pathway. CONCLUSIONS AMPK was involved in the central sensitization of CM, and the activation of AMPK reduced neuroinflammation in NTG-induced CM mice. AMPK may provide new insights into interventions for energy metabolism disorders and neurogenic inflammation in migraine.
Collapse
Affiliation(s)
- Guangshuang Lu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- Department of Pediatrics, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu'an People's Hospital, Lu'an, China
| | - Shaobo Xiao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Fanchao Meng
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Leyi Zhang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yan Chang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Jinjing Zhao
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Nan Gao
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Wenjie Su
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xinghao Guo
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yingyuan Liu
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenhao Li
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenjing Tang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Liping Zou
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Pediatrics, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shengyuan Yu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Ruozhuo Liu
- Medical School of Chinese PLA, Beijing, 100853, China.
- Department of Neurology, International Headache Center, The First Medical Center of Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| |
Collapse
|
11
|
Yue AC, Zhou XD, Song HP, Liu XH, Bi MJ, Han W, Li Q. Effect and molecular mechanism of Sulforaphane alleviates brain damage caused by acute carbon monoxide poisoning:Network pharmacology analysis, molecular docking, and experimental evidence. ENVIRONMENTAL TOXICOLOGY 2024; 39:1140-1162. [PMID: 37860845 DOI: 10.1002/tox.24000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/24/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023]
Abstract
Sulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti-inflammatory, and anti-apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug-disease targets, which were strongly in connection with autophagy-animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP-activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P-AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.
Collapse
Affiliation(s)
- Ao-Chun Yue
- Emergency Department, Shenzhen University General Hospital, Shenzhen, People's Republic of China
- Centre of Integrated Chinese and Western Medicine, School of Clinical Medicine, Qingdao University, Qingdao, People's Republic of China
| | - Xu-Dong Zhou
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hui-Ping Song
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xu-Han Liu
- Emergency Department, Shenzhen University General Hospital, Shenzhen, People's Republic of China
| | - Ming-Jun Bi
- Physical Examination Centre, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, People's Republic of China
| | - Wei Han
- Emergency Department, Shenzhen University General Hospital, Shenzhen, People's Republic of China
| | - Qin Li
- Emergency Department, Shenzhen University General Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
12
|
Chen YT, Nyam TTE, Tsai LC, Chang CH, Su CL, Ho CH, Chio CC, Gean PW, Kuo JR. Pretreatment with Lovastatin Improves Depression-Like Behavior After Traumatic Brain Injury Through Activation of the AMPK Pathway. World Neurosurg 2023; 180:e350-e363. [PMID: 37757945 DOI: 10.1016/j.wneu.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND The beneficial effect of pretreatment with statins on traumatic brain injury (TBI)-induced depression and anxiety and its mechanism of action remain unclear. In this study, we combined epidemiological and experimental animal data to clarify this issue. METHODS We used the Taiwan National Health Insurance database to identify patients who were diagnosed with TBI from 2000 to 2013 and compared patients with and without statin treatment matched by age, sex, and underlying comorbidities in a 1:1 ratio. The risk of developing depression and/or anxiety was compared between patients with and without a statin using Cox proportional hazards regression. We also used a rat model to assess the effect of lovastatin pretreatment on neurobehavioral and neuropathological changes following TBI. RESULTS The risk of developing depression was lower in the 41,803 patients in the statin cohort than nonstatin cohort (adjusted hazard ratio, 0.91 [95% confidence interval, 0.83-0.99]). In animal models, the lovastatin group had significantly reduced infarct volume, decreased immobility time and latency to eat, a reduced number of Fluoro- Jade-positive cells and levels of glial fibrillary acidic protein and tumor necrosis factor-alpha, and increased adenosine monophosphate -activated protein kinase (AMPK) and its upstream kinase liver kinase B1 in the hippocampal dentate gyrus. These effects were blocked in AMPK inhibitor-pretreated TBI rats. CONCLUSIONS Our epidemiological data showed that a decreased risk of depression was associated with statin pretreatment, which was supported by an animal study. The underlying mechanism for this appears to involve AMPK activation in the statin pretreatment-induced alleviation of TBI.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
| | | | - Li-Chen Tsai
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chih-Hua Chang
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chun-Lin Su
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Chung-Han Ho
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Information Management, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chung-Ching Chio
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Po-Wu Gean
- Department of Pharmacology, College of Medicine, National Cheng-Kung University, Tainan, Taiwan
| | - Jinn-Rung Kuo
- Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan; Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan; Department of Post-Baccalaureate Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
13
|
Moon HR, Yun JM. Neuroprotective effects of hesperetin on H 2O 2-induced damage in neuroblastoma SH-SY5Y cells. Nutr Res Pract 2023; 17:899-916. [PMID: 37780221 PMCID: PMC10522820 DOI: 10.4162/nrp.2023.17.5.899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND/OBJECTIVES Oxidative stress is a fundamental neurodegenerative disease trigger that damages and decimates nerve cells. Neurodegenerative diseases are chronic central nervous system disorders that progress and result from neuronal degradation and loss. Recent studies have extensively focused on neurodegenerative disease treatment and prevention using dietary compounds. Heseperetin is an aglycone hesperidin form with various physiological activities, such as anti-inflammation, antioxidant, and antitumor. However, few studies have considered hesperetin's neuroprotective effects and mechanisms; thus, our study investigated this in hydrogen peroxide (H2O2)-treated SH-SY5Y cells. MATERIALS/METHODS SH-SY5Y cells were treated with H2O2 (400 µM) in hesperetin absence or presence (10-40 µM) for 24 h. Three-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assays detected cell viability, and 4',6-diamidino-2-phenylindole staining allowed us to observe nuclear morphology changes such as chromatin condensation and apoptotic nuclei. Reactive oxygen species (ROS) detection assays measured intracellular ROS production; Griess reaction assays assessed nitric oxide (NO) production. Western blotting and quantitative polymerase chain reactions quantified corresponding mRNA and proteins. RESULTS Subsequent experiments utilized various non-toxic hesperetin concentrations, establishing that hesperetin notably decreased intracellular ROS and NO production in H2O2-treated SH-SY5Y cells (P < 0.05). Furthermore, hesperetin inhibited H2O2-induced inflammation-related gene expression, including interluekin-6, tumor necrosis factor-α, and nuclear factor kappa B (NF-κB) p65 activation. In addition, hesperetin inhibited NF-κB translocation into H2O2-treated SH-SY5Y cell nuclei and suppressed mitogen-activated protein kinase protein expression, an essential apoptotic cell death regulator. Various apoptosis hallmarks, including shrinkage and nuclear condensation in H2O2-treated cells, were suppressed dose-dependently. Additionally, hesperetin treatment down-regulated Bax/Bcl-2 expression ratios and activated AMP-activated protein kinase-mammalian target of rapamycin autophagy pathways. CONCLUSION These results substantiate that hesperetin activates autophagy and inhibits apoptosis and inflammation. Hesperetin is a potentially potent dietary agent that reduces neurodegenerative disease onset, progression, and prevention.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea
| |
Collapse
|
14
|
Moon HR, Yun JM. Neuroprotective Effects of Zerumbone on H 2O 2-Induced Oxidative Injury in Human Neuroblastoma SH-SY5Y Cells. J Med Food 2023; 26:641-653. [PMID: 37566491 DOI: 10.1089/jmf.2023.k.0022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023] Open
Abstract
Oxidative stress is recognized as one of the main reasons for cellular damage and neurodegenerative diseases. Zerumbone is one of the sesquiterpenoid compounds in the essential oil of Zingiber zerumbet Smith. Zerumbone exhibits various physiological activities, such as anticancer, antioxidant, and antibacterial effects. However, studies on the neuroprotective efficacy of zerumbone and the mechanism behind it are lacking. In this study, we explored the neuroprotective efficacy of zerumbone and its mechanism in hydrogen peroxide-treated human neuroblastoma SH-SY5Y cells. H2O2 treatment (400 μM) for 24 h enhanced the generation of intracellular reactive oxygen species (ROS) compared to untreated cells. By contrast, zerumbone treatment significantly suppressed the production of intracellular ROS. Zerumbone significantly inhibited H2O2-induced nitric oxide production and expression of inflammation-related genes. Moreover, zerumbone decreased H2O2-induced mitogen-activated protein kinase (MAPK) protein expression. Various hallmarks of apoptosis in H2O2-treated cells were suppressed in a dose-dependent manner through downregulation of the Bax/Bcl-2 expression ratio by zerumbone. Since activation of AMP-activated kinase (AMPK) is a promising therapeutic target for neurodegenerative diseases, we also investigated the mammalian target of rapamycin (mTOR) as part of the autophagy mechanism in H2O2-treated SH-SY5Y cells. In this study, zerumbone upregulated the expression of Sirtuin 1 (SIRT1) and p-AMPK (which were downregulated by the H2O2 treatment) and downregulated p-mTOR. Altogether, our results propose that inhibition of apoptosis and inflammation by autophagy activation plays an important neuroprotective role in H2O2-treated SH-SY5Y cells. Zerumbone may thus be a potent dietary agent that reduces the onset and progression, as well as prevents neurodegenerative diseases.
