1
|
Zhang Y, Dai J, Hang R, Yao X, Bai L, Wang H, Huang D, Hang R. Tailoring surface stiffness to modulate senescent macrophage immunomodulation: Implications for osteo-/angio-genesis in aged bone regeneration. BIOMATERIALS ADVANCES 2024; 165:214010. [PMID: 39222592 DOI: 10.1016/j.bioadv.2024.214010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/09/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The application of biomaterials in bone regeneration is a prevalent clinical practice. However, its efficacy in elderly patients remains suboptimal, necessitating further advancements. While biomaterial properties are known to orchestrate macrophage (MΦ) polarization and local immune responses, the role of biomaterial cues, specifically stiffness, in directing the senescent macrophage (S-MΦ) is still poorly understood. This study aimed to elucidate the role of substrate stiffness in modulating the immunomodulatory properties of S-MΦ and their role in osteo-immunomodulation. Our results demonstrated that employing collagen-coated polyacrylamide hydrogels with varying stiffness values (18, 76, and 295 kPa) as model materials, the high-stiffness hydrogel (295 kPa) steered S-MΦs towards a pro-inflammatory M1 phenotype, while hydrogels with lower stiffness (18 and 76 kPa) promoted an anti-inflammatory M2 phenotype. The immune microenvironment created by S-MΦs promoted the bioactivities of senescent endothelial cells (S-ECs) and senescent bone marrow mesenchymal stem cells BMSCs (S-BMSCs). Furthermore, the M2 S-MΦs, particularly incubated on the 76 kPa hydrogel matrices, significantly enhanced the ability of angiogenesis of S-ECs and osteogenic differentiation of S-BMSCs, which are crucial and interrelated processes in bone healing. This modulation aided in reducing the accumulation of reactive oxygen species in S-ECs and S-BMSCs, thereby significantly contributing to the repair and regeneration of aged bone tissue.
Collapse
Affiliation(s)
- Yi Zhang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Jinjun Dai
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, China
| | - Di Huang
- Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030060, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
2
|
Mairuae N, Palachai N, Noisa P. An anthocyanin-rich extract from Zea mays L. var. ceratina alleviates neuronal cell death caused by hydrogen peroxide-induced cytotoxicity in SH-SY5Y cells. BMC Complement Med Ther 2024; 24:162. [PMID: 38632534 PMCID: PMC11025150 DOI: 10.1186/s12906-024-04458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand
| | - Nut Palachai
- Faculty of Medicine, Mahasarakham University, Mahasarakham, 44000, Thailand.
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| |
Collapse
|
3
|
Chaikul P, Kanlayavattanakul M, Khongkow M, Jantimaporn A, Lourith N. Anti-skin ageing activities of rice (Oryza sativa) bran soft and hard waxes in cultured skin cells. Int J Cosmet Sci 2024; 46:162-174. [PMID: 37840342 DOI: 10.1111/ics.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/01/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVE Rice (Oryza sativa) bran waxes, the by-products of rice bran oil manufacturing, are widely used as inactive components in several preparations. Nevertheless, the function of rice bran waxes against skin ageing has never been reported. This study aimed to investigate thermal property and fatty acid profile of rice bran waxes, including rice bran soft (RBS) and hard (RBH) waxes, and the activities against skin ageing in cultured skin cells. METHODS Thermal property and fatty acid profile of rice bran waxes were analysed by differential scanning calorimetry and gas chromatography-mass spectrometry, respectively. The cytotoxicity assay of waxes was performed in B16F10 melanoma cells, human skin fibroblasts and co-culture cells of HaCaT cells and human skin fibroblasts. The non-cytotoxic concentrations of waxes were evaluated for their activities against skin ageing, including melanogenesis assay, antioxidant activity, collagen content analysis, matrix metalloproteinase-1 and matrix metalloproteinase-2 inhibitory assay and anti-inflammatory activity. RESULTS Thermal property indicated the endotherm peaks with melting temperatures at 40.89 ± 0.27°C and 69.64 ± 0.34°C for RBS and RBH, respectively. The main fatty acids in RBS were oleic (31.68 ± 0.75%) and linoleic acids (27.19 ± 0.40%), whereas those in RBH were palmitic (36.24 ± 1.08%) and stearic acids (35.21 ± 4.51%). The cytotoxicity assay in single cells and co-culture cells showed the non-cytotoxicity of RBS (0.0001-1 mg/mL) and RBH (0.0001-0.1 mg/mL). The anti-skin ageing activities of 1 mg/mL RBS and 0.1 mg/mL RBH included the melanogenesis inhibition by suppression of tyrosinase and tyrosinase-related protein-2 enzymes, the antioxidant activity by cellular protection against cell damage and cell death, the collagen stimulation, the matrix metalloproteinase-1 and matrix metalloproteinase-2 suppression and the anti-inflammation. CONCLUSIONS The study results suggest that RBS and RBH can potentially be applied as the functional ingredients in formulations against skin ageing as well as provide the superior benefit on skin moisturization.
