1
|
Bhoi S, Sarangi P, Pradhan LK, Sahoo PK, Sahoo BS, Aparna S, Raut S, Das SK. Bisphenol F-induced precocious genesis of aggressive neurobehavioral response is associated with heightened monoamine oxidase activity and neurodegeneration in zebrafish brain. Neurotoxicol Teratol 2024; 106:107402. [PMID: 39454971 DOI: 10.1016/j.ntt.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
The production and use of plastics and plastics products has increased dramatically in recent decades. Moreover, their unprotected disposal into ambient life sustaining environment poses a significant health risk. Bisphenol F (BPF) an alternative to bisphenol A (BPA) has been extensively employed for making of plastics. Recent reports have documented the neurotoxic potential of BPF through induction of altered neurochemical profile, microglia-astrocyte-mediated neuroinflammation, oxidative stress, transformed neurobehavioral response, cognitive dysfunction, etc. In the present study, our approach was to understand the underlying mechanism of BPF-persuaded genesis of aggressive neurobehavioral response in zebrafish. The basic findings advocated a temporal transformation in native explorative behaviour and progressive induction of aggressive behavioural response in zebrafish following exposure to BPF. Our neurobehavioral findings supported the argument of oxidative stress-mediated neuromorphological transformation in the periventricular grey zone (PGZ) of the zebrafish brain. In line with earlier reports, our findings also showed that heightened monoamine oxidase (MAO) activity and downregulation in tyrosine hydroxylase expression in the zebrafish brain is associated with the precocious genesis of aggressive neurobehavioral response in zebrafish brain. Our findings also shed light on BPF-instigated apoptotic neuronal death as revealed by augmented chromatin condensation and cleaved caspase-3 expression. Further observation showed that the downregulation of NeuN (a marker of post-mitotic mature neuron) expression provided substantial neurotoxicity, leading to neurodegeneration in the PGZ region of the zebrafish brain. These basic findings grossly advocate that BPF acts as a potent neurotoxicant in transmuting native neurobehavioral response through the induction of oxidative stress, heightened MAO activity and neuromorphological transformation in the zebrafish brain.
Collapse
Affiliation(s)
- Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Sai Aparna
- Department of Zoology, Ravenshaw University, College Square, Cuttack, Odisha 751003, India
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
2
|
Sarangi P, Sahoo PK, Pradhan LK, Bhoi S, Sahoo BS, Chauhan NR, Raut S, Das SK. Concerted monoamine oxidase activity following exposure to di-2-ethylhexyl phthalate is associated with aggressive neurobehavioral response and neurodegeneration in zebrafish brain. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109970. [PMID: 38944366 DOI: 10.1016/j.cbpc.2024.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is the most commonly preferred synthetic organic chemical in plastics and its products for making them ductile, flexible and durable. As DEHP is not chemically bound to the macromolecular polymer of plastics, it can be easily leached out to accumulate in food and environment. Our recent report advocated that exposure to DEHP significantly transformed the innate bottom-dwelling and scototaxis behaviour of zebrafish. Our present study aimed to understand the possible role of DEHP exposure pertaining towards the development of aggressive behaviour and its association with amplified monoamine oxidase activity and neurodegeneration in the zebrafish brain. As heightened monoamine oxidase (MAO) is linked with genesis of aggressive behaviour, our observation also coincides with DEHP-persuaded aggressive neurobehavioral transformation in zebrafish. Our preliminary findings also showed that DEHP epitomized as a prime factor in transforming native explorative behaviour and genesis of aggressive behaviour through oxidative stress induction and changes in the neuromorphology in the periventricular grey zone (PGZ) of the zebrafish brain. With the finding demarcating towards heightened chromatin condensation in the PGZ of zebrafish brain, our further observation by immunohistochemistry showed a profound augmentation in apoptotic cell death marker cleaved caspase 3 (CC3) expression following exposure to DEHP. Our further observation by immunoblotting study also demarcated a temporal augmentation in CC3 and tyrosine hydroxylase expression in the zebrafish brain. Therefore, the gross findings of the present study delineate the idea that chronic exposure to DEHP is associated with MAO-instigated aggressive neurobehavioral transformation and neurodegeneration in the zebrafish brain.
Collapse
Affiliation(s)
- Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Centre of Excellence, Natural Products and Therapeutics Laboratory, Department of Biotechnology and Bioinformatics, Sambalpur University, Odisha 768019, India
| | - Suvam Bhoi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Bhabani Sankar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Institute of Life Sciences, NALCO Nagar, Chandrasekharpur, Bhubaneswar, Odisha 751023, India
| | - Nishant Ranjan Chauhan
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sangeeta Raut
- Environmental Biotechnology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar 751003, India; Department of Zoology, Kuntala Kumari Sabat Women's College, Balasore, Odisha 756003, India.
| |
Collapse
|
3
|
Marasini S, Jia X. Neuroprotective Approaches for Brain Injury After Cardiac Arrest: Current Trends and Prospective Avenues. J Stroke 2024; 26:203-230. [PMID: 38836269 PMCID: PMC11164592 DOI: 10.5853/jos.2023.04329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 02/20/2024] [Indexed: 06/06/2024] Open
Abstract
With the implementation of improved bystander cardiopulmonary resuscitation techniques and public-access defibrillation, survival after out-of-hospital cardiac arrest (OHCA) has increased significantly over the years. Nevertheless, OHCA survivors have residual anoxia/reperfusion brain damage and associated neurological impairment resulting in poor quality of life. Extracorporeal membrane oxygenation or targeted temperature management has proven effective in improving post-cardiac arrest (CA) neurological outcomes, yet considering the substantial healthcare costs and resources involved, there is an urgent need for alternative treatment strategies that are crucial to alleviate brain injury and promote recovery of neurological function after CA. In this review, we searched PubMed for the latest preclinical or clinical studies (2016-2023) utilizing gas-mediated, pharmacological, or stem cell-based neuroprotective approaches after CA. Preclinical studies utilizing various gases (nitric oxide, hydrogen, hydrogen sulfide, carbon monoxide, argon, and xenon), pharmacological agents targeting specific CA-related pathophysiology, and stem cells have shown promising results in rodent and porcine models of CA. Although inhaled gases and several pharmacological agents have entered clinical trials, most have failed to demonstrate therapeutic effects in CA patients. To date, stem cell therapies have not been reported in clinical trials for CA. A relatively small number of preclinical stem-cell studies with subtle therapeutic benefits and unelucidated mechanistic explanations warrant the need for further preclinical studies including the improvement of their therapeutic potential. The current state of the field is discussed and the exciting potential of stem-cell therapy to abate neurological dysfunction following CA is highlighted.