Collapse
Affiliation(s)
- Ha-Rin Moon
- Department of Food and Nutrition, Chonnam National University, Gwangju, South Korea
| | - Jung-Mi Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
15
|
Wang Y, Du W, Sun Y, Zhang J, Ma C, Jin X. CRTC1 is a potential target to delay aging-induced cognitive deficit by protecting the integrity of the blood-brain barrier via inhibiting inflammation. J Cereb Blood Flow Metab 2023; 43:1042-1059. [PMID: 37086081 PMCID: PMC10291461 DOI: 10.1177/0271678x231169133] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 04/23/2023]
Abstract
Aging can cause attenuation in the functioning of multiple organs, and blood-brain barrier (BBB) breakdown could promote the occurrence of disorders of the central nervous system during aging. Since inflammation is considered to be an important factor underlying BBB injury during aging, vascular endothelial cell senescence serves as a critical pathological basis for the destruction of BBB integrity. In the current review, we have first introduced the concepts related to aging-induced cognitive deficit and BBB integrity damage. Thereafter, we reviewed the potential relationship between disruption of BBB integrity and cognition deficit and the role of inflammation, vascular endothelial cell senescence, and BBB injury. We have also briefly introduced the function of CREB-regulated transcription co-activator 1 (CRTC1) in cognition and aging-induced CRTC1 changes as well as the critical roles of CRTC1/cyclooxygenase-2 (COX-2) in regulating inflammation, endothelial cell senescence, and BBB injury. Finally, the underlying mechanisms have been summarized and we propose that CRTC1 could be a promising target to delay aging-induced cognitive deficit by protecting the integrity of BBB through promoting inhibition of inflammation-mediated endothelial cell senescence.
Collapse
Affiliation(s)
- Yanping Wang
- Department of Neurology, the Second Hospital of Jiaxing City, Jiaxing, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yanyun Sun
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junfang Zhang
- Department of Physiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Chaolin Ma
- School of Life Science and Institute of Life Science, Nanchang University, Nanchang, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
- Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Lai Z, Li C, Ma H, Hua S, Liu Z, Huang S, Liu K, Li J, Feng Z, Cai Y, Zou Y, Tang Y, Jiang X. Hydroxysafflor yellow a confers neuroprotection against acute traumatic brain injury by modulating neuronal autophagy to inhibit NLRP3 inflammasomes. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116268. [PMID: 36842723 DOI: 10.1016/j.jep.2023.116268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hydroxysafflor yellow A (HSYA) is the principal bioactive compound isolated from the plant Carthamus tinctorius L. and has been reported to exert neuroprotective effects against various neurological diseases, including traumatic brain injury (TBI). However, the specific molecular and cellular mechanisms underlying HSYA-mediated neuroprotection against TBI are unclear. AIM OF THE STUDY This study explored the effects of HSYA on autophagy and the NLRP3 inflammasome in mice with TBI and the related mechanisms. MATERIALS AND METHODS Mice were subjected to TBI and treated with or without HSYA. Neurological severity scoring, LDH assays and apoptosis detection were first performed to assess the effects of HSYA in mice with TBI. RNA-seq was then conducted to explore the mechanisms that contributed to HSYA-mediated neuroprotection. ELISA, western blotting, and immunofluorescence were performed to further investigate the mechanisms of neuroinflammation and autophagy. Moreover, 3-methyladenine (3-MA), an autophagy inhibitor, was applied to determine the connection between autophagy and the NLRP3 inflammasome. RESULTS HSYA significantly decreased the neurological severity score, serum LDH levels and apoptosis in mice with TBI. A total of 921 differentially expressed genes were identified in the cortices of HSYA-treated mice with TBI and were significantly enriched in the inflammatory response and autophagy. Furthermore, HSYA treatment markedly reduced inflammatory cytokine levels and astrocyte activation. Importantly, HSYA suppressed neuronal NLRP3 inflammasome activation, as indicated by decreased levels of NLRP3, ASC and cleaved caspase-1 and a reduced NLRP3+ neuron number. It increased autophagy and ameliorated autophagic flux dysfunction, as evidenced by increased LC3 II/LC3 I levels and decreased P62 levels. The effects of HSYA on the NLRP3 inflammasome were abolished by 3-MA. Mechanistically, HSYA may enhance autophagy through AMPK/mTOR signalling. CONCLUSION HSYA enhanced neuronal autophagy by triggering the AMPK/mTOR signalling pathway, leading to inhibition of the NLRP3 inflammasome to improve neurological recovery after TBI.
Collapse
Affiliation(s)
- Zelin Lai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Cong Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Huihan Ma
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Shiting Hua
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhizheng Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Sixian Huang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Kunlin Liu
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jinghuan Li
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zhiming Feng
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yingqian Cai
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yuxi Zou
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yanping Tang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Xiaodan Jiang
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
17
|
Prados ME, Navarrete C, García-Martín A, Lastres-Cubillo I, Ponce-Díaz F, Martínez-Orgado J, Muñoz E. VCE-005.1, an hypoxia mimetic betulinic acid derivative, induces angiogenesis and shows efficacy in a murine model of traumatic brain injury. Biomed Pharmacother 2023; 162:114715. [PMID: 37075665 DOI: 10.1016/j.biopha.2023.114715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/09/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
One of the main global causes of mortality and morbidity is traumatic brain injury (TBI). Neuroinflammation and brain-blood barrier (BBB) disruption play a pivotal role in the pathogenesis of acute and chronic TBI onset. The activation of the hypoxia pathway is a promising approach for CNS neurodegenerative diseases, including TBI. Herein, we have studied the efficacy of VCE-005.1, a betulinic acid hydroxamate, against acute neuroinflammation in vitro and on a TBI mouse model. The effect of VCE-005.1 on the HIF pathway in endothelial vascular cells was assessed by western blot, gene expression, in vitro angiogenesis, confocal analysis and MTT assays. In vivo angiogenesis was evaluated through a Matrigel plug model and a mouse model of TBI induced by a controlled cortical impact (CCI) was used to assess VCE-005.1 efficacy. VCE-005.1 stabilized HIF-1α through a mechanism that involved AMPK and stimulated the expression of HIF-dependent genes. VCE-005.1 protected vascular endothelial cells under prooxidant and pro-inflammatory conditions by enhancing TJ protein expression and induced angiogenesis both in vitro and in vivo. Furthermore, in CCI model, VCE-005.1 greatly improved locomotor coordination, increased neovascularization and preserved BBB integrity that paralleled with a large reduction of peripheral immune cells infiltration, recovering AMPK expression and reducing apoptosis in neuronal cells. Taken together, our results demonstrate that VCE-005.1 is a multitarget compound that shows anti-inflammatory and neuroprotective effects mainly by preventing BBB disruption and has the potential to be further developed pharmacologically in TBI and maybe other neurological conditions that concur with neuroinflammation and BBB disruption.
Collapse
Affiliation(s)
| | - Carmen Navarrete
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain
| | - Adela García-Martín
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain
| | | | - Francisco Ponce-Díaz
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain
| | | | - Eduardo Muñoz
- Maimonides Biomedical Research Institute of Cordoba, Spain; Department of Cellular Biology, Physiology and Immunology, University of Cordoba, Córdoba, Spain; Reina Sofía University Hospital, Cordoba, Spain.
| |
Collapse
|
18
|
Law LM, Griffiths DR, Lifshitz J. Peg Forest Rehabilitation - A novel spatial navigation based cognitive rehabilitation paradigm for experimental neurotrauma. Behav Brain Res 2023; 443:114355. [PMID: 36801425 PMCID: PMC10883691 DOI: 10.1016/j.bbr.2023.114355] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/18/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Traumatic brain injury (TBI) results from mechanical forces applied to the head. Ensuing cascades of complex pathophysiology transition the injury event into a disease process. The enduring constellation of emotional, somatic, and cognitive impairments degrade quality of life for the millions of TBI survivors suffering from long-term neurological symptoms. Rehabilitation strategies have reported mixed results, as most have not focused on specific symptomatology or explored cellular processes. The current experiments evaluated a novel cognitive rehabilitation paradigm for brain-injured and uninjured rats. The arena is a plastic floor with a cartesian grid of holes for plastic dowels to create new environments with the rearrangement of threaded pegs. Rats received either two weeks of Peg Forest rehabilitation (PFR) or open field exposure starting at 7 days post-injury; or one week starting at either day 7 or 14 post-injury; or served as caged controls. Cognitive performance was assessed on a battery of novel object tasks at 28 days post-injury. The results revealed that two weeks of PFR was required to prevent the onset of cognitive impairments, while one week of PFR was insufficient regardless of when rehabilitation was initiated after injury. Further assessment of the task showed that novel daily arrangements of the environment were required to impart the cognitive performance benefits, as exposure to a static arrangement of pegs for PFR each day did not improve cognitive performance. The results indicate that PFR prevents the onset of cognitive disorders following acquired a mild to moderate brain injury, and potentially other neurological conditions.