Collapse
Affiliation(s)
- Puxvadee Chaikul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Mayuree Kanlayavattanakul
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Mattaka Khongkow
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Angkana Jantimaporn
- National Nanotechnology Centre (NANOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nattaya Lourith
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
- Phytocosmetics and Cosmeceuticals Research Group, School of Cosmetic Science, Mae Fah Luang University, Chiang Rai, Thailand
| |
Collapse
|
4
|
Xin X, Liu J, Liu X, Xin Y, Hou Y, Xiang X, Deng Y, Yang B, Yu W. Melatonin-Derived Carbon Dots with Free Radical Scavenging Property for Effective Periodontitis Treatment via the Nrf2/HO-1 Pathway. ACS NANO 2024; 18:8307-8324. [PMID: 38437643 DOI: 10.1021/acsnano.3c12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Periodontitis is a chronic inflammatory disease closely associated with reactive oxygen species (ROS) involvement. Eliminating ROS to control the periodontal microenvironment and alleviate the inflammatory response could potentially serve as an efficacious therapy for periodontitis. Melatonin (MT), renowned for its potent antioxidant and anti-inflammatory characteristics, is frequently employed as an ROS scavenger in inflammatory diseases. However, the therapeutic efficacy of MT remains unsatisfactory due to the low water solubility and poor bioavailability. Carbon dots have emerged as a promising and innovative nanomaterial with facile synthesis, environmental friendliness, and low cost. In this study, melatonin-derived carbon dots (MT-CDs) were successfully synthesized via the hydrothermal method. The MT-CDs have good water solubility and biocompatibility and feature excellent ROS-scavenging capacity without additional modification. The in vitro experiments proved that MT-CDs efficiently regulated intracellular ROS, which maintained mitochondrial homeostasis and suppressed the production of inflammatory mediators. Furthermore, findings from the mouse model of periodontitis indicated that MT-CDs significantly inhibited the deterioration of alveolar bone and reduced osteoclast activation and inflammation, thereby contributing to the regeneration of damaged tissue. In terms of the mechanism, MT-CDs may scavenge ROS, thereby preventing cellular damage and the production of inflammatory factors by regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. The findings will offer a vital understanding of the advancement of secure and effective ROS-scavenging platforms for more biomedical applications.