Collapse
Affiliation(s)
- Subash Marasini
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Gonçalves JS, Marçal AL, Marques BS, Costa FD, Laranjinha J, Rocha BS, Lourenço CF. Dietary nitrate supplementation and cognitive health: the nitric oxide-dependent neurovascular coupling hypothesis. Biochem Soc Trans 2024; 52:279-289. [PMID: 38385536 DOI: 10.1042/bst20230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
Diet is currently recognized as a major modifiable agent of human health. In particular, dietary nitrate has been increasingly explored as a strategy to modulate different physiological mechanisms with demonstrated benefits in multiple organs, including gastrointestinal, cardiovascular, metabolic, and endocrine systems. An intriguing exception in this scenario has been the brain, for which the evidence of the nitrate benefits remains controversial. Upon consumption, nitrate can undergo sequential reduction reactions in vivo to produce nitric oxide (•NO), a ubiquitous paracrine messenger that supports multiple physiological events such as vasodilation and neuromodulation. In the brain, •NO plays a key role in neurovascular coupling, a fine process associated with the dynamic regulation of cerebral blood flow matching the metabolic needs of neurons and crucial for sustaining brain function. Neurovascular coupling dysregulation has been associated with neurodegeneration and cognitive dysfunction during different pathological conditions and aging. We discuss the potential biological action of nitrate on brain health, concerning the molecular mechanisms underpinning this association, particularly via modulation of •NO-dependent neurovascular coupling. The impact of nitrate supplementation on cognitive performance was scrutinized through preclinical and clinical data, suggesting that intervention length and the health condition of the participants are determinants of the outcome. Also, it stresses the need for multimodal quantitative studies relating cellular and mechanistic approaches to function coupled with behavior clinical outputs to understand whether a mechanistic relationship between dietary nitrate and cognitive health is operative in the brain. If proven, it supports the exciting hypothesis of cognitive enhancement via diet.
Collapse
Affiliation(s)
- João S Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Ana L Marçal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Marques
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Filipa D Costa
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - João Laranjinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Bárbara S Rocha
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Cátia F Lourenço
- Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Science Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
5
|
Sarangi P, Pradhan LK, Sahoo PK, Chauhan NR, Das SK. Di-2-ethylhexyl phthalate-induced neurobehavioural transformation is associated with altered glutathione biosynthesis and neurodegeneration in zebrafish brain. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:501-514. [PMID: 37131059 DOI: 10.1007/s10695-023-01197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/06/2023] [Indexed: 05/04/2023]
Abstract
The contamination of life-sustaining environments with synthetic pollutants such as plastic-derived compounds has increased at an alarming rate in recent decades. Among such contaminants, di-2-ethylhexyl phthalate (DEHP) is an extensively used compound in plastics and plastic products to make them flexible. DEHP causes several adverse effects such as reproductive toxicity leading to infertility, miscarriage and litter size reduction, disruption of the thyroid endocrine system, oxidative stress, neurodevelopmental defect and cognitive impairment. An aquatic environment is a fragile site, where the accumulation of DEHP poses a significant threat to living organisms. In this context, the present study focused on whether the neurobehavioural transformation following exposure to DEHP is an outcome of augmented oxidative stress and neuromorphological alteration in the zebrafish brain. Our preliminary findings advocate that DEHP acts as a typical neurotoxicant in inducing neurobehavioural transformation in zebrafish. Furthermore, our study also supports the idea that DEHP itself acts as a potent neurotoxicant by altering the glutathione biosynthetic pathway through the induction of oxidative stress in the zebrafish brain. Similarly, our findings also link the abovementioned neurobehavioural transformation and oxidative stress with augmented neuronal pyknosis and chromatin condensation in the periventricular grey zone of the zebrafish brain following chronic exposure to DEHP. Therefore, the overall conclusion of the present study advocates the potential role of DEHP in inducing neuropathological manifestation in the zebrafish brain. Future research directed towards elucidating the neuroprotective efficacy of natural compounds against DEHP-induced neurotoxicity may provide a new line of intervention.
Collapse
Affiliation(s)
- Prerana Sarangi
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India
| | - Nishant Ranjan Chauhan
- Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar, 751023, India
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar, 751003, India.
- P.G. Department of Life Sciences, Sri Krushna Chandra Gajapati (Autonomous) College, Paralakhemundi, Gajapati, 761200, India.
| |
Collapse
|
6
|
Dias C, Lourenço CF, Laranjinha J, Ledo A. Modulation of oxidative neurometabolism in ischemia/reperfusion by nitrite. Free Radic Biol Med 2022; 193:779-786. [PMID: 36403737 DOI: 10.1016/j.freeradbiomed.2022.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/12/2022] [Indexed: 11/19/2022]
Abstract
Nitrite has been viewed essentially as an inert metabolic endpoint of nitric oxide (•NO). However, under certain conditions, nitrite can be a source of •NO. In the brain, this alternative source of •NO production independent of nitric oxide synthase activity may be particularly relevant in ischemia/reperfusion (I/R), where low oxygen availability limits enzymatic production of •NO. Notably, in vivo concentration of nitrite can be easily increased with diet, through the ingestion of nitrate-rich foods, opening the window for a therapeutic intervention based on diet. Considering the modulation of mitochondrial respiration by •NO, we have hypothesized that the protective action of nitrite in I/R may also result from modulation of mitochondrial function. We used high-resolution respirometry to evaluate the effects of nitrite in two in vitro models of I/R. In both cases, an increase in oxygen flux was observed following reoxygenation, a phenomenon that has been coined "oxidative burst". The amplitude of this "oxidative burst" was decreased by nitrite in a concentration-dependent manner. Additionally, a pilot in vivo study in which animals received a nitrate-rich diet as a strategy to increase circulating and tissue levels of nitrite also revealed that the "oxidative burst" was decreased in the nitrate-treated animals. These results may provide mechanistic support to the observation of a protective effect of nitrite in situations of brain ischemia.
Collapse
Affiliation(s)
- C Dias
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - C F Lourenço
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - J Laranjinha
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal
| | - A Ledo
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Center for Neuroscience and Cell Biology, Coimbra, Portugal.
| |
Collapse
|
7
|
Jackson TC, Dezfulian C, Vagni VA, Stezoski J, Janesko-Feldman K, Kochanek PM. PHLPP Inhibitor NSC74429 Is Neuroprotective in Rodent Models of Cardiac Arrest and Traumatic Brain Injury. Biomolecules 2022; 12:1352. [PMID: 36291561 PMCID: PMC9599532 DOI: 10.3390/biom12101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 09/07/2024] Open
Abstract
Pleckstrin homology domain and leucine rich repeat protein phosphatase (PHLPP) knockout mice have improved outcomes after a stroke, traumatic brain injury (TBI), and decreased maladaptive vascular remodeling following vascular injury. Thus, small-molecule PHLPP inhibitors have the potential to improve neurological outcomes in a variety of conditions. There is a paucity of data on the efficacy of the known experimental PHLPP inhibitors, and not all may be suited for targeting acute brain injury. Here, we assessed several PHLPP inhibitors not previously explored for neuroprotection (NSC13378, NSC25247, and NSC74429) that had favorable predicted chemistries for targeting the central nervous system (CNS). Neuronal culture studies in staurosporine (apoptosis), glutamate (excitotoxicity), and hydrogen peroxide (necrosis/oxidative stress) revealed that NSC74429 at micromolar concentrations was the most neuroprotective. Subsequent testing in a rat model of asphyxial cardiac arrest, and in a mouse model of severe TBI, showed that serial dosing of 1 mg/kg of NSC74429 over 3 days improved hippocampal survival in both models. Taken together, NSC74429 is neuroprotective across multiple insult mechanisms. Future pharmacokinetic and pharmacodynamic (PK/PD) studies are warranted to optimize dosing, and mechanistic studies are needed to determine the percentage of neuroprotection mediated by PHLPP1/2 inhibition, or potentially from the modulation of PHLPP-independent targets.