Collapse
Affiliation(s)
- L Matthew Law
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States.
| | - Daniel R Griffiths
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| | - Jonathan Lifshitz
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ, United States; University of Arizona College of Medicine, Phoenix, AZ, United States; BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
19
|
van Erp IAM, Michailidou I, van Essen TA, van der Jagt M, Moojen W, Peul WC, Baas F, Fluiter K. Tackling Neuroinflammation After Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics 2023; 20:284-303. [PMID: 36222978 PMCID: PMC10119357 DOI: 10.1007/s13311-022-01306-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality, sensorimotor morbidity, and neurocognitive disability. Neuroinflammation is one of the key drivers causing secondary brain injury after TBI. Therefore, attenuation of the inflammatory response is a potential therapeutic goal. This review summarizes the most important neuroinflammatory pathophysiology resulting from TBI and the clinical trials performed to attenuate neuroinflammation. Studies show that non-selective attenuation of the inflammatory response, in the early phase after TBI, might be detrimental and that there is a gap in the literature regarding pharmacological trials targeting specific pathways. The complement system and its crosstalk with the coagulation system play an important role in the pathophysiology of secondary brain injury after TBI. Therefore, regaining control over the complement cascades by inhibiting overshooting activation might constitute useful therapy. Activation of the complement cascade is an early component of neuroinflammation, making it a potential target to mitigate neuroinflammation in TBI. Therefore, we have described pathophysiological aspects of complement inhibition and summarized animal studies targeting the complement system in TBI. We also present the first clinical trial aimed at inhibition of complement activation in the early days after brain injury to reduce the risk of morbidity and mortality following severe TBI.
Collapse
Affiliation(s)
- Inge A M van Erp
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands.
| | - Iliana Michailidou
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas A van Essen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Mathieu van der Jagt
- Department of Intensive Care Adults, Erasmus MC - University Medical Center, Rotterdam, The Netherlands
| | - Wouter Moojen
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Wilco C Peul
- University Neurosurgical Center Holland, Leiden University Medical Center, Haaglanden Medical Center and HaGa Hospital, Leiden and The Hague, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Fluiter
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Design and optimization of metformin-loaded solid lipid nanoparticles for neuroprotective effects in a rat model of diffuse traumatic brain injury: A biochemical, behavioral, and histological study. Eur J Pharm Biopharm 2022; 181:122-135. [PMID: 36307002 DOI: 10.1016/j.ejpb.2022.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE Following traumatic brain injury, inflammation, mitochondrial dysfunction, oxidative stress, ischemia, and energy crisis can cause mortality or long-term morbidity. As an activator of AMP-activated protein kinase, metformin reduces the secondary injuries of traumatic brain injury by compensating for the lack of energy in damaged cells. But the blood-brain barrier prevents a hydrophilic drug such as metformin from penetrating the brain tissue. Solid lipid nanoparticles with their lipid nature can cross the blood-brain barrier and solve this challenge. so This study aimed to investigate the effect of metformin-loaded lipid nanoparticles (NanoMet) for drug delivery to the brain and reduce complications from traumatic brain injury. METHOD Different formulations of NanoMet were designed by Box-Behnken, and after formulation, particle size, zeta potential, and entrapment efficiency were investigated. For in vivo study, Male rats were divided into eight groups, and except for the intact and sham groups, the other groups underwent brain trauma by the Marmarou method. After the intervention, the Veterinary Coma Scale, Vestibular Motor function, blood-brain barrier integrity, cerebral edema, level of inflammatory cytokines, and histopathology of brain tissue were assessed. RESULTS The optimal formula had a size of 282.2 ± 9.05 nm, a zeta potential of -1.65 ± 0.33 mV, and entrapment efficiency of 60.61 ± 6.09% which released the drug in 1400 min. Concentrations of 5 and 10 mg/kg of this formula improved the consequences of trauma. CONCLUSION This study showed that nanoparticles could help target drug delivery to the brain and apply the desired result.
Collapse
|
21
|
Mechanism of metformin regulation in central nervous system: Progression and future perspectives. Biomed Pharmacother 2022; 156:113686. [DOI: 10.1016/j.biopha.2022.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/20/2022] Open
|
22
|
Song H, Ding Z, Chen J, Chen T, Wang T, Huang J. The AMPK-SIRT1-FoxO1-NF-κB signaling pathway participates in hesperetin-mediated neuroprotective effects against traumatic brain injury via the NLRP3 inflammasome. Immunopharmacol Immunotoxicol 2022; 44:970-983. [PMID: 35786120 DOI: 10.1080/08923973.2022.2096464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) induces inflammations that lead to secondary damage. Hesperetin (Hes) exerts anti-inflammatory activities against central nervous system (CNS) diseases. This article probes the possible neuroprotective effect and mechanism of Hes on TBI-induced acute cerebral damage. METHODS Male C57BL/6J mice were subjected to controlled cortical impingement (CCI) and Hes (50 mg/kg) treatment after the surgery. Short-term neurological deficits were assessed with the modified neurological severity score (mNSS) and the Rota-rod test. The brain edema was tested by the wet/dry method. Neuron apoptosis was evaluated by Nissl staining and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining. The blood-brain barrier (BBB) integrity was measured by Evans' blue staining, and immunohistochemistry (IHC) was conducted to study BV2 microglial activation. BV2 microglia and HT22 neuronal cells were stimulated by oxygen-glucose deprivation followed by recovery (OGD/R) and processed with Hes. Quantitative real-time-polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were implemented to gauge the expression of inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-β (IL-1-β) and interleukin-6 (IL-6). Western blot (WB) was performed to check AMPK-SIRT1-FoxO1 both in vitro and in vivo. RESULTS Hes eased neurological deficits, cerebral edema, and neuronal apoptosis in mice following TBI. Hes hampered microglial activation and pro-inflammatory cytokines production. Hes promoted AMPK and SIRT1 expression, whereas repressed the phosphorylation of FoxO1-NF-κB, and inhibited NLRP3 expression. The AMPK inhibitor Compound C markedly reversed Hes-mediated anti-inflammatory and neuron-protective effects. CONCLUSION Hes curbs microglial activation-mediated inflammation via the AMPK-SIRT1-FoxO1-NF-κB axis, thereby improving neurobehavioral function after TBI.
Collapse
Affiliation(s)
- Hai Song
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhongyun Ding
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jilin Chen
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Tingbao Chen
- Animal Zoology Department, Kunming Medical University, Kunming, China
| | - Tinghua Wang
- Institute of Neuroscience, Basic Medical College, Kunming Medical University, Kunming, China
| | - Jin Huang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Yu X, Fu X, Wu X, Tang W, Xu L, Hu L, Xu C, Zhou H, Zhou G, Li J, Cao S, Liu J, Yan F, Wang L, Liu F, Chen G. Metformin Alleviates Neuroinflammation Following Intracerebral Hemorrhage in Mice by Regulating Microglia/Macrophage Phenotype in a Gut Microbiota-Dependent Manner. Front Cell Neurosci 2022; 15:789471. [PMID: 35115909 PMCID: PMC8806158 DOI: 10.3389/fncel.2021.789471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
The gut microbiota plays a key role in regulating intracerebral hemorrhage (ICH)-induced neuroinflammation. The anti-neuroinflammatory effects of metformin (Met) have been reported in many central nervous system (CNS) diseases. However, whether Met regulates neuroinflammation through the gut microbiota in ICH-induced brain injury remains unknown. We found that Met treatment substantially alleviated neurological dysfunction and reduced neuroinflammation by inhibiting pro-inflammatory polarization of microglia/macrophages in mice with ICH. Moreover, Met treatment altered the microbiota composition and improved intestinal barrier function. The expression of lipopolysaccharide-binding protein (LBP), a biomarker of intestinal barrier damage, was also significantly reduced by Met treatment. Neuroinflammation was also potently ameliorated after the transplantation of fecal microbiota from Met-treated ICH mice. The neuroprotective effects of fecal microbiota transplantation (FMT) were similar to those of oral Met treatment. However, suppression of the gut microbiota negated the neuroprotective effects of Met in ICH mice. Therefore, Met is a promising therapeutic agent for neuroinflammation owing to ICH-induced imbalance of the gut microbiota.
Collapse
Affiliation(s)
- Xiaobo Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiongjie Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyan Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenwen Tang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Xu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Libin Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chaoran Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guoyang Zhou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shenglong Cao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Liu
- Department of Neurosurgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu Gao Chen
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu Gao Chen
| |
Collapse
|
24
|
Redell JB, Maynard ME, Hood KN, Moore AN, Zhao J, Dash PK. Insulin-Like Growth Factor-2 (IGF-2) Does Not Improve Memory in the Chronic Stage of Traumatic Brain Injury in Rodents. Neurotrauma Rep 2021; 2:453-460. [PMID: 34901941 PMCID: PMC8655797 DOI: 10.1089/neur.2021.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Persistent cognitive impairment(s) can be a significant consequence of traumatic brain injury (TBI) and can markedly compromise quality of life. Unfortunately, identifying effective treatments to alleviate memory impairments in the chronic stage of TBI has proven elusive. Several studies have demonstrated that insulin-like growth factor-2 (IGF-2) can enhance memory in both normal animals and in experimental models of disease. In this study, we questioned whether IGF-2, when administered before learning, could enhance memory performance in the chronic stage of TBI. Male C57BL/6 mice (n = 7 per group) were injured using an electronic cortical impact injury device. Four months later, mice were tested for their cognitive performance in the fear memory extinction, novel object recognition (NOR), and Morris water maze tasks. Twenty minutes before each day of training, mice received a subcutaneous injection of either 30 μg/kg of IGF-2 or an equal volume of vehicle. Memory testing was carried out 24 h after training in the absence of the drug. Uninjured sham animals treated with IGF-2 (or vehicle) were trained and tested in the fear memory extinction task as a positive control. Our data show that although IGF-2 (30 μg/kg) improved memory extinction in uninjured mice, it was ineffective at improving fear memory extinction in the chronic stage of TBI. Similarly, IGF-2 administration to chronically injured animals did not improve TBI-related deficits in either NOR or spatial memory. Our results indicate that IGF-2, administered in the chronic stage of injury, is ineffective at enhancing memory performance and therefore may not be a beneficial treatment option for lingering cognitive impairments after a TBI.