Collapse
Affiliation(s)
- Xirui Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Junjun Liu
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, P. R. China
| | - Xinchan Liu
- VIP Integrated Department of Stomatological Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yu Xin
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yubo Hou
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xingchen Xiang
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yu Deng
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Weixian Yu
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Department of Oral Geriatrics, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
5
|
Zhang X, Zhang M, Song L, Wang S, Wei X, Shao W, Song N. Leveraging diverse cell-death patterns to predict the prognosis, immunotherapy and drug sensitivity of clear cell renal cell carcinoma. Sci Rep 2023; 13:20266. [PMID: 37985807 PMCID: PMC10662159 DOI: 10.1038/s41598-023-46577-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) poses clinical challenges due to its varied prognosis, tumor microenvironment attributes, and responses to immunotherapy. We established a novel Programmed Cell Death-related Signature (PRS) for ccRCC assessment, derived through the Least Absolute Shrinkage and Selection Operator (LASSO) regression method. We validated PRS using the E-MTAB-1980 dataset and created PCD-related clusters via non-negative matrix factorization (NMF). Our investigation included an in-depth analysis of immune infiltration scores using various algorithms. Additionally, we integrated data from the Cancer Immunome Atlas (TCIA) for ccRCC immunotherapy insights and leveraged the Genomics of Drug Sensitivity in Cancer (GDSC) database to assess drug sensitivity models. We complemented our findings with single-cell sequencing data and employed the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and qRT-PCR to compare gene expression profiles between cancerous and paracancerous tissues. PRS serves as a valuable tool for prognostication, immune characterization, tumor mutation burden estimation, immunotherapy response prediction, and drug sensitivity assessment in ccRCC. We identify five genes with significant roles in cancer promotion and three genes with cancer-suppressive properties, further validated by qRT-PCR and CPTAC analyses, showcasing gene expression differences in ccRCC tissues. Our study introduces an innovative PCD model that amalgamates diverse cell death patterns to provide accurate predictions for clinical outcomes, mutational profiles, and immune characteristics in ccRCC. Our findings hold promise for advancing personalized treatment strategies in ccRCC patients.
Collapse
Affiliation(s)
- Xi Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Mingcong Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lebin Song
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shuai Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiyi Wei
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wenchuan Shao
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ninghong Song
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
6
|
Li CY, Jiang HF, Li L, Lai XJ, Liu QR, Yu SB, Yi CL, Chen XQ. Neuroglobin Facilitates Neuronal Oxygenation through Tropic Migration under Hypoxia or Anemia in Rat: How Does the Brain Breathe? Neurosci Bull 2023; 39:1481-1496. [PMID: 36884214 PMCID: PMC10533768 DOI: 10.1007/s12264-023-01040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/03/2023] [Indexed: 03/09/2023] Open
Abstract
The discovery of neuroglobin (Ngb), a brain- or neuron-specific member of the hemoglobin family, has revolutionized our understanding of brain oxygen metabolism. Currently, how Ngb plays such a role remains far from clear. Here, we report a novel mechanism by which Ngb might facilitate neuronal oxygenation upon hypoxia or anemia. We found that Ngb was present in, co-localized to, and co-migrated with mitochondria in the cell body and neurites of neurons. Hypoxia induced a sudden and prominent migration of Ngb towards the cytoplasmic membrane (CM) or cell surface in living neurons, and this was accompanied by the mitochondria. In vivo, hypotonic and anemic hypoxia induced a reversible Ngb migration toward the CM in cerebral cortical neurons in rat brains but did not alter the expression level of Ngb or its cytoplasm/mitochondria ratio. Knock-down of Ngb by RNA interference significantly diminished respiratory succinate dehydrogenase (SDH) and ATPase activity in neuronal N2a cells. Over-expression of Ngb enhanced SDH activity in N2a cells upon hypoxia. Mutation of Ngb at its oxygen-binding site (His64) significantly increased SDH activity and reduced ATPase activity in N2a cells. Taken together, Ngb was physically and functionally linked to mitochondria. In response to an insufficient oxygen supply, Ngb migrated towards the source of oxygen to facilitate neuronal oxygenation. This novel mechanism of neuronal respiration provides new insights into the understanding and treatment of neurological diseases such as stroke and Alzheimer's disease and diseases that cause hypoxia in the brain such as anemia.