Collapse
Affiliation(s)
- Travis C. Jackson
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs BLDV, Tampa, FL 33612, USA
- USF Health Heart Institute, Morsani College of Medicine, University of South Florida, 560 Channelside Dr, Tampa, FL 33602, USA
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Pediatrics, Baylor College of Medicine, 6651 Main Street, Houston, TX 77030, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Vincent A. Vagni
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Jason Stezoski
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| | - Patrick M. Kochanek
- Safar Center for Resuscitation Research, UPMC Children’s Hospital of Pittsburgh, Rangos Research Center—6th Floor, Pittsburgh, PA 15224, USA
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 4401 Penn Avenue, Pittsburgh, PA 15224, USA
| |
Collapse
|
8
|
Understanding heterogeneity in mitochondrial injury after cardiac arrest using plasma metabolomics. Resuscitation 2022; 179:83-85. [DOI: 10.1016/j.resuscitation.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/21/2022]
|
9
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
10
|
Wolf MS, Manole MD, New LA, Chen Y, Soysal E, Kochanek PM, Bayır H, Clark RSB. Ascorbate deficiency confers resistance to hippocampal neurodegeneration after asphyxial cardiac arrest in juvenile rats. Pediatr Res 2022; 91:820-827. [PMID: 33846553 PMCID: PMC8505544 DOI: 10.1038/s41390-021-01515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Asphyxial cardiac arrest (CA) is a significant cause of death and disability in children. Using juvenile Osteogenic disorder Shionogi (ODS) rats that, like humans, do not synthesize ascorbate, we tested the effect of ascorbate deficiency on functional and histological outcome after CA. METHODS Postnatal day 16-18 milk-fed ODS and wild-type Wistar rats underwent 9-min asphyxial CA (n = 8/group) or sham surgery (n = 4/group). ODS mothers received ascorbate in drinking water to prevent scurvy. Levels of ascorbate and glutathione (GSH) were measured in plasma and hippocampus at baseline and after CA. Neurologic deficit score (NDS) was measured at 3, 24, and 48 h and hippocampal neuronal counts, neurodegeneration, and microglial activation were assessed at day 7. RESULTS ODS rats showed depletion of plasma and hippocampal ascorbate, attenuated hippocampal neurodegeneration and microglial activation, and increased CA1 hippocampal neuron survival vs. Wistar rats while NDS were similar. Hippocampal GSH levels were higher in ODS vs. Wistar rats at baseline and 10 min, whereas hypoxia-inducible factor-1α levels were higher in Wistar vs. ODS rats at 24 , after CA. CONCLUSION Ascorbate-deficient juvenile ODS rats appear resistant to neurodegeneration produced by asphyxia CA, possibly related to upregulation of the endogenous antioxidant GSH in brain. IMPACT Like humans and unlike other rodents, osteogenic disorder Shionogi (ODS) rats do not synthesize ascorbate, and thus may serve as a useful model for studying the role of ascorbate in human disease. Conflicting evidence exists regarding ascorbate's protective versus detrimental effects in animal models and clinical studies. Ascorbate-deficient ODS rats are resistant to neurodegeneration after experimental cardiac arrest.
Collapse
Affiliation(s)
- Michael S. Wolf
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pediatrics, Division of Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Mioara D. Manole
- Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lee Ann New
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yaming Chen
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Elif Soysal
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hülya Bayır
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania,Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Robert S. B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania,Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania,Children’s Neuroscience Institute, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania,Correspondence: Robert S. B. Clark, MD, Faculty Pavilion, Suite 2000, Children’s Hospital of Pittsburgh of UPMC, 4401 Penn Avenue, Pittsburgh, PA 15224, , T: 412-692-7260, F: 412-692-6076
| |
Collapse
|
11
|
Chiletti R, Bennet M, Kenna K, Angerosa J, Sheeran FL, Brink J, Perrier S, Zannino D, Smolich J, Pepe S, Cheung MM. S-nitroso-glutathione limits apoptosis and reduces pulmonary vascular dysfunction after bypass. Ann Thorac Surg 2021; 114:1468-1474. [PMID: 34416229 DOI: 10.1016/j.athoracsur.2021.07.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND During hypoxia or acidosis, S-nitrosoglutathione (GSNO) has been shown to protect the cardiomyocyte from IR injury. In a randomised double blinded control study of a porcine model of paediatric CPB, we aimed to evaluate the effects of two different doses (low and high) of GSNO. METHODS Pigs weighing 15-20 kg were exposed to CPB with one hour of aortic cross-clamp. Prior to and during CPB, animals were randomised to receive low dose (up to 20 nmol/kg/min) GSNO (n=8), high dose (up to 60 nmol/kg/min) GSNO (n=6) or normal saline (n=7). Standard cardiac intensive care management was continued for 4 hours post-bypass. RESULTS There was a reduction in myocyte apoptosis after administration of GSNO (p=0.04) with no difference between low and high dose GSNO. The low dose GSNO group had lower pulmonary vascular resistance post-CPB (p=0.007). Mitochondrial Complex I activity normalised to citrate synthase activity was higher after GSNO compared to control (p=0.02), with no difference between low and high dose GSNO. CONCLUSIONS In a porcine model of CPB intravenous administration of GSNO limits myocardial apoptosis through preservation of mitochondrial complex I activity, and improves pulmonary vascular resistance. There appears to be a dose dependent effect to this protection.
Collapse
Affiliation(s)
- Roberto Chiletti
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia;; Department of Paediatrics, University of Melbourne, Melbourne, Australia;; Paediatric Intensive Care Unit, Royal Children's Hospital, Melbourne, Australia
| | - Martin Bennet
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia;; Department of Paediatrics, University of Melbourne, Melbourne, Australia;; Cardiac Surgery Unit, Royal Children's Hospital, Melbourne, Australia
| | - Kelly Kenna
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia;; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Julie Angerosa
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Freya L Sheeran
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia;; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Johann Brink
- Cardiac Surgery Unit, Starship Hospital, Auckland, New Zealand
| | - Stephanie Perrier
- Cardivascular Surgery, University Hospital of Strasbourg, Strasbourg, France
| | - Diana Zannino
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Joseph Smolich
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia;; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Salvatore Pepe
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia;; Department of Paediatrics, University of Melbourne, Melbourne, Australia;; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia
| | - Michael Mh Cheung
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia;; Department of Paediatrics, University of Melbourne, Melbourne, Australia;; Department of Cardiology, Royal Children's Hospital, Melbourne, Australia.