Collapse
Affiliation(s)
- John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
25
|
Ikram M, Park HY, Ali T, Kim MO. Melatonin as a Potential Regulator of Oxidative Stress, and Neuroinflammation: Mechanisms and Implications for the Management of Brain Injury-Induced Neurodegeneration. J Inflamm Res 2021; 14:6251-6264. [PMID: 34866924 PMCID: PMC8637421 DOI: 10.2147/jir.s334423] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
This review covers the preclinical and clinical literature supporting the role of melatonin in the management of brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration, and reviews the past and current therapeutic strategies. Traumatic brain injury (TBI) is a neurodegenerative condition, unpredictably and potentially progressing into chronic neurodegeneration, with permanent cognitive, neurologic, and motor dysfunction, having no standard therapies. Due to its complex and multi-faceted nature, the TBI has highly heterogeneous pathophysiology, characterized by the highest mortality and disability worldwide. Mounting evidence suggests that the TBI induces oxidative and nitrosative stress, which is involved in the progression of chronic and acute neurodegenerative diseases. Defenses against such conditions are mostly dependent on the usage of antioxidant compounds, the majority of whom are ingested as nutraceuticals or as dietary supplements. A large amount of literature is available regarding the efficacy of antioxidant compounds to counteract the TBI-associated damage in animal and cellular models of the TBI and several clinical studies. Collectively, the studies have suggested that TBI induces oxidative stress, by suppressing the endogenous antioxidant system, such as nuclear factor erythroid 2–related factor-2 (Nrf-2) increasing the lipid peroxidation and elevation of oxidative damage. Moreover, elevated oxidative stress may induce neuroinflammation by activating the microglial cells, releasing and activating the inflammatory cytokines and inflammatory mediators, and energy dyshomeostasis. Thus, melatonin has shown regulatory effects against the TBI-induced autophagic dysfunction, regulation of mitogen-activated protein kinases, such as ERK, activation of the NLRP-3 inflammasome, and release of the inflammatory cytokines. The collective findings strongly suggest that melatonin may regulate TBI-induced neurodegeneration, although further studies should be conducted to better facilitate future therapeutic windows.
Collapse
Affiliation(s)
- Muhammad Ikram
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun Young Park
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, 6202 AZ, the Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht Medical Center, Maastricht, 6229 ER, the Netherlands
| | - Tahir Ali
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Alz-Dementia Korea Co., Jinju, 52828, Republic of Korea
| |
Collapse
|
26
|
DiBona VL, Shah MK, Krause KJ, Zhu W, Voglewede MM, Smith DM, Crockett DP, Zhang H. Metformin reduces neuroinflammation and improves cognitive functions after traumatic brain injury. Neurosci Res 2021; 172:99-109. [PMID: 34023358 PMCID: PMC8449802 DOI: 10.1016/j.neures.2021.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/17/2021] [Accepted: 05/16/2021] [Indexed: 01/27/2023]
Abstract
Within the brain, traumatic brain injury (TBI) alters synaptic plasticity and increases neuroinflammation and neuronal death. Yet, there lacks effective TBI treatments providing pleiotropic beneficial effects on these diverse cellular processes necessary for functional recovery. Here, we show the diabetes drug, metformin, significantly improves cognitive functions after controlled cortical impact (CCI) injury in mice, showing improved spatial learning and nest building. Furthermore, injured animals treated with metformin exhibit increased ramification of microglia processes, indicating reduced neuroinflammation. Finally, metformin treatment in vitro increased neuronal activation of partitioning defective 1 (Par1), a family of Ser/Thr kinases playing a key role in synaptic plasticity and neuroinflammation. These results suggest metformin is a promising therapeutic agent for targeting multiple cellular processes necessary for functional TBI recovery.
Collapse
Affiliation(s)
- Victoria L DiBona
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Mihir K Shah
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Kayla J Krause
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Wenxin Zhu
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mikayla M Voglewede
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Dana M Smith
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - David P Crockett
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
27
|
17β-Estradiol Abrogates Oxidative Stress and Neuroinflammation after Cortical Stab Wound Injury. Antioxidants (Basel) 2021; 10:antiox10111682. [PMID: 34829553 PMCID: PMC8615181 DOI: 10.3390/antiox10111682] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Disruptions in brain energy metabolism, oxidative damage, and neuroinflammation are commonly seen in traumatic brain injury (TBI). Microglial activation is the hallmark of neuroinflammation. After brain injury, microglia also act as a double-edged sword with distinctive phenotypic changes. Therefore, therapeutic applications to potentiate microglia towards pro-inflammatory response following brain injury have become the focus of attention in recent years. Here, in the current study, we investigated the hypothesis that 17β-estradiol could rescue the mouse brain against apoptotic cell death and neurodegeneration by suppressing deleterious proinflammatory response probably by abrogating metabolic stress and oxidative damage after brain injury. Male C57BL/6N mice were used to establish a cortical stab wound injury (SWI) model. Immediately after brain injury, the mice were treated with 17β-estradiol (10 mg/kg, once every day via i.p. injection) for one week. Immunoblotting and immunohistochemical analysis was performed to examine the cortical and hippocampal brain regions. For the evaluation of reactive oxygen species (ROS), reduced glutathione (GSH), and oxidized glutathione (GSSG), we used specific kits. Our findings revealed that 17β-estradiol treatment significantly alleviated SWI-induced energy dyshomeostasis and oxidative stress by increasing the activity of phospho-AMPK (Thr172) and by regulating the expression of an antioxidant gene (Nrf2) and cytoprotective enzymes (HO-1 and GSH) to mitigate ROS. Importantly, 17β-estradiol treatment downregulated gliosis and proinflammatory markers (iNOS and CD64) while significantly augmenting an anti-inflammatory response as evidenced by the robust expression of TGF-β and IGF-1 after brain injury. The treatment with 17β-estradiol also reduced inflammatory mediators (Tnf-α, IL-1β, and COX-2) in the injured mouse. Moreover, 17β-estradiol administration rescued p53-associated apoptotic cell death in the SWI model by regulating the expression of Bcl-2 family proteins (Bax and Bcl-2) and caspase-3 activation. Finally, SWI + 17β-estradiol-treated mice illustrated reduced brain lesion volume and enhanced neurotrophic effect and the expression of synaptic proteins. These findings suggest that 17β-estradiol is an effective therapy against the brain secondary injury-induced pathological cascade following trauma, although further studies may be conducted to explore the exact mechanisms.