Collapse
Affiliation(s)
- Chun-Yang Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai-Feng Jiang
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Li
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Jing Lai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qian-Rong Liu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shang-Bin Yu
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-La Yi
- Department of Traumatic Surgery, Tong-ji Hospital, Tong-ji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xiao-Qian Chen
- Department of Pathophysiology, Tongji Medical College; Key Laboratory of Neurological Diseases, The Ministry of Education (HUST), Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
García-García F, Acosta-Hernández ME, Beltrán-Parrazal L, Rodríguez-Alba JC. The Role of Neuroglobin in the Sleep-Wake Cycle. Sleep Sci 2023; 16:e362-e367. [PMID: 38196764 PMCID: PMC10773511 DOI: 10.1055/s-0043-1772806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2024] Open
Abstract
Neuroglobin (Ngb) is a protein expressed in the central and peripherical nervous systems of the vertebrate. The Ngb has different functions in neurons, including regulating O 2 homeostasis, oxidative stress, and as a neuroprotector after ischemia/hypoxia events. The Ngb is a hemoprotein of the globin family, structurally like myoglobin and hemoglobin. Ngb has higher expression in the cortex, hypothalamus, thalamus, brainstem, and cerebellum in mammals. Interestingly, Ngb immunoreactivity oscillates according to the sleep-wake cycle and decreases after 24 hours of sleep deprivation, suggesting that sleep homeostasis regulates Ngb expression. In addition, Ngb expresses in brain areas related to REM sleep regulation. Therefore, in the present review, we discuss the potential role of the Ngb in the sleep-wake regulation of mammals.
Collapse
Affiliation(s)
- Fabio García-García
- Instituto de Ciencias de la Salud, Departamento de Biomedicina, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Luis Beltrán-Parrazal
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Juan Carlos Rodríguez-Alba
- Instituto de Ciencias de la Salud, Departamento de Biomedicina, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| |
Collapse
|
8
|
Semenova MA, Chertkova RV, Kirpichnikov MP, Dolgikh DA. Molecular Interactions between Neuroglobin and Cytochrome c: Possible Mechanisms of Antiapoptotic Defense in Neuronal Cells. Biomolecules 2023; 13:1233. [PMID: 37627298 PMCID: PMC10452090 DOI: 10.3390/biom13081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Neuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome c may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection. Interestingly, neuroglobin and cytochrome c possibly can interact with or without electron transfer both in the cytoplasm and within the mitochondria. This review provides a general picture of molecular interactions between neuroglobin and cytochrome c based on the recent experimental and computational work on neuroglobin and cytochrome c interactions.
Collapse
Affiliation(s)
- Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho–Maklaya St. 16/10, 117997 Moscow, Russia
- Biology Department, Lomonosov Moscow State University, Leninskie Gory, 119899 Moscow, Russia
| |
Collapse
|
9
|
Nascimento GC, Santos BM, Pedrazzi JF, Silva-Amaral D, Bortolanza M, Harris GT, Del Bel E, Branco LG. Effects of hydrogen gas inhalation on L-DOPA-induced dyskinesia. Brain Behav Immun Health 2023; 30:100623. [PMID: 37096172 PMCID: PMC10121822 DOI: 10.1016/j.bbih.2023.100623] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/07/2023] [Accepted: 04/07/2023] [Indexed: 04/26/2023] Open
Abstract
L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia is a side effect of Parkinson's disease treatment and it is characterized by atypical involuntary movements. A link between neuroinflammation and L-DOPA-induced dyskinesia has been documented. Hydrogen gas (H2) has neuroprotective effects in Parkinson's disease models and has a major anti-inflammatory effect. Our objective is to test the hypothesis that H2 inhalation reduces L-DOPA-induced dyskinesia. 15 days after 6-hydroxydopamine lesions of dopaminergic neurons were made (microinjection into the medial forebrain bundle), chronic L-DOPA treatment (15 days) was performed. Rats were exposed to H2 (2% gas mixture, 1 h) or air (controls) before L-DOPA injection. Abnormal involuntary movements and locomotor activity were conducted. Striatal microglia and astrocyte was analyzed and striatal and plasma samples for cytokines evaluation were collected after the abnormal involuntary movements analysis. H2 inhalation attenuated L-DOPA-induced dyskinesia. The gas therapy did not impair the improvement of locomotor activity achieved by L-DOPA treatment. H2 inhalation reduced activated microglia in the lesioned striatum, which is consistent with the observed reduced pro-inflammatory cytokines levels. Display of abnormal involuntary movements was positively correlated with plasma IL-1β and striatal TNF-α levels and negatively correlated with striatal IL-10 levels. Prophylactic H2 inhalation decreases abnormal involuntary movements in a preclinical L-DOPA-induced dyskinesia model. The H2 antidyskinetic effect was associated with decreased striatal and peripheral inflammation. This finding has a translational importance to L-DOPA-treated parkinsonian patients' well-being.