| |
Collapse
|
12
|
Morgan RW, Sutton RM, Himebauch AS, Roberts AL, Landis WP, Lin Y, Starr J, Ranganathan A, Delso N, Mavroudis CD, Volk L, Slovis J, Marquez AM, Nadkarni VM, Hefti M, Berg RA, Kilbaugh TJ. A randomized and blinded trial of inhaled nitric oxide in a piglet model of pediatric cardiopulmonary resuscitation. Resuscitation 2021; 162:274-283. [PMID: 33766668 DOI: 10.1016/j.resuscitation.2021.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/22/2021] [Accepted: 03/09/2021] [Indexed: 01/17/2023]
Abstract
AIM Inhaled nitric oxide (iNO) during cardiopulmonary resuscitation (CPR) improved systemic hemodynamics and outcomes in a preclinical model of adult in-hospital cardiac arrest (IHCA) and may also have a neuroprotective role following cardiac arrest. The primary objectives of this study were to determine if iNO during CPR would improve cerebral hemodynamics and mitochondrial function in a pediatric model of lipopolysaccharide-induced shock-associated IHCA. METHODS After lipopolysaccharide infusion and ventricular fibrillation induction, 20 1-month-old piglets received hemodynamic-directed CPR and were randomized to blinded treatment with or without iNO (80 ppm) during and after CPR. Defibrillation attempts began at 10 min with a 20-min maximum CPR duration. Cerebral tissue from animals surviving 1-h post-arrest underwent high-resolution respirometry to evaluate the mitochondrial electron transport system and immunohistochemical analyses to assess neuropathology. RESULTS During CPR, the iNO group had higher mean aortic pressure (41.6 ± 2.0 vs. 36.0 ± 1.4 mmHg; p = 0.005); diastolic BP (32.4 ± 2.4 vs. 27.1 ± 1.7 mmHg; p = 0.03); cerebral perfusion pressure (25.0 ± 2.6 vs. 19.1 ± 1.8 mmHg; p = 0.02); and cerebral blood flow relative to baseline (rCBF: 243.2 ± 54.1 vs. 115.5 ± 37.2%; p = 0.02). Among the 8/10 survivors in each group, the iNO group had higher mitochondrial Complex I oxidative phosphorylation in the cerebral cortex (3.60 [3.56, 3.99] vs. 3.23 [2.44, 3.46] pmol O2/s mg; p = 0.01) and hippocampus (4.79 [4.35, 5.18] vs. 3.17 [2.75, 4.58] pmol O2/s mg; p = 0.02). There were no other differences in mitochondrial respiration or brain injury between groups. CONCLUSIONS Treatment with iNO during CPR resulted in superior systemic hemodynamics, rCBF, and cerebral mitochondrial Complex I respiration in this pediatric cardiac arrest model.
Collapse
Affiliation(s)
- Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States.
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Adam S Himebauch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Anna L Roberts
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - William P Landis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Jonathan Starr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Abhay Ranganathan
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Nile Delso
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Constantine D Mavroudis
- Department of Surgery, Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, United States
| | - Lindsay Volk
- Department of Surgery, Division of Cardiothoracic Surgery, Children's Hospital of Philadelphia, United States
| | - Julia Slovis
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Alexandra M Marquez
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Marco Hefti
- Department of Pathology, University of Iowa Carver College of Medicine, United States
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, United States; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine at the University of Pennsylvania, United States
| |
Collapse
|
13
|
Richards LA, Schonhoff CM. Nitric oxide and sex differences in dendritic branching and arborization. J Neurosci Res 2021; 99:1390-1400. [PMID: 33538046 DOI: 10.1002/jnr.24789] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
Nitric oxide (NO) is an important signaling molecule with many functions in the nervous system. Derived from the enzymatic conversion of arginine by several nitric oxide synthases (NOS), NO plays significant roles in neuronal developmental events such as the establishment of dendritic branching or arbors. A brief summary of the discovery, molecular biology, and chemistry of NO, and a description of important NO-mediated signal transduction pathways with emphasis on the role for NO in the development of dendritic branching during neurodevelopment are presented. Important sex differences in neuronal nitric oxide synthase expression during neuronal development are considered. Finally, a survey of endogenous and exogenous substances that disrupt dendritic patterning is presented with particular emphasis on how these molecules may drive NO-mediated sex differences in dendritic branching.
Collapse
Affiliation(s)
- Laura A Richards
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| | - Christopher M Schonhoff
- Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA.,Department of Biomedical Sciences, Cummings School of Veterinary Medicine at Tufts University, North Grafton, MA, USA
| |
Collapse
|
14
|
Abstract
Sudden cardiac arrest is a leading cause of death worldwide. Although the methods of cardiopulmonary resuscitation have been improved, mortality is still unacceptably high, and many survivors suffer from lasting neurological deficits due to the post-cardiac arrest syndrome (PCAS). Pathophysiologically, generalized vascular endothelial dysfunction accompanied by platelet activation and systemic inflammation has been implicated in the pathogenesis of PCAS. Because endothelial-derived nitric oxide (NO) plays a central role in maintaining vascular homeostasis, the role of NO-dependent signaling has been a focus of the intense investigation. Recent preclinical studies showed that therapeutic interventions that increase vascular NO bioavailability may improve outcomes after cardiac arrest complicated with PCAS. In particular, NO inhalation therapy has been shown to improve neurological outcomes and survival in multiple species. Clinical studies examining the safety and efficacy of inhaled NO in patients sustaining PCAS are warranted.
Collapse
|
15
|
eNOS-dependent S-nitrosylation of the NF-κB subunit p65 has neuroprotective effects. Cell Death Dis 2021; 12:4. [PMID: 33414434 PMCID: PMC7790835 DOI: 10.1038/s41419-020-03338-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/29/2023]
Abstract
Cell death by glutamate excitotoxicity, mediated by N-methyl-D-aspartate (NMDA) receptors, negatively impacts brain function, including but not limited to hippocampal neurons. The NF-κB transcription factor (composed mainly of p65/p50 subunits) contributes to neuronal death in excitotoxicity, while its inhibition should improve cell survival. Using the biotin switch method, subcellular fractionation, immunofluorescence, and luciferase reporter assays, we found that NMDA-stimulated NF-κB activity selectively in hippocampal neurons, while endothelial nitric oxide synthase (eNOS), an enzyme expressed in neurons, is involved in the S-nitrosylation of p65 and consequent NF-κB inhibition in cerebrocortical, i.e., resistant neurons. The S-nitro proteomes of cortical and hippocampal neurons revealed that different biological processes are regulated by S-nitrosylation in susceptible and resistant neurons, bringing to light that protein S-nitrosylation is a ubiquitous post-translational modification, able to influence a variety of biological processes including the homeostatic inhibition of the NF-κB transcriptional activity in cortical neurons exposed to NMDA receptor overstimulation.