Collapse
|
28
|
Kong L, Zhang H, Lu C, Shi K, Huang H, Zheng Y, Wang Y, Wang D, Wang H, Huang W. AICAR, an AMP-Activated Protein Kinase Activator, Ameliorates Acute Pancreatitis-Associated Liver Injury Partially Through Nrf2-Mediated Antioxidant Effects and Inhibition of NLRP3 Inflammasome Activation. Front Pharmacol 2021; 12:724514. [PMID: 34531748 PMCID: PMC8438129 DOI: 10.3389/fphar.2021.724514] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022] Open
Abstract
Acute pancreatitis (AP) is a highly fatal acute inflammation and is often accompanied by multiple organ dysfunction syndrome (MODS). The liver, one of the most vulnerable extrapancreatic organs in AP, is the major organ involved in the evolution of the disease and correlates strongly with the occurrence of MODS. However, the etiology of pancreatitis-associated liver injury (PALI) has not been clarified and currently lacks an effective treatment. 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is a cell permeable nucleoside with pleiotropic effects on anti-inflammatory and antioxidant stress that binds with adenosine monophosphate protein kinase (AMPK) and induces AMPK activation. However, the role of AICAR in PALI remains elusive. Here, we show that activation of AMPK by AICAR, a direct AMPK agonist, significantly ameliorates sodium taurocholate-induced PALI in rats, whereas treatment of PALI rats with the AMPK antagonist Compound C profoundly exacerbates the degree of liver injury, suggesting that hepatic AMPK activation exerts an essential protective role in PALI. Mechanistically, AICAR induces AMPK activation, which in turn activates nuclear factor erythroid 2-related factor 2(Nrf2) -regulated hepatic antioxidant capacity and inhibits NLRP3 inflammasome-mediated pyrolysis, protecting rats from sodium taurocholate-induced PALI. In addition, Nrf2 deficiency strikingly weakens the beneficial effects of AICAR on alleviation of liver injury, oxidative stress and NLRP3 inflammasome activation in L-arginine-induced PALI mice. Thus, AICAR protects against PALI in rodents by triggering AMPK, which is mediated at least in part by Nrf2-modulated antioxidant effects and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Lijun Kong
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hewei Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongjian Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yushu Zheng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongqiang Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Wang
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongwei Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Huang
- Department of Nutrition, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Salama A, Elgohary R. L-carnitine and Co Q10 ameliorate potassium dichromate -induced acute brain injury in rats targeting AMPK/AKT/NF-κβ. Int Immunopharmacol 2021; 101:107867. [PMID: 34489184 DOI: 10.1016/j.intimp.2021.107867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/24/2021] [Accepted: 06/06/2021] [Indexed: 11/30/2022]
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) has a crucial role in neuroprotection. It phosphorylates serine/threonine kinase (Akt) Substrate inhibiting the inflammatory responses induced by the nuclear factor-κB (NF-κB). Exposure to chromium VI dust among workers has been reported and induced brain injury, as the absorption of chromium through the nasal membrane has been found to deliver it directly to the brain. The study aimed to investigate the influence of administration of L-carnitine or/and Co Q10 as theraputic agents against potassium dichromate (PD)-induced brain injury via AMPK/AKT/NF-κβ signaling pathway. Brain injury was induced by PD intranasally as a single dose of 2 mg/kg, 24 h latter rats received L-carnitine (100 mg/kg; orally), Co Q10 (50 mg/kg; orally) and L-carnitine (50 mg/kg; orally) + Co Q10 (25 mg/kg; orally) respectively for 3 days. Locomotor activity was assessed before and at the end of the experiment, then, biochemical and histopathological investigations were assessed in brain homogenate. The exposure of rats to PD promoted oxidative stress and inflammation via an increase in MDA and a decrease in GSH serum contents with an increase in brain contents of TNF-α, IL-6, and NF-kβ and reduced AMPK and AKT brain contents as compared to the control group. Treatment with L-carnitine + Co Q10 ameliorated cognitive impairment and oxidative stress, decreased the brain contents of inflammatory mediators; TNF-α, IL-6, and NF-κβ elevated AMPK and AKT, as compared to each drug. Also, L-carnitine + Co Q10 administration restored morphological changes as degenerated neurons and necrosis. L-carnitine + Co Q10 play important role in AMPK/AKT/NF-κβ pathway that responsible for their antioxidant and anti-inflammatory effects against PD-induced brain injury in rats.
Collapse
Affiliation(s)
- Abeer Salama
- Pharmacology Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rania Elgohary
- Narcotics, Ergogenics and Poisons Department, National Research Centre, El- Buhouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
30
|
Dienel A, Veettil RA, Matsumura K, Savarraj JPJ, Choi HA, Kumar T P, Aronowski J, Dash P, Blackburn SL, McBride DW. α 7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics 2021; 18:1891-1904. [PMID: 33970466 PMCID: PMC8609090 DOI: 10.1007/s13311-021-01052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) causes a robust inflammatory response which leads worse brain injury and poor outcomes. We investigated if stimulation of nicotinic acetylcholine α7 receptors (α7-AChR) (receptors shown to have anti-inflammatory effects) would reduce inflammation and improve outcomes. To investigate the level of peripheral inflammation after aSAH, inflammatory markers were measured in plasma samples collected in a cohort of aSAH patients. To study the effect of α7-AChR stimulation, SAH was induced in adult mice which were then treated with a α7-AChR agonist, galantamine, or vehicle. A battery of motor and cognitive tests were performed 24 h after subarachnoid hemorrhage. Mice were euthanized and tissue collected for analysis of markers of inflammation or activation of α7-AChR-mediated transduction cascades. A separate cohort of mice was allowed to survive for 28 days to assess long-term neurological deficits and histological outcome. Microglia cell culture subjected to hemoglobin toxicity was used to assess the effects of α7-AChR agonism. Analysis of eighty-two patient plasma samples confirmed enhanced systemic inflammation after aSAH. α7-AChR agonism reduced neuroinflammation at 24 h after SAH in male and female mice, which was associated with improved outcomes. This coincided with JAK2/STAT3 and IRAK-M activity modulations and a robust improvement in neurological/cognitive status that was effectively reversed by interfering with various components of these signaling pathways. Pharmacologic inhibition partially reversed the α7-AChR agonist's benefits, supporting α7-AChR as a target of the agonist's therapeutic effect. The cell culture experiment showed that α7-AChR agonism is directly beneficial to microglia. Our results demonstrate that activation of α7-AChR represents an attractive target for treatment of SAH. Our findings suggest that α7-AChR agonists, and specifically galantamine, might provide therapeutic benefit to aSAH patients.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Remya A Veettil
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Kanako Matsumura
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Jude P J Savarraj
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - H Alex Choi
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Peeyush Kumar T
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Pramod Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Spiros L Blackburn
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Devin W McBride
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA.
| |
Collapse
|
31
|
Nikbakhtzadeh M, Shaerzadeh F, Ashabi G. Highlighting the protective or degenerative role of AMPK activators in dementia experimental models. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:786-801. [PMID: 34042039 DOI: 10.2174/1871527320666210526160214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/02/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine kinase and a driving or deterrent factor in the development of neurodegenerative diseases and dementia. AMPK affects intracellular proteins like the mammalian target of rapamycin (mTOR). Peroxisome proliferator-activated receptor-γ coactivator 1-α (among others) contributes to a wide range of intracellular activities based on its downstream molecules such as energy balancing (ATP synthesis), extracellular inflammation, cell growth, and neuronal cell death (such as apoptosis, necrosis, and necroptosis). Several studies have looked at the dual role of AMPK in neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington disease (HD) but the exact effect of this enzyme on dementia, stroke, and motor neuron dysfunction disorders has not been elucidated yet. In this article, we review current research on the effects of AMPK on the brain to give an overview of the relationship. More specifically, we review the neuroprotective or neurodegenerative effects of AMPK or AMPK activators like metformin, resveratrol, and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside on neurological diseases and dementia, which exert through the intracellular molecules involved in neuronal survival or death.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaerzadeh
- Department of Neuroscience, University of Florida College of Medicine and McKnight Brain Institute, Gainesville, United States
| | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Zhang Z, Yu J, Wang P, Lin L, Liu R, Zeng R, Ma H, Zhao Y. iTRAQ-based proteomic profiling reveals protein alterations after traumatic brain injury and supports thyroxine as a potential treatment. Mol Brain 2021; 14:25. [PMID: 33504361 PMCID: PMC7839205 DOI: 10.1186/s13041-021-00739-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Traumatic brain injury (TBI) is a primary cause of disability and death across the world. Previously, RNA analysis was widely used to study the pathophysiological mechanisms underlying TBI; however, the relatively low correlation between the transcriptome and proteome revealed that RNA transcription abundance does not reliably predict protein abundance, which led to the emergence of proteomic research. In this study, an iTRAQ proteomics approach was applied to detect protein alterations after TBI on a large scale. A total of 3937 proteins were identified, and 146 proteins were significantly changed after TBI. Moreover, 23 upregulated proteins were verified by parallel reaction monitoring (PRM), and fold changes in 16 proteins were consistent with iTRAQ outcomes. Transthyretin (Ttr) upregulation has been demonstrated at the transcriptional level, and this study further confirmed this at the protein level. After treatment with thyroxine (T4), which is transported by Ttr, the effects of T4 on neuronal histopathology and behavioral performance were determined in vivo (TBI + T4 group). Brain edema was alleviated, and the integrity of the blood brain barrier (BBB) improved. Escape latency in the Morris water maze (MWM) declined significantly compared with the group without T4 treatment. Modified neurological severity scores (mNSS) of the TBI + T4 group decreased from day 1 to day 7 post-TBI compared with the TBI + saline group. These results indicate that T4 treatment has potential to alleviate pathologic and behavioral abnormalities post-TBI. Protein alterations after T4 treatment were also detected by iTRAQ proteomics. Upregulation of proteins like Lgals3, Gfap and Apoe after TBI were reversed by T4 treatment. GO enrichment showed T4 mainly affected intermediate filament organization, cholesterol transportation and axonal regeneration. In summary, iTRAQ proteomics provides information about the impact of TBI on protein alterations and yields insight into underlying mechanisms and pathways involved in TBI and T4 treatment. Finally, Ttr and other proteins identified by iTRAQ may become potential novel treatment targets post-TBI.