Collapse
Affiliation(s)
- Glauce C. Nascimento
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Bruna M. Santos
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Josephs' Hospital and Medical Center, Phoenix, AZ, USA
| | - João F. Pedrazzi
- Neuroscience Graduate Program, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Danyelle Silva-Amaral
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariza Bortolanza
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Grant T. Harris
- Thermoregulation and Systemic Inflammation Laboratory (FeverLab), St. Josephs' Hospital and Medical Center, Phoenix, AZ, USA
| | - Elaine Del Bel
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
- Neuroscience Graduate Program, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G.S. Branco
- Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Department of Basic and Oral Biology, Ribeirão Preto Dentistry Faculty, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
10
|
Chan ASY, Tun SBB, Lynn MN, Ho C, Tun TA, Girard MJA, Sultana R, Barathi VA, Aung T, Aihara M. Intravitreal Neuroglobin Mitigates Primate Experimental Glaucomatous Structural Damage in Association with Reduced Optic Nerve Microglial and Complement 3-Astrocyte Activation. Biomolecules 2023; 13:961. [PMID: 37371541 DOI: 10.3390/biom13060961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Current management of glaucomatous optic neuropathy is limited to intraocular pressure control. Neuroglobin (Ngb) is an endogenous neuroprotectant expressed in neurons and astrocytes. We recently showed that exogenous intravitreal Ngb reduced inflammatory cytokines and microglial activation in a rodent model of hypoxia. We thus hypothesised that IVT-Ngb may also be neuroprotective in experimental glaucoma (EG) by mitigating optic nerve (ON) astrogliosis and microgliosis as well as structural damage. In this study using a microbead-induced model of EG in six Cynomolgus primates, optical coherence imaging showed that Ngb-treated EG eyes had significantly less thinning of the peripapillary minimum rim width, retinal nerve fibre layer thickness, and ON head cupping than untreated EG eyes. Immunohistochemistry confirmed that ON astrocytes overexpressed Ngb following Ngb treatment. A reduction in complement 3 and cleaved-caspase 3 activated microglia and astrocytes was also noted. Our findings in higher-order primates recapitulate the effects of neuroprotection by Ngb treatment in rodent EG studies and suggest that Ngb may be a potential candidate for glaucoma neuroprotection in humans.