Collapse
|
16
|
A New Perspective on Pulmonary Hypertension, Right Ventricular Failure, and Pediatric In-Hospital Cardiac Arrest. Pediatr Crit Care Med 2020; 21:389-390. [PMID: 32251184 DOI: 10.1097/pcc.0000000000002216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Vitturi DA, Maynard C, Olsufka M, Straub AC, Krehel N, Kudenchuk PJ, Nichol G, Sayre M, Kim F, Dezfulian C. Nitrite elicits divergent NO-dependent signaling that associates with outcome in out of hospital cardiac arrest. Redox Biol 2020; 32:101463. [PMID: 32087553 PMCID: PMC7033352 DOI: 10.1016/j.redox.2020.101463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/01/2020] [Accepted: 02/11/2020] [Indexed: 01/16/2023] Open
Abstract
Brain and heart injury cause most out-of-hospital cardiac arrest deaths but limited pharmacotherapy exists to protect these tissues. Nitrite is a nitric oxide precursor that is protective in pre-clinical models of ischemic injury and safe in Phase I testing. Protection may occur by cGMP generation via the sGC pathway or through S-nitrosothiol and nitrated conjugated linoleic acid (NO2-CLA) formation. We hypothesized that nitrite provided during CPR signals through multiple pathways and that activation of signals is associated with OHCA outcome. To this end, we performed a secondary analysis of a phase 1 study of intravenous nitrite administration during resuscitation in adult out-of-hospital cardiac arrest. Associations between whole blood nitrite and derived plasma signals (cGMP and NO2-CLA) with patient characteristics and outcomes were defined using Chi-square or t-tests and multiple logistic regression. Whole blood nitrite levels correlated inversely with plasma NO2-CLA (p = 0.039) but not with cGMP. Patients with shockable rhythms had higher cGMP (p = 0.027), NO2-CLA (p < 0.0001) and trended towards lower nitrite (p = 0.077). Importantly, plasma cGMP and NO2-CLA levels were higher in survivors (p = 0.033 and 0.019) and in those with good neurological outcome (p = 0.046 and 0.021). Nitrite was lower in patients with good neurologic outcome (p = 0.029). cGMP (OR 4.02; 95% CI 1.04–15.54; p = 0.044) and NO2-CLA (OR 3.74; 95% CI 1.11–12.65; p = 0.034) were associated with survival. Nitrite (OR 0.20; 95% CI 0.05–0.08; p = 0.026) and NO2-CLA (OR 3.96; 95% CI 1.01–15.60; p = 0.049) were associated with favorable neurologic outcome. In summary, nitrite administration was associated with increased plasma cGMP and NO2-CLA formation in selected OHCA patients. Furthermore, patients with the highest levels of cGMP and NO2-CLA were more likely to survive and experience better neurological outcomes.
Collapse
Affiliation(s)
- Dario A Vitturi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, USA
| | - Charles Maynard
- Department of Health Services, University of Washington, USA
| | - Michele Olsufka
- Department of Health Services, University of Washington, USA; Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Adam C Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, USA; Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, USA
| | - Nick Krehel
- Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, USA
| | - Peter J Kudenchuk
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Graham Nichol
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Michael Sayre
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Francis Kim
- Department of Medicine, Harborview Medical Center, University of Washington, USA
| | - Cameron Dezfulian
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, USA.
| |
Collapse
|
18
|
Piao L, Fang YH, Hamanaka RB, Mutlu GM, Dezfulian C, Archer SL, Sharp WW. Suppression of Superoxide-Hydrogen Peroxide Production at Site IQ of Mitochondrial Complex I Attenuates Myocardial Stunning and Improves Postcardiac Arrest Outcomes. Crit Care Med 2020; 48:e133-e140. [PMID: 31939812 PMCID: PMC6964871 DOI: 10.1097/ccm.0000000000004095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVES Cardiogenic shock following cardiopulmonary resuscitation for sudden cardiac arrest is common, occurring even in the absence of acute coronary artery occlusion, and contributes to high rates of postcardiopulmonary resuscitation mortality. The pathophysiology of this shock is unclear, and effective therapies for improving clinical outcomes are lacking. DESIGN Laboratory investigation. SETTING University laboratory. SUBJECTS C57BL/6 adult female mice. INTERVENTIONS Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent a 4, 8, 12, or 16-minute potassium chloride-induced cardiac arrest followed by 90 seconds of cardiopulmonary resuscitation. Mice were then blindly randomized to a single IV injection of vehicle (phosphate-buffered saline) or suppressor of site IQ electron leak, an inhibitor of superoxide production by complex I of the mitochondrial electron transport chain. Suppressor of site IQ electron leak and vehicle were administered during cardiopulmonary resuscitation. MEASUREMENTS AND MAIN RESULTS Using a murine model of asystolic cardiac arrest, we discovered that duration of cardiac arrest prior to cardiopulmonary resuscitation determined postresuscitation success rates, degree of neurologic injury, and severity of myocardial dysfunction. Post-cardiopulmonary resuscitation cardiac dysfunction was not associated with myocardial necrosis, apoptosis, inflammation, or mitochondrial permeability transition pore opening. Furthermore, left ventricular function recovered within 72 hours of cardiopulmonary resuscitation, indicative of myocardial stunning. Postcardiopulmonary resuscitation, the myocardium exhibited increased reactive oxygen species and evidence of mitochondrial injury, specifically reperfusion-induced reactive oxygen species generation at electron transport chain complex I. Suppressor of site IQ electron leak, which inhibits complex I-dependent reactive oxygen species generation by suppression of site IQ electron leak, decreased myocardial reactive oxygen species generation and improved postcardiopulmonary resuscitation myocardial function, neurologic outcomes, and survival. CONCLUSIONS The severity of cardiogenic shock following asystolic cardiac arrest is dependent on the length of cardiac arrest prior to cardiopulmonary resuscitation and is mediated by myocardial stunning resulting from mitochondrial electron transport chain complex I dysfunction. A novel pharmacologic agent targeting this mechanism, suppressor of site IQ electron leak, represents a potential, practical therapy for improving sudden cardiac arrest resuscitation outcomes.
Collapse
Affiliation(s)
- Lin Piao
- Section of Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Yong-Hu Fang
- Section of Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, Chicago, IL
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research, Critical Care Medicine Department, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Willard W Sharp
- Section of Emergency Medicine, Department of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
19
|
Hayashida K, Bagchi A, Miyazaki Y, Hirai S, Seth D, Silverman MG, Rezoagli E, Marutani E, Mori N, Magliocca A, Liu X, Berra L, Hindle AG, Donnino MW, Malhotra R, Bradley MO, Stamler JS, Ichinose F. Improvement in Outcomes After Cardiac Arrest and Resuscitation by Inhibition of S-Nitrosoglutathione Reductase. Circulation 2019; 139:815-827. [PMID: 30586713 DOI: 10.1161/circulationaha.117.032488] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). METHODS Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR-/-) mice were subjected to potassium chloride-induced CA and subsequently resuscitated. Fifteen minutes after a return of spontaneous circulation, wild-type mice were randomized to receive the GSNOR inhibitor, SPL-334.1, or normal saline as placebo. Mortality, neurological outcome, GSNOR activity, and levels of S-nitrosylated proteins were evaluated. Plasma GSNOR activity was measured in plasma samples obtained from post-CA patients, preoperative cardiac surgery patients, and healthy volunteers. RESULTS GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045). CONCLUSIONS CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.
Collapse
Affiliation(s)
- Kei Hayashida
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Aranya Bagchi
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Yusuke Miyazaki
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Shuichi Hirai
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Divya Seth
- Institute for Transformative Molecular Medicine and Department of Medicine, Case Western Reserve University School of Medicine and University Hospitals Cleveland Medical Center (D.S.), Cleveland, OH
| | - Michael G Silverman
- Cardiology Division, Department of Medicine, Massachusetts General Hospital (M.G.S., R.M.), Boston, MA
| | - Emanuele Rezoagli
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Eizo Marutani
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Naohiro Mori
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Aurora Magliocca
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Xiaowen Liu
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA (X.L., M.W.D.)
| | - Lorenzo Berra
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| | - Michael W Donnino
- Center for Resuscitation Science, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, MA (X.L., M.W.D.)