Collapse
Affiliation(s)
- Zhongxiang Zhang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Jiangtao Yu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Pengcheng Wang
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Lian Lin
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Ruining Liu
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Rong Zeng
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Haoli Ma
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| | - Yan Zhao
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071 China
| |
Collapse
|
33
|
Baban B, Braun M, Khodadadi H, Ward A, Alverson K, Malik A, Nguyen K, Nazarian S, Hess DC, Forseen S, Post AF, Vale FL, Vender JR, Hoda MN, Akbari O, Vaibhav K, Dhandapani KM. AMPK induces regulatory innate lymphoid cells after traumatic brain injury. JCI Insight 2021; 6:126766. [PMID: 33427206 PMCID: PMC7821592 DOI: 10.1172/jci.insight.126766] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
The CNS is regarded as an immunoprivileged organ, evading routine immune surveillance; however, the coordinated development of immune responses profoundly influences outcomes after brain injury. Innate lymphoid cells (ILCs) are cytokine-producing cells that are critical for the initiation, modulation, and resolution of inflammation, but the functional relevance and mechanistic regulation of ILCs are unexplored after acute brain injury. We demonstrate increased proliferation of all ILC subtypes within the meninges for up to 1 year after experimental traumatic brain injury (TBI) while ILCs were present within resected dura and elevated within cerebrospinal fluid (CSF) of moderate-to-severe TBI patients. In line with energetic derangements after TBI, inhibition of the metabolic regulator, AMPK, increased meningeal ILC expansion, whereas AMPK activation suppressed proinflammatory ILC1/ILC3 and increased the frequency of IL-10-expressing ILC2 after TBI. Moreover, intracisternal administration of IL-33 activated AMPK, expanded ILC2, and suppressed ILC1 and ILC3 within the meninges of WT and Rag1-/- mice, but not Rag1-/- IL2rg-/- mice. Taken together, we identify AMPK as a brake on the expansion of proinflammatory, CNS-resident ILCs after brain injury. These findings establish a mechanistic framework whereby immunometabolic modulation of ILCs may direct the specificity, timing, and magnitude of cerebral immunity.
Collapse
Affiliation(s)
- Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Surgery.,Department of Neurology
| | | | - Hesam Khodadadi
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Neurology
| | | | | | - Aneeq Malik
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Skon Nazarian
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Scott Forseen
- Department of Radiology and Imaging, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | | | | | - Md Nasrul Hoda
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kumar Vaibhav
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA.,Department of Neurosurgery, and
| | | |
Collapse
|
34
|
Han M, Cao Y, Guo X, Chu X, Li T, Xue H, Xin D, Yuan L, Ke H, Li G, Wang Z. Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF-κB signaling pathway. Biomed Pharmacother 2021; 133:111048. [PMID: 33378955 DOI: 10.1016/j.biopha.2020.111048] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an acute and severe disease with high disability and mortality. Inflammatory reactions have been proven to occur throughout SAH. Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) have shown broad potential for the treatment of brain dysfunction and neuroprotective effects through neurogenesis and angiogenesis after stroke. However, the mechanisms of EVs in neuroinflammation during the acute phase of SAH are not well known. Our present study was designed to investigate the effects of MSCs-EVs on neuroinflammation and the polarization regulation of microglia to the M2 phenotype and related signaling pathways after SAH in rats. The SAH model was induced by an improved method of intravascular perforation, and MSCs-EVs were injected via the tail vein. Post-SAH assessments included neurobehavioral tests as well as brain water content, immunohistochemistry, PCR and Western blot analyses. Our results showed that MSCs-EVs alleviated the expression of inflammatory cytokines in the parietal cortex and hippocampus 24 h and 48 h after SAH and that MSCs-EVs inhibited NF-κB and activated AMPK to reduce inflammation after SAH. Furthermore, MSC-EVs regulated the polarization of microglia toward the M2 phenotype by downregulating interleukin-1β, cluster of differentiation 16, cluster of differentiation 11b, and inducible nitric oxide synthase and upregulating the expression of cluster of differentiation 206 and arginase-1. Additionally, MSCs-EVs inhibited the neuroinflammatory response and had neuroprotective effects in the brain tissues of rats after SAH. This study may support their use as a potential treatment strategy for early SAH in the future.
Collapse
Affiliation(s)
- Min Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Ying Cao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaofan Guo
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lin Yuan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
35
|
Fan YY, Wang YJ, Guo J, Wu MN, Zhang MS, Niu BL, Li Y, Zhao J, Yang CH, Li Y, Chen M, Jiao XY. Delayed metformin treatment improves functional recovery following traumatic brain injury via central AMPK-dependent brain tissue repair. Brain Res Bull 2020; 164:146-156. [DOI: 10.1016/j.brainresbull.2020.08.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 11/15/2022]
|
36
|
Rahimi S, Ferdowsi A, Siahposht-Khachaki A. Neuroprotective effects of metformin on traumatic brain injury in rats is associated with the AMP-activated protein kinase signaling pathway. Metab Brain Dis 2020; 35:1135-1144. [PMID: 32621159 DOI: 10.1007/s11011-020-00594-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/29/2020] [Indexed: 01/11/2023]
Abstract
Metformin is an activator of AMP-activated protein kinase (AMPK). Thus, it has the potential to restore energy in damaged neurons and attenuate secondary brain damage due to traumatic brain injury (TBI). This study aims to investigate the potential neuroprotective effects of metformin through the energy balance reestablishment in acute severe brain injury after TBI and explore the underlying mechanisms. Male Wistar rats were divided into eight groups. The veterinary coma scale (VCS) was used to assess short-term neurological deficits. Blood-Brain barrier (BBB) disruption was evaluated by Evans Blue method 6 h post-injury. Vestibulomotor function was evaluated by beam-walk and beam-balance methods. Brain water content and brain tissue phosphorylated and total AMPK were assessed by the wet/dry method and enzyme-linked immunosorbent assay (ELISA), respectively. In order to eliminate the effect of AMPK, compound C was used as an AMPK inhibitor. The presented study showed that TBI has led to significant brain edema, BBB disruption, neurological deficit, vestibulomotor dysfunction and decrease AMPK phosphorylation in the rat brain. Metformin (100 and 200 mg/kg doses) attenuated brain edema, improved BBB and vestibulomotor dysfunction compared to TBI or Vehicle groups (P < 0.001). Furthermore, the p-AMPK/AMPK ratio was increased by metformin administration compare to TBI or Vehicle groups (p < 0.0001). Inhibition of AMPK by compound C abolished Metformin neuroprotective effects (P < 0.05 compared to Met 200 group). This study suggests that metformin inhibits TBI-mediated secondary injury via phosphorylation of AMPK and improves neurobehavioral function following TBI, which provides a potential therapeutic opportunity in the treatment of TBI.
Collapse
Affiliation(s)
- Siavash Rahimi
- Department of Physiology and Pharmacology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmadreza Ferdowsi
- Department of Physiology and Pharmacology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Siahposht-Khachaki
- Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, P.O.Box: 48471-91971, Sari, Iran.
| |
Collapse
|
37
|
Endosomal-lysosomal dysfunction in metabolic diseases and Alzheimer's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:303-324. [PMID: 32739009 DOI: 10.1016/bs.irn.2020.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The endosomal-lysosomal pathways and related autophagic processes are responsible for proteostasis, involving complexes between lysosomes and autophagosomes. Lysosomes are a key component of homeostasis, involved in cell signaling, metabolism, and quality control, and they experience functional compromise in metabolic diseases, aging, and neurodegenerative diseases. Many genetic mutations and risk factor genes associated with proteinopathies, as well as with metabolic diseases like diabetes, negatively influence endocytic trafficking and autophagic clearance. In contrast, health-improving exercise induces autophagy-lysosomal degradation, perhaps promoting efficient digestion of injured organelles so that undamaged organelles ensure cellular healthiness. Reductions in lysosomal hydrolases are implicated in Alzheimer's, Parkinson's, and lysosomal storage diseases, as well as obesity-related pathology, and members of the cathepsin enzyme family are involved in clearing both Aβ42 and α-synuclein. Upregulation of cathepsin hydrolases improves synaptic and memory functions in models of dementia and in exercising humans, thus identifying lysosomal-related systems as vital for healthy cognitive aging.
Collapse
|
38
|
Zhang B, Gao Y, Li Q, Sun D, Dong X, Li X, Xin W, Zhang J. Effects of Brain-Derived Mitochondria on the Function of Neuron and Vascular Endothelial Cell After Traumatic Brain Injury. World Neurosurg 2020; 138:e1-e9. [DOI: 10.1016/j.wneu.2019.11.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022]
|
39
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
40
|
Wu Y, Cui J. (-)-Epigallocatechin-3-gallate provides neuroprotection via AMPK activation against traumatic brain injury in a mouse model. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:2209-2220. [PMID: 32062732 DOI: 10.1007/s00210-020-01841-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. (-)-Epigallocatechin-3-gallate (EGCG) has shown robust neuroprotective effects on various brain injury models in rodents. Herein, we aimed to investigate if EGCG protects against TBI and unravel the underlying mechanisms. A total of 102 mice were used for this study. TBI was induced by controlled cortical impact (CCI). EGCG was given immediately after TBI injury. Neurological functions were accessed by corner test, paw placement, modified neurological severity score, rotarod test, and Morris water maze test. AMPK inhibitor and AMPKα1-knockout mice were used to further study the signaling pathways involved in the observed effects. Our results show that EGCG significantly ameliorated CCI-induced neurological impairment, including spatial learning and memory. EGCG suppressed CCI-induced inflammation and oxidative stress. Furthermore, EGCG downregulated the phosphorylation of IKKα/β, IκBα, and nuclear translocation of NF-κB p65; upregulated AMPK phosphorylation; and altered corresponding changes in the phosphorylation of the downstream target's ribosomal protein S6, AS160, and CaMKKß. Our data demonstrate that EGCG protects against CCI-induced TBI through the activation of the AMPK pathway in mice, suggesting that EGCG might be a promising therapeutic intervention preventing locomotor and cognitive impairments after TBI.