Collapse
Affiliation(s)
- Anita S Y Chan
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Sai B B Tun
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Myoe N Lynn
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Candice Ho
- Singapore Eye Research Institute, Singapore 169856, Singapore
| | - Tin A Tun
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Michaël J A Girard
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Ophthalmic Engineering & Innovation Laboratory (OEIL), Singapore Eye Research Institute, Singapore 169856, Singapore
| | | | - Veluchamy A Barathi
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore 169856, Singapore
- Singapore National Eye Centre, Singapore 168751, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Makoto Aihara
- Department of Ophthalmology, University of Tokyo, Tokyo 113-8654, Japan
| |
Collapse
|
11
|
Cracco P, Montalesi E, Parente M, Cipolletti M, Iucci G, Battocchio C, Venditti I, Fiocchetti M, Marino M. A Novel Resveratrol-Induced Pathway Increases Neuron-Derived Cell Resilience against Oxidative Stress. Int J Mol Sci 2023; 24:ijms24065903. [PMID: 36982977 PMCID: PMC10058936 DOI: 10.3390/ijms24065903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
A promising therapeutic strategy to delay and/or prevent the onset of neurodegenerative diseases (NDs) could be to restore neuroprotective pathways physiologically triggered by neurons against stress injury. Recently, we identified the accumulation of neuroglobin (NGB) in neuronal cells, induced by the 17β-estradiol (E2)/estrogen receptor β (ERβ) axis, as a protective response that increases mitochondria functionality and prevents the activation of apoptosis, increasing neuron resilience against oxidative stress. Here, we would verify if resveratrol (Res), an ERβ ligand, could reactivate NGB accumulation and its protective effects against oxidative stress in neuronal-derived cells (i.e., SH-SY5Y cells). Our results demonstrate that ERβ/NGB is a novel pathway triggered by low Res concentrations that lead to rapid and persistent NGB accumulation in the cytosol and in mitochondria, where the protein contributes to reducing the apoptotic death induced by hydrogen peroxide (H2O2). Intriguingly, Res conjugation with gold nanoparticles increases the stilbene efficacy in enhancing neuron resilience against oxidative stress. As a whole, ERβ/NGB axis regulation is a novel mechanism triggered by low concentration of Res to regulate, specifically, the neuronal cell resilience against oxidative stress reducing the triggering of the apoptotic cascade.
Collapse
Affiliation(s)
- Patrizio Cracco
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Emiliano Montalesi
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Martina Parente
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Manuela Cipolletti
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Giovanna Iucci
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Chiara Battocchio
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
| | - Iole Venditti
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00179 Rome, Italy
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00179 Rome, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, V.le G. Marconi, 446, 00146 Rome, Italy
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano, 64, 00179 Rome, Italy
| |
Collapse
|
12
|
Esmaeili Tarzi M, Kordestani Z, Mehrabani M, Yahyapour R, Raeiszadeh M, Bahrampour Juybari K, Sharififar F. The effect of hydro alcoholic extract of Nigella sativa seeds on inflammatory mediators in C6 glioma cell line. ANNALES PHARMACEUTIQUES FRANÇAISES 2022; 81:446-456. [PMID: 36252867 DOI: 10.1016/j.pharma.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
SUBJECT Nigella sativa (N. sativa) is a highly valued nutritional plant, which has long been used in traditional medicine to treat a variety of human diseases. The multifaceted pharmacological impacts of N. sativa, such as attenuating oxidative stress and inflammation, make it a suitable therapeutic candidate against cardiovascular, hepatic, and neurological disorders as well as cancer. Therefore, the current study aimed to evaluate the effect of the hydroalcoholic extract of N. sativa seeds on several pro-inflammatory cytokines in the C6 glioma cell line and to compare it with the effect of the extract on the normal fibroblast cell line. METHODS C6 and fibroblast cell lines were treated with the extract of N. sativa seeds, and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was performed to determine the half-maximal inhibitory concentration (IC50) after 72h of treatment. Real-time polymerase chain reaction (RT-PCR) was carried out to assess the expression levels of interleukin (IL)-6, IL-10, tumor necrosis factor-alpha (TNF-α), and transforming growth factor- β1 (TGF-β1) at the mRNA level in both cell lines after 72h of treatment with non-toxic and IC50 concentrations obtained from C6 cell line. RESULTS The IC50 values for the hydroalcoholic extract of N. sativa seeds were 260±20μg/mL in the C6 cell line and 398±27μg/mL in fibroblast cells. The real-time PCR results indicated that the treatment of C6 and fibroblast cells with the extract at the IC50 value of N. sativa in C6 for 72h could increase the mRNA expression levels of IL-10 and reduce the mRNA expression levels of IL-6, TNF-α, and TGF-β1 in C6 and fibroblast cells. The N. sativa extract showed a higher anti-inflammatory effect on C6 cells in comparison with fibroblast cells. CONCLUSIONS Regarding the anti-inflammatory effect of Nigella sativa in C6 cell line, it may be considered a promising candidate to fortify antitumor actions in combination with other therapeutic options in the treatment of patients with GBM.