| | - Rajeev Malhotra
- Cardiology Division, Department of Medicine, Massachusetts General Hospital (M.G.S., R.M.), Boston, MA
| | | | | | - Fumito Ichinose
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School (K.H., A.B., Y.M., S.H., E.R., E.M., N.M., A.M., L.B., A.G.H., F.I.), Boston, MA
| |
Collapse
|
20
|
Phenotyping Cardiac Arrest: Bench and Bedside Characterization of Brain and Heart Injury Based on Etiology. Crit Care Med 2019. [PMID: 29533310 DOI: 10.1097/ccm.0000000000003070] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Cardiac arrest etiology may be an important source of between-patient heterogeneity, but the impact of etiology on organ injury is unknown. We tested the hypothesis that asphyxial cardiac arrest results in greater neurologic injury than cardiac etiology cardiac arrest (ventricular fibrillation cardiac arrest), whereas ventricular fibrillation cardiac arrest results in greater cardiovascular dysfunction after return of spontaneous circulation. DESIGN Prospective observational human and randomized animal study. SETTING University laboratory and ICUs. PATIENTS Five-hundred forty-three cardiac arrest patients admitted to ICU. SUBJECTS Seventy-five male Sprague-Dawley rats. INTERVENTIONS We examined neurologic and cardiovascular injury in Isoflurane-anesthetized rat cardiac arrest models matched by ischemic time. Hemodynamic and neurologic outcomes were assessed after 5 minutes no flow asphyxial cardiac arrest or ventricular fibrillation cardiac arrest. Comparison was made to injury patterns observed after human asphyxial cardiac arrest or ventricular fibrillation cardiac arrest. MEASUREMENTS AND MAIN RESULTS In rats, cardiac output (20 ± 10 vs 45 ± 9 mL/min) and pH were lower and lactate higher (9.5 ± 1.0 vs 6.4 ± 1.3 mmol/L) after return of spontaneous circulation from ventricular fibrillation cardiac arrest versus asphyxial cardiac arrest (all p < 0.01). Asphyxial cardiac arrest resulted in greater early neurologic deficits, 7-day neuronal loss, and reduced freezing time (memory) after conditioned fear (all p < 0.05). Brain antioxidant reserves were more depleted following asphyxial cardiac arrest. In adjusted analyses, human ventricular fibrillation cardiac arrest was associated with greater cardiovascular injury based on peak troponin (7.8 ng/mL [0.8-57 ng/mL] vs 0.3 ng/mL [0.0-1.5 ng/mL]) and ejection fraction by echocardiography (20% vs 55%; all p < 0.0001), whereas asphyxial cardiac arrest was associated with worse early neurologic injury and poor functional outcome at hospital discharge (n = 46 [18%] vs 102 [44%]; p < 0.0001). Most ventricular fibrillation cardiac arrest deaths (54%) were the result of cardiovascular instability, whereas most asphyxial cardiac arrest deaths (75%) resulted from neurologic injury (p < 0.0001). CONCLUSIONS In transcending rat and human studies, we find a consistent phenotype of heart and brain injury after cardiac arrest based on etiology: ventricular fibrillation cardiac arrest produces worse cardiovascular dysfunction, whereas asphyxial cardiac arrest produces worsened neurologic injury associated with greater oxidative stress.
Collapse
|
21
|
Uray T, Empey PE, Drabek T, Stezoski JP, Janesko-Feldman K, Jackson T, Garman RH, Kim F, Kochanek PM, Dezfulian C. Nitrite pharmacokinetics, safety and efficacy after experimental ventricular fibrillation cardiac arrest. Nitric Oxide 2019; 93:71-77. [PMID: 31526855 DOI: 10.1016/j.niox.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/12/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Besides therapeutic hypothermia or targeted temperature management no novel therapies have been developed to improve outcomes of patients after cardiac arrest (CA). Recent studies suggest that nitrite reduces neurological damage after asphyxial CA. Nitrite is also implicated as a new mediator of remote post conditioning produced by tourniquet inflation-deflation, which is under active investigation in CA. However, little is known about brain penetration or pharmacokinetics (PK). Therefore, to define the optimal use of this agent, studies on the PK of nitrite in experimental ventricular fibrillation (VF) are needed. We tested the hypothesis that nitrite administered after resuscitation from VF is detectable in cerebrospinal fluid (CSF), brain and other organ tissues, produces no adverse hemodynamic effects, and improves neurologic outcome in rats. METHODS After return of spontaneous circulation (ROSC) of 5 min untreated VF, adult male Sprague-Dawley rats were given intravenous nitrite (8 μM, 0.13 mg/kg) or placebo as a 5 min infusion beginning at 5 min after CA. Additionally, sham groups with and without nitrite treatment were also studied. Whole blood nitrite levels were serially measured. After 15 min, CSF, brain, heart and liver tissue were collected. In a second series, using a randomized and blinded treatment protocol, rats were treated with nitrite or placebo after arrest. Neurological deficit scoring (NDS) was performed daily and eight days after resuscitation, fear conditioning testing (FCT) and brain histology were assessed. RESULTS In an initial series of experiments, rats (n = 21) were randomized to 4 groups: VF-CPR and nitrite therapy (n = 6), VF-CPR and placebo therapy (n = 5), sham (n = 5), or sham plus nitrite therapy (n = 5). Whole blood nitrite levels increased during drug infusion to 57.14 ± 10.82 μM at 11 min post-resuscitation time (1 min after dose completion) in the VF nitrite group vs. 0.94 ± 0.58 μM in the VF placebo group (p < 0.001). There was a significant difference between the treatment and placebo groups in nitrite levels in blood between 7.5 and 15 min after CPR start and between groups with respect to nitrite levels in CSF, brain, heart and liver. In a second series (n = 25 including 5 shams), 19 out of 20 animals survived until day 8. However, NDS, FCT and brain histology did not show any statistically significant difference between groups. CONCLUSIONS Nitrite, administered early after ROSC from VF, was shown to cross the blood brain barrier after a 5 min VF cardiac arrest. We characterized the PK of intravenous nitrite administration after VF and were able to demonstrate nitrite safety in this feasibility study.
Collapse
Affiliation(s)
- Thomas Uray
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA; Department of Emergency Medicine, Medical University of Vienna, Austria
| | - Philip E Empey
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Pharmacy and Therapeutics, University of Pittsburgh, PA, USA
| | - Tomas Drabek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Anesthesiology, University of Pittsburgh School of Medicine, PA, USA
| | - Jason P Stezoski
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA
| | - Keri Janesko-Feldman
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA
| | - Travis Jackson
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA
| | - Robert H Garman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francis Kim
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, WA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA
| | - Cameron Dezfulian
- Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, PA, USA; Department of Critical Care Medicine, University of Pittsburgh School of Medicine, PA, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
22
|
Li L, Poloyac SM, Watkins SC, St. Croix CM, Alexander H, Gibson GA, Loughran PA, Kirisci L, Clark RSB, Kochanek PM, Vazquez AL, Manole MD. Cerebral microcirculatory alterations and the no-reflow phenomenon in vivo after experimental pediatric cardiac arrest. J Cereb Blood Flow Metab 2019; 39:913-925. [PMID: 29192562 PMCID: PMC6501505 DOI: 10.1177/0271678x17744717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 01/02/2023]
Abstract
Decreased cerebral blood flow (CBF) after cardiac arrest (CA) contributes to secondary ischemic injury in infants and children. We previously reported cortical hypoperfusion with tissue hypoxia early in a pediatric rat model of asphyxial CA. In order to identify specific alterations as potential therapeutic targets to improve cortical hypoperfusion post-CA, we characterize the CBF alterations at the cortical microvascular level in vivo using multiphoton microscopy. We hypothesize that microvascular constriction and disturbances of capillary red blood cell (RBC) flow contribute to cortical hypoperfusion post-CA. After resuscitation from 9 min asphyxial CA, transient dilation of capillaries and venules at 5 min was followed by pial arteriolar constriction at 30 and 60 min (19.6 ± 1.3, 19.3 ± 1.2 µm at 30, 60 min vs. 22.0 ± 1.2 µm at baseline, p < 0.05). At the capillary level, microcirculatory disturbances were highly heterogeneous, with RBC stasis observed in 25.4% of capillaries at 30 min post-CA. Overall, the capillary plasma mean transit time was increased post-CA by 139.7 ± 51.5%, p < 0.05. In conclusion, pial arteriolar constriction, the no-reflow phenomenon and increased plasma transit time were observed post-CA. Our results detail the microvascular disturbances in a pediatric asphyxial CA model and provide a powerful platform for assessing specific vascular-targeted therapies.