Collapse
Affiliation(s)
- Yinyin Wu
- The Second People's Hospital of Hefei City, Intersection of Guangde Road and Leshui Road, Yaohai District, Hefei, 230011, Anhui, China.
| | - Jing Cui
- The Second People's Hospital of Hefei City, Intersection of Guangde Road and Leshui Road, Yaohai District, Hefei, 230011, Anhui, China
| |
Collapse
|
41
|
Yu X, Hu Y, Huang W, Ye N, Yan Q, Ni W, Jiang X. Role of AMPK/SIRT1-SIRT3 signaling pathway in affective disorders in unpredictable chronic mild stress mice. Neuropharmacology 2019; 165:107925. [PMID: 31877320 DOI: 10.1016/j.neuropharm.2019.107925] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore the role of 5' adenosine monophosphate-activated protein kinase/sirtuin1-sirtuin3 (AMPK/SIRT1-SIRT3) signaling pathway in behavioral and neuroinflammation/oxidative stress alterations in unpredictable chronic mild stress (UCMS) model mice. METHODS Male ICR mice weighing 20-22 g were used in this study. Behavior performance was evaluated from the 14th day of drug treatment. Expression levels of AMPK, SIRT1, SIRT3, and NF-κBp65 were tested by immuno-blot analysis. Contents of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) were detected by enzyme linked immunosorbent assay (ELISA). Reactive oxygen species (ROS), superoxide dismutase (SOD) and glutathione (GSH) expressions were tested by neurochemical and biochemical assays. RESULTS Behavioral disorders and decreases of AMPK, SIRT1 and SIRT3 induced by UCMS were all reversed by AICA Riboside (AICAR) treatment. These effects were correlated with alterations of oxidative stress (ROS, GSH, SOD) and inflammation (pNF-κBp65, TNF-α, IL-1β, IL-6) status. Co-treatment with SIRT3 inhibitor (3-TYP) in addition to AICAR abolished AICAR's effects on behavior and expression level of inflammation/oxidative stress-related factors of mice, without affecting the content of SIRT1. Contrarily, combining use of AICAR and SIRT1 inhibitor (Sirtinol or EX-527) increased SIRT3 level, which led to better alleviation of behavioral disorders, compared with single AICAR treatment. Interestingly, in normal or UCMS mice, up or down regulation of SIRT1 did not affect SIRT3 level. CONCLUSION Provided that AMPK is activated, SIRT1 inhibition could induce the increase of SIRT3, and SIRT3 exerts more beneficial function in alleviation of consequences of chronic stress than SIRT1.
Collapse
Affiliation(s)
- Xuefeng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Ying Hu
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Wenkai Huang
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Nuo Ye
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Qizhi Yan
- Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, China
| | - Wenjuan Ni
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China
| | - Xi Jiang
- Department of Pharmacy, Zhejiang Pharmaceutical College, Zhejiang Province, 315000, China; Zhejiang University Mingzhou Hospital, Zhejiang Province, 315000, China.
| |
Collapse
|
42
|
Saito M, Saito M, Das BC. Involvement of AMP-activated protein kinase in neuroinflammation and neurodegeneration in the adult and developing brain. Int J Dev Neurosci 2019; 77:48-59. [PMID: 30707928 PMCID: PMC6663660 DOI: 10.1016/j.ijdevneu.2019.01.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/29/2018] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
Microglial activation followed by neuroinflammation is a defense mechanism of the brain to eliminate harmful endogenous and exogenous materials including pathogens and damaged tissues, while excessive or chronic neuroinflammation may cause or exacerbate neurodegeneration observed in brain injuries and neurodegenerative diseases. Depending on conditions/environments during activation, microglia acquire distinct phenotypes, such as pro-inflammatory, anti-inflammatory, and disease-associated phenotypes, and show their ability to phagocytose various objects and produce pro-and anti-inflammatory mediators. Prevention of excessive inflammation by regulating the microglia's pro/anti-inflammatory balance is important for alleviating progression of brain injuries and diseases. Among many factors involved in the regulation of microglial phenotypes, cellular energy status plays an important role. Adenosine monophosphate-activated protein kinase (AMPK), which serves as a master sensor and regulator of energy balance, is considered a candidate molecule. Accumulating evidence from adult rodent studies indicates that AMPK activation promotes anti-inflammatory responses in microglia exposed to danger signals or various stressors mainly through inhibition of the nuclear factor κB (NF-κB) signaling and activation of the nuclear factor erythroid-2-related factor-2 (Nrf2) pathway. However, AMPK activation in neurons exposed to stressors/insults may exacerbate neuronal damage if AMPK activation is excessive or prolonged. While AMPK affects microglial activation states and neuronal cell survival rates in both the adult and the developing brain, studies in the developing brain are still scarce, even though activated AMPK is highly expressed especially in the neonatal brain. More in depth studies in the developing brain are important, because neuroinflammation/neurodegeneration occurred during development can result in long-lasting brain damage.
Collapse
Affiliation(s)
- Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
- Department of Psychiatry, New York University Langone Medical Center 550 First Avenue, New York, NY 10016, USA
| | - Mitsuo Saito
- Division of Analytical Psychopharmacology, Nathan S. Kline Institute for Psychiatric Research 140 Old Orangeburg, Orangeburg, NY 10962, USA
| | - Bhaskar C. Das
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai 1468 Madison Avenue, Annenberg 19-201, New York, NY 10029, USA
| |
Collapse
|
43
|
Campbell JM, Stephenson MD, de Courten B, Chapman I, Bellman SM, Aromataris E. Metformin Use Associated with Reduced Risk of Dementia in Patients with Diabetes: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2019; 65:1225-1236. [PMID: 30149446 PMCID: PMC6218120 DOI: 10.3233/jad-180263] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Metformin, a first line antihyperglycemic medication, is an AMPK activator and has been hypothesized to act as a geroprotective agent. Studies on its association with various classifications of age-related cognitive decline have shown mixed results with positive and negative findings. Objective: To synthesize the best available evidence on the association of metformin-use with risk, progression, and severity of dementia. Method: Eligible research investigated the effect of metformin on dementia, Alzheimer’s disease, or any measure of cognitive impairment compared to any control group who were not receiving metformin. The initial search resulted in 862 citations from which 14 studies (seven cohort, four cross-sectional, two RCTs, and one case control) were included. Results: Meta-analysis of three studies showed that cognitive impairment was significantly less prevalent in diabetic metformin (Odds ratio = 0.55, 95% CI 0.38 to 0.78), while six studies showed that dementia incidence was also significantly reduced (Hazard ratio = 0.76, 95% CI 0.39 to 0.88). Mini-Mental State Examination scores were not significantly affected by metformin-use, although both RCTs showed that metformin had a neuroprotective effect compared to placebo. Some studies found negative or neutral effects for metformin use by people with diabetes; the potential mechanism of metformin-induced vitamin B12 deficiency is discussed. Conclusions: Metformin should continue to be used as a first line therapy for diabetes in patients at risk of developing dementia or Alzheimer’s disease. The use of metformin by individuals without diabetes for the prevention of dementia is not supported by the available evidence.
Collapse
Affiliation(s)
- Jared M Campbell
- Joanna Briggs Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia.,Centre for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales
| | - Matthew D Stephenson
- Joanna Briggs Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia
| | - Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Ian Chapman
- Discipline of Medicine, National Health and Medical Research Council of Australia (NHMRC) Centre of Research Excellence in Translating Nutritional Science to Good Health, University of Adelaide, Adelaide, Australia
| | - Susan M Bellman
- Joanna Briggs Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia
| | - Edoardo Aromataris
- Joanna Briggs Institute, Faculty of Health and Medical Sciences, The University of Adelaide, South Australia
| |
Collapse
|
44
|
Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019. [PMID: 31330909 DOI: 10.3390/cells8070760.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5'AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain.
Collapse
|
45
|
Rehman SU, Ikram M, Ullah N, Alam SI, Park HY, Badshah H, Choe K, Kim MO. Neurological Enhancement Effects of Melatonin against Brain Injury-Induced Oxidative Stress, Neuroinflammation, and Neurodegeneration via AMPK/CREB Signaling. Cells 2019; 8:E760. [PMID: 31330909 PMCID: PMC6678342 DOI: 10.3390/cells8070760] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress and energy imbalance strongly correlate in neurodegenerative diseases. Repeated concussion is becoming a serious public health issue with uncontrollable adverse effects in the human population, which involve cognitive dysfunction and even permanent disability. Here, we demonstrate that traumatic brain injury (TBI) evokes oxidative stress, disrupts brain energy homeostasis, and boosts neuroinflammation, which further contributes to neuronal degeneration and cognitive dysfunction in the mouse brain. We also demonstrate that melatonin (an anti-oxidant agent) treatment exerts neuroprotective effects, while overcoming oxidative stress and energy depletion and reducing neuroinflammation and neurodegeneration. Male C57BL/6N mice were used as a model for repetitive mild traumatic brain injury (rmTBI) and were treated with melatonin. Protein expressions were examined via Western blot analysis, immunofluorescence, and ELISA; meanwhile, behavior analysis was performed through a Morris water maze test, and Y-maze and beam-walking tests. We found elevated oxidative stress, depressed phospho-5'AMP-activated protein kinase (p-AMPK) and phospho- CAMP-response element-binding (p-CREB) levels, and elevated p-NF-κB in rmTBI mouse brains, while melatonin treatment significantly regulated p-AMPK, p-CREB, and p-NF-κB in the rmTBI mouse brain. Furthermore, rmTBI mouse brains showed a deregulated mitochondrial system, abnormal amyloidogenic pathway activation, and cognitive functions which were significantly regulated by melatonin treatment in the mice. These findings provide evidence, for the first time, that rmTBI induces brain energy imbalance and reduces neuronal cell survival, and that melatonin treatment overcomes energy depletion and protects against brain damage via the regulation of p-AMPK/p-CREB signaling pathways in the mouse brain.