Collapse
Affiliation(s)
- M Esmaeili Tarzi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Z Kordestani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - M Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - R Yahyapour
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - M Raeiszadeh
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - K Bahrampour Juybari
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - F Sharififar
- Herbal and traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Walter LO, Maioral MF, Silva LO, Speer DB, Campbell SC, Gallimore W, Falkenberg MB, Santos-Silva MC. Involvement of the NF-κB and PI3K/Akt/mTOR pathways in cell death triggered by stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale. ENVIRONMENTAL TOXICOLOGY 2022; 37:1297-1309. [PMID: 35128807 DOI: 10.1002/tox.23484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/07/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Multiple myeloma (MM) is a clonal plasma cell malignancy that remains incurable to date. Thus, the aims of this study were to evaluate the involvement of the NF-κB and PI3K/Akt/mTOR pathways in the cytotoxicity of stypoldione, an o-quinone isolated from the brown algae Stypopodium zonale, in MM cells (MM1.S). The cytotoxic effect was evaluated in MM1.S cells and peripheral blood mononuclear cells (PBMCs) by MTT assay. The stypoldione reduced the cell viability of MM1.S cells in a concentration and time-dependent manner (IC50 in MM.1S from 2.55 to 5.38 μM). However, it was also cytotoxic to PBMCs, but at a lower range. Additionally, no significant hemolysis was observed even at concentration up to 10 times the IC50 . Apoptotic cell death was confirmed by cell morphology and Annexin V-FITC assay. Stypoldione induced intrinsic and extrinsic apoptosis by increasing FasR expression and reactive oxygen species (ROS) production, inverting the Bax/Bcl-2 ratio, and inducing ΔΨm loss, which resulted in AIF release and caspase-3 activation. It also increased Ki-67 and survivin expression and inhibited the NF-κB and PI3K/Akt/mTOR pathways. These results suggest that stypoldione is a good candidate for the development of new drugs for MM treatment.
Collapse
Affiliation(s)
- Laura O Walter
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mariana F Maioral
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lisandra O Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Douglas B Speer
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Sanjay C Campbell
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Winklet Gallimore
- Department of Chemistry, University of the West Indies, St. Andrew, Jamaica
| | - Miriam B Falkenberg
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Maria Cláudia Santos-Silva
- Experimental Oncology and Hemopathies Laboratory, Clinical Analysis Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Post-Graduation Program in Pharmacy, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
14
|
Song Y, Li X, Liu X, Yu Z, Zhang G. Calycosin Alleviates Oxidative Injury in Spinal Astrocytes by Regulating the GP130/JAK/STAT Pathway. J Oleo Sci 2022; 71:881-887. [PMID: 35584953 DOI: 10.5650/jos.ess21174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal injury is a complicated disease and is reported to be associated with damages on spinal astrocytes induced by oxidative injury. Astragali Radi, a famous traditional Chinese medicine, is reported to have promising efficacy in protecting injuries in the central nervous system. This study aims to investigate the effect of calycosin, an isoflavone phytoestrogens isolated from Astragali Radi, on oxidative injury in spinal astrocytes induced by H2O2 and the underlying mechanism. Primary rat spinal astrocytes were pretreated with 5, 10, and 20 μM calycosin and subjected to H2O2 treatment for 24 h to establish an oxidative injury model. Cell viability was detected using the CCK-8 assay to screen the optimized concentration of calycosin. Flow cytometry was used to evaluate the apoptotic rate and cell cycle. The expression level of Brdu was visualized using the immunofluorescence assay. Western blotting was used to measure the expression levels of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6 in spinal astrocytes. We found that proliferation was inhibited and that apoptosis was induced by the stimulation of H2O2. The expression levels of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6 were significantly elevated in H2O2-treated astrocytes. After the treatment of calycosin, proliferation was facilitated, and apoptosis was suppressed. These phenomena were accompanied by the downregulation of p-JAK2, p-STAT3, p-AKT, GP130, and IL-6, which were abolished by the co-administration of PI3K (ly294002) or STAT3 (stattic) inhibitor. Overall, calycosin alleviated oxidative injury in spinal astrocytes by mediating the GP130/JAK/STAT pathway.