Collapse
Affiliation(s)
- Lingjue Li
- Center of Clinical Pharmaceutical
Sciences,
University
of Pittsburgh, PA, USA
- School of Pharmacy,
University
of Pittsburgh, PA, USA
| | - Samuel M Poloyac
- Center of Clinical Pharmaceutical
Sciences,
University
of Pittsburgh, PA, USA
- School of Pharmacy,
University
of Pittsburgh, PA, USA
| | - Simon C Watkins
- Center for Biologic Imaging,
University
of Pittsburgh, PA, USA
| | | | - Henry Alexander
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
| | | | | | | | - Robert SB Clark
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
- Department of Critical Care Medicine,
University
of Pittsburgh, PA, USA
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
- Department of Critical Care Medicine,
University
of Pittsburgh, PA, USA
- Department of Pediatrics,
University
of Pittsburgh, PA, USA
| | | | - Mioara D Manole
- Safar Center for Resuscitation Research,
University
of Pittsburgh, PA, USA
- Department of Critical Care Medicine,
University
of Pittsburgh, PA, USA
- Department of Pediatrics,
University
of Pittsburgh, PA, USA
| |
Collapse
|
23
|
Anthonymuthu TS, Kenny EM, Lamade AM, Gidwani H, Krehel NM, Misse A, Gao X, Amoscato AA, Straub AC, Kagan VE, Dezfulian C, BayIr H. Lipidomics Detection of Brain Cardiolipins in Plasma Is Associated With Outcome After Cardiac Arrest. Crit Care Med 2019; 47:e292-e300. [PMID: 30855329 PMCID: PMC6622168 DOI: 10.1097/ccm.0000000000003636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Brain mitochondrial dysfunction limits neurologic recovery after cardiac arrest. Brain polyunsaturated cardiolipins, mitochondria-unique and functionally essential phospholipids, have unprecedented diversification. Since brain cardiolipins are not present in plasma normally, we hypothesized their appearance would correlate with brain injury severity early after cardiac arrest and return of spontaneous circulation. DESIGN Observational case-control study. SETTING Two medical centers within one city. PARTICIPANTS (SUBJECTS) We enrolled 41 adult cardiac arrest patients in whom blood could be obtained within 6 hours of resuscitation. Two subjects were excluded following outlier analysis. Ten healthy subjects were controls. Sprague-Dawley rats were used in asphyxial cardiac arrest studies. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS We developed a high-resolution liquid chromatography/mass spectrometry method and determined cardiolipins speciation in human brain, heart, and plasma within 6 hours of (return of spontaneous circulation) from 39 patients with cardiac arrest, 5 with myocardial infarction, and 10 healthy controls. Cerebral score was derived from brain-specific cardiolipins identified in plasma of patients with varying neurologic injury and outcome. Using a rat model of cardiac arrest, cardiolipins were quantified in plasma, brain, and heart. Human brain exhibited a highly diverse cardiolipinome compared with heart that allowed the identification of brain-specific cardiolipins. Nine of 26 brain-specific cardiolipins were detected in plasma and correlated with brain injury. The cerebral score correlated with early neurologic injury and predicted discharge neurologic/functional outcome. Cardiolipin (70:5) emerged as a potential point-of-care marker predicting injury severity and outcome. In rat cardiac arrest, a significant reduction in hippocampal cardiolipins corresponded to their release from the brain into systemic circulation. Cerebral score was significantly increased in 10 minutes versus 5 minutes no-flow cardiac arrest and naïve controls. CONCLUSIONS Brain-specific cardiolipins accumulate in plasma early after return of spontaneous circulation and proportional to neurologic injury representing a promising novel biomarker.
Collapse
Affiliation(s)
- Tamil S. Anthonymuthu
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth M. Kenny
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew M. Lamade
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hitesh Gidwani
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nicholas M. Krehel
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amalea Misse
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xiaotian Gao
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andrew A. Amoscato
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Adam C. Straub
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA. University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E. Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Laboratory of Navigational Redox Lipidomics, IM Sechenov Moscow State Medical University, Russian Federation
| | - Cameron Dezfulian
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA. University of Pittsburgh, Pittsburgh, PA, USA
| | - Hülya BayIr
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
24
|
Kim F, Dezfulian C, Empey PE, Morrell M, Olsufka M, Scruggs S, Kudenchuk P, May S, Maynard C, Sayre MR, Nichol G. Usefulness of Intravenous Sodium Nitrite During Resuscitation for the Treatment of Out-of-Hospital Cardiac Arrest. Am J Cardiol 2018; 122:554-559. [PMID: 30205886 DOI: 10.1016/j.amjcard.2018.04.060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 04/24/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
Abstract
It is hypothesized that intravenous (IV) sodium nitrite given during resuscitation of out-of-hospital cardiac arrest (OHCA) will improve survival. We performed a phase 1 open-label study of IV sodium nitrite given during resuscitation of 120 patents with OHCA from ventricular fibrillation or nonventricular fibrillation initial rhythms by Seattle Fire Department paramedics. A total of 59 patients received 25 mg (low) and 61 patients received 60 mg (high) of sodium nitrite during resuscitation from OHCA. Treatment effects were compared between high- and low-dose nitrite groups, and all patients in a concurrent local Emergency Medical Services registry of OHCA. Whole blood nitrite levels were measured in 97 patients. The rate of return of spontaneous circulation (48% vs 49%), rearrest in the field (15% vs 25%), use of norepinephrine (12% vs 12%), first systolic blood pressure (124 ± 32 vs 125 ± 38 mm Hg), survival to discharge (23.7% vs 16.4%), and neurologically favorable survival (18.6% vs 11.5%) were not significantly different in the low and high nitrite groups. There were no significant differences in these outcomes among patients who received IV nitrite compared with concurrent registry controls. We estimate that 60 mg achieves whole blood nitrite levels of 22 to 38 μM 10 minutes after administration, whereas 25 mg achieves a level of 9 to 16 μM 10 minutes after delivery. In conclusion, administration of IV nitrite is feasible and appears to be safe in patients with OHCA, permitting subsequent evaluation of the effectiveness of IV nitrite for the treatment of OHCA.