Collapse
Affiliation(s)
- Shafiq Ur Rehman
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Muhammad Ikram
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Najeeb Ullah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Khyber Pakhtunkhwa 25100, Pakistan
| | - Sayed Ibrar Alam
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hyun Young Park
- Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience|Alzheimer Center Limburg, Maastricht 6229ER, The Netherlands
| | - Haroon Badshah
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kyonghwan Choe
- Maastricht University Medical Center (MUMC+), School for Mental Health and Neuroscience|Alzheimer Center Limburg, Maastricht 6229ER, The Netherlands
| | - Myeong Ok Kim
- Division of Life sciences and Applied Life Science (BK 21plus), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
46
|
Metformin administration prevents memory impairment induced by hypobaric hypoxia in rats. Behav Brain Res 2019; 363:30-37. [DOI: 10.1016/j.bbr.2019.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/12/2019] [Accepted: 01/26/2019] [Indexed: 12/21/2022]
|
47
|
Garza-Lombó C, Schroder A, Reyes-Reyes EM, Franco R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. CURRENT OPINION IN TOXICOLOGY 2018; 8:102-110. [PMID: 30417160 PMCID: PMC6223325 DOI: 10.1016/j.cotox.2018.05.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mechanistic (or mammalian) target of rapamycin (mTOR) and the adenosine monophosphate-activated protein kinase (AMPK) regulate cell survival and metabolism in response to diverse stimuli such as variations in amino acid content, changes in cellular bioenergetics, oxygen levels, neurotrophic factors and xenobiotics. This Opinion paper aims to discuss the current state of knowledge regarding how mTOR and AMPK regulate the metabolism and survival of brain cells and the close interrelationship between both signaling cascades. It is now clear that both mTOR and AMPK pathways regulate cellular homeostasis at multiple levels. Studies so far demonstrate that dysregulation in these two pathways is associated with neuronal injury, degeneration and neurotoxicity, but the mechanisms involved remain unclear. Most of the work so far has been focused on their antagonistic regulation of autophagy, but recent findings highlight that changes in protein synthesis, metabolism and mitochondrial function are likely to play a role in the regulatory effects of both mTOR and AMPK on neuronal health. Understanding the role and relationship between these two master regulators of cell metabolism is crucial for future therapeutic approaches to counteract alterations in cell metabolism and survival in brain injury and disease.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México 04510
| | - Annika Schroder
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| | - Elsa M. Reyes-Reyes
- University of Arizona College of Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Tucson, AZ 85724
| | - Rodrigo Franco
- Redox Biology Center. University of Nebraska-Lincoln, Lincoln, NE 68588
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583
| |
Collapse
|
48
|
Limited daily feeding and intermittent feeding have different effects on regional brain energy homeostasis during aging. Biogerontology 2018; 19:121-132. [PMID: 29340834 DOI: 10.1007/s10522-018-9743-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022]
Abstract
Albeit aging is an inevitable process, the rate of aging is susceptible to modifications. Dietary restriction (DR) is a vigorous nongenetic and nonpharmacological intervention that is known to delay aging and increase healthspan in diverse species. This study aimed to compare the impact of different restricting feeding regimes such as limited daily feeding (LDF, 60% AL) and intermittent feeding (IF) on brain energy homeostasis during aging. The analysis was focused on the key molecules in glucose and cholesterol metabolism in the cortex and hippocampus of middle-aged (12-month-old) and aged (24-month-old) male Wistar rats. We measured the impact of different DRs on the expression levels of AMPK, glucose transporters (GLUT1, GLUT3, GLUT4), and the rate-limiting enzyme in the cholesterol synthesis pathway (HMGCR). Additionally, we assessed the changes in the amounts of cholesterol, its metabolite, and precursors following LDF and IF. IF decreased the levels of AMPK and pAMPK in the cortex while the increased levels were detected in the hippocampus. Glucose metabolism was more affected in the cortex, while cholesterol metabolism was more influenced in the hippocampus. Overall, the hippocampus was more resilient to the DRs, with fewer changes compared to the cortex. We showed that LDF and IF differently affected the brain energy homeostasis during aging and that specific brain regions exhibited distinct vulnerabilities towards DRs. Consequently, special attention should be paid to the DR application among elderly as different phases of aging do not respond equally to altered nutritional regimes.
Collapse
|
49
|
Osier N, Dixon CE. Mini Review of Controlled Cortical Impact: A Well-Suited Device for Concussion Research. Brain Sci 2017; 7:E88. [PMID: 28726717 PMCID: PMC5532601 DOI: 10.3390/brainsci7070088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023] Open
Abstract
Mild traumatic brain injury (mTBI) is increasingly recognized as a significant public health problem which warrants additional research. Part of the effort to understand mTBI and concussion includes modeling in animals. Controlled cortical impact (CCI) is a commonly employed and well-characterized model of experimental TBI that has been utilized for three decades. Today, several commercially available pneumatic- and electromagnetic-CCI devices exist as do a variety of standard and custom injury induction tips. One of CCI's strengths is that it can be scaled to a number of common laboratory animals. Similarly, the CCI model can be used to produce graded TBI ranging from mild to severe. At the mild end of the injury spectrum, CCI has been applied in many ways, including to study open and closed head mTBI, repeated injuries, and the long-term deficits associated with mTBI and concussion. The purpose of this mini-review is to introduce the CCI model, discuss ways the model can be applied to study mTBI and concussion, and compare CCI to alternative pre-clinical TBI models.
Collapse
Affiliation(s)
- Nicole Osier
- School of Nursing, Holistic Adult Health Division, University of Texas at Austin, Austin, TX 78701, USA.
- Dell Medical School, Department of Neurology, University of Texas at Austin, Austin, TX 78701, USA.
| | - C Edward Dixon
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15224, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
50
|
Krishna G, Agrawal R, Zhuang Y, Ying Z, Paydar A, Harris NG, Royes LFF, Gomez-Pinilla F. 7,8-Dihydroxyflavone facilitates the action exercise to restore plasticity and functionality: Implications for early brain trauma recovery. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1204-1213. [PMID: 28315455 DOI: 10.1016/j.bbadis.2017.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/12/2022]
Abstract
Metabolic dysfunction accompanying traumatic brain injury (TBI) severely impairs the ability of injured neurons to comply with functional demands. This limits the success of rehabilitative strategies by compromising brain plasticity and function, and highlights the need for early interventions to promote energy homeostasis. We sought to examine whether the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) normalizes brain energy deficits and reestablishes more normal patterns of functional connectivity, while enhancing the effects of exercise during post-TBI period. Moderate fluid percussion injury (FPI) was performed and 7,8-DHF (5mg/kg, i.p.) was administered in animals subjected to FPI that either had access to voluntary wheel running for 7days after injury or were sedentary. Compared to sham-injured controls, TBI resulted in reduced hippocampal activation of the BDNF receptor TrkB and associated CREB, reduced levels of plasticity markers GAP-43 and Syn I, as well as impaired memory as indicated by the Barnes maze task. While 7,8-DHF treatment and exercise individually mitigated TBI-induced effects, administration of 7,8-DHF concurrently with exercise facilitated memory performance and augmented levels of markers of cell energy metabolism viz., PGC-1α, COII and AMPK. In parallel to these findings, resting-state functional MRI (fMRI) acquired at 2weeks after injury showed that 7,8-DHF with exercise enhanced hippocampal functional connectivity, and suggests 7,8-DHF and exercise to promote increases in functional connectivity. Together, these findings indicate that post-injury 7,8-DHF treatment promotes enhanced levels of cell metabolism, synaptic plasticity in combination with exercise increases in brain circuit function that facilitates greater physical rehabilitation after TBI.
Collapse
Affiliation(s)
- Gokul Krishna
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Rahul Agrawal
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Yumei Zhuang
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Zhe Ying
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA
| | - Afshin Paydar
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Neil G Harris
- Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA
| | - Luiz Fernando F Royes
- Exercise and Biochemistry Laboratory, Center of Physical Education and Sports (CEFD), Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernando Gomez-Pinilla
- Department of Integrative Biology & Physiology, University of California, Los Angeles, CA, USA; Department of Neurosurgery, UCLA Brain Injury Research Center, Los Angeles, CA, USA.
| |
Collapse
|