Collapse
Affiliation(s)
- Francis Kim
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington.
| | - Cameron Dezfulian
- Department of Critical Care Medicine, Safar Center for Resuscitation Research and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Philip E Empey
- Department of Pharmacy and Therapeutics, Center for Clinical Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Morrell
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michele Olsufka
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| | - Sue Scruggs
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| | - Peter Kudenchuk
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| | - Susanne May
- Department of Biostatistics, University of Washington, Seattle, Washington
| | - Charles Maynard
- Department of Health Services, University of Washington, Seattle, Washington
| | - Michael R Sayre
- Department of Emergency Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| | - Graham Nichol
- Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington; Department of Emergency Medicine, Harborview Medical Center, University of Washington, Seattle, Washington
| |
Collapse
|
25
|
Morgan RW, Sutton RM, Karlsson M, Lautz AJ, Mavroudis CD, Landis WP, Lin Y, Jeong S, Craig N, Nadkarni VM, Kilbaugh TJ, Berg RA. Pulmonary Vasodilator Therapy in Shock-associated Cardiac Arrest. Am J Respir Crit Care Med 2018; 197:905-912. [PMID: 29244522 PMCID: PMC6020403 DOI: 10.1164/rccm.201709-1818oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
RATIONALE Many in-hospital cardiac arrests are precipitated by hypotension, often associated with systemic inflammation. These patients are less likely to be successfully resuscitated, and novel approaches to their treatment are needed. OBJECTIVES To determine if the addition of inhaled nitric oxide (iNO) to hemodynamic-directed cardiopulmonary resuscitation (HD-CPR) would improve short-term survival from cardiac arrest associated with shock and systemic inflammation. METHODS In 3-month-old swine (n = 21), LPS was intravenously infused, inducing systemic hypotension. Ventricular fibrillation was induced, and animals were randomized to blinded treatment with either: 1) HD-CPR with iNO, or 2) HD-CPR without iNO. During HD-CPR, chest compression depth was titrated to peak aortic compression pressure of 100 mm Hg, and vasopressor administration was titrated to coronary perfusion pressure greater than or equal to 20 mm Hg. Defibrillation attempts began after 10 minutes of resuscitation. The primary outcome was 45-minute survival. MEASUREMENTS AND MAIN RESULTS The iNO group had higher rates of 45-minute survival (10 of 10 vs. 3 of 11; P = 0.001). During cardiopulmonary resuscitation, the iNO group had lower pulmonary artery relaxation pressure (mean ± SEM, 10.9 ± 2.4 vs. 18.4 ± 2.4 mm Hg; P = 0.03), higher coronary perfusion pressure (21.1 ± 1.5 vs. 16.9 ± 1.0 mm Hg; P = 0.005), and higher aortic relaxation pressure (36.6 ± 1.6 vs. 30.4 ± 1.1 mm Hg; P < 0.001) despite shallower chest compressions (5.88 ± 0.25 vs. 6.46 ± 0.40 cm; P = 0.02) and fewer vasopressor doses in the first 10 minutes (median, 4 [interquartile range, 3-4] vs. 5 [interquartile range, 5-6], P = 0.03). CONCLUSIONS The addition of iNO to HD-CPR in LPS-induced shock-associated cardiac arrest improved short-term survival and intraarrest hemodynamics.
Collapse
Affiliation(s)
- Ryan W. Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Robert M. Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Michael Karlsson
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Andrew J. Lautz
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Constantine D. Mavroudis
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - William P. Landis
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Yuxi Lin
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Sejin Jeong
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Nancy Craig
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Vinay M. Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| | - Robert A. Berg
- Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania; and
| |
Collapse
|
26
|
Dezfulian C, Olsufka M, Fly D, Scruggs S, Do R, Maynard C, Nichol G, Kim F. Hemodynamic effects of IV sodium nitrite in hospitalized comatose survivors of out of hospital cardiac arrest. Resuscitation 2017; 122:106-112. [PMID: 29175357 DOI: 10.1016/j.resuscitation.2017.11.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Patients resuscitated from cardiac arrest have brain and cardiac injury. Recent animal studies suggest that the administration of sodium nitrite after resuscitation from 12min of asystole limits acute cardiac dysfunction and improves survival and neurologic outcomes. It has been hypothesized that low doses of IV sodium nitrite given during resuscitation of out of hospital cardiac arrest (OHCA) will improve survival. Low doses of sodium nitrite (e.g., 9.6mg of sodium nitrite) are safe in healthy individuals, however the effect of nitrite on blood pressure in resuscitated cardiac arrest patients is unknown. METHODS We performed a single-center, pilot trial of low dose sodium nitrite (1 or 9.6mg dose) vs. placebo in hospitalized out-of-hospital cardiac arrest patient to determine whether nitrite administration reduced blood pressure and whether whole blood nitrite levels increased in response to nitrite administration. RESULTS This is the first reported study of sodium nitrite in cardiac arrest patients. Infusion of low doses of sodium nitrite in comatose survivors of OHCA (n=7) compared to placebo (n=4) had no significant effects on heart rate within 30min after infusion (70±20 vs. 78±3 beats per minute, p=0.18), systolic blood pressure (103±20 vs 108±15mmHg, p=0.3), or methemoglobin levels (0.92±0.33 vs. 0.70±0.26, p=0.45). Serum nitrite levels of 2-4μM were achieved within 15min of a 9.6mg nitrite infusion. CONCLUSIONS Low dose sodium nitrite does not cause significant hemodynamic effect in patients with OHCA, which suggests that nitrite can be delivered safely in this critically ill patient population. Higher doses of sodium nitrite are necessary in order to achieve target serum level of 10μM.
Collapse
Affiliation(s)
- Cameron Dezfulian
- Department of Adult and Pediatric Critical Care Medicine, Safar Center for Resuscitation Research and Vascular Medicine Institute, University of Pittsburgh, United States
| | - Michele Olsufka
- Department of Medicine, Harborview Medical Center, University of Washington, United States
| | - Deborah Fly
- Department of Medicine, Harborview Medical Center, University of Washington, United States
| | - Sue Scruggs
- Department of Medicine, Harborview Medical Center, University of Washington, United States
| | - Rose Do
- Department of Medicine, Harborview Medical Center, University of Washington, United States
| | - Charles Maynard
- Department of Health Services, University of Washington, United States
| | - Graham Nichol
- Department of Medicine, Harborview Medical Center, University of Washington, United States
| | - Francis Kim
- Department of Medicine, Harborview Medical Center, University of Washington, United States.
| |
Collapse
|
27
|
Kozlov AV, Bahrami S, Redl H, Szabo C. Alterations in nitric oxide homeostasis during traumatic brain injury. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2627-2632. [PMID: 28064018 DOI: 10.1016/j.bbadis.2016.12.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/20/2016] [Accepted: 12/27/2016] [Indexed: 12/17/2022]
Abstract
Changes in nitric oxide (NO) levels have been often associated with various forms of trauma, including secondary damage after traumatic brain injury (TBI). Several studies demonstrate the upregulation of NO synthase (NOS) enzymes, and concomitant increases in brain NO levels, which contribute to the TBI-associated glutamate cytotoxicity, including the pathogenesis of mitochondrial dysfunction. TBI is also associated with elevated NO levels in remote organs, indicating that TBI can induce systemic changes in NO regulation, which can be either beneficial or detrimental. Here we review the possible mechanisms responsible for changes in NO metabolism during TBI. Better understanding of the changes in NO homeostasis in TBI will be necessary to design rational therapeutic approaches for TBI. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|