Collapse
Affiliation(s)
- Yingjun Song
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Xu Li
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Xiaozhou Liu
- Jiangxi University of Traditional Chinese Medicine
| | - Zhaozhong Yu
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| | - Guofu Zhang
- Department of traumatic orthopedics, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine
| |
Collapse
|
15
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y, Yu W. Crosstalk Between the Oxidative Stress and Glia Cells After Stroke: From Mechanism to Therapies. Front Immunol 2022; 13:852416. [PMID: 35281064 PMCID: PMC8913707 DOI: 10.3389/fimmu.2022.852416] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Stroke is the second leading cause of global death and is characterized by high rates of mortality and disability. Oxidative stress is accompanied by other pathological processes that together lead to secondary brain damage in stroke. As the major component of the brain, glial cells play an important role in normal brain development and pathological injury processes. Multiple connections exist in the pathophysiological changes of reactive oxygen species (ROS) metabolism and glia cell activation. Astrocytes and microglia are rapidly activated after stroke, generating large amounts of ROS via mitochondrial and NADPH oxidase pathways, causing oxidative damage to the glial cells themselves and neurons. Meanwhile, ROS cause alterations in glial cell morphology and function, and mediate their role in pathological processes, such as neuroinflammation, excitotoxicity, and blood-brain barrier damage. In contrast, glial cells protect the Central Nervous System (CNS) from oxidative damage by synthesizing antioxidants and regulating the Nuclear factor E2-related factor 2 (Nrf2) pathway, among others. Although numerous previous studies have focused on the immune function of glial cells, little attention has been paid to the role of glial cells in oxidative stress. In this paper, we discuss the adverse consequences of ROS production and oxidative-antioxidant imbalance after stroke. In addition, we further describe the biological role of glial cells in oxidative stress after stroke, and we describe potential therapeutic tools based on glia cells.
Collapse
Affiliation(s)
- Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Luxi Chen
- Department of Medical Genetics, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cameron Lenahan
- Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Biomedical Science, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Zhang Y, Gao Y, Yang F, Wu X, Tang Z, Liu H. Neuroglobin alleviates the neurotoxicity of sevoflurane to fetal rats by inhibiting neuroinflammation and affecting microglial polarization. Brain Res Bull 2022; 183:142-152. [DOI: 10.1016/j.brainresbull.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/20/2023]
|
17
|
Autophagy facilitates age-related cell apoptosis-a new insight from senile cataract. Cell Death Dis 2022; 13:37. [PMID: 35013122 PMCID: PMC8748728 DOI: 10.1038/s41419-021-04489-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/23/2021] [Accepted: 12/14/2021] [Indexed: 12/15/2022]
Abstract
Age-related cell loss underpins many senescence-associated diseases. Apoptosis of lens epithelial cells (LECs) is the important cellular basis of senile cataract resulted from prolonged exposure to oxidative stress, although the specific mechanisms remain elusive. Our data indicated the concomitance of high autophagy activity, low SQSTM1/p62 protein level and apoptosis in the same LEC from senile cataract patients. Meanwhile, in primary cultured LECs model, more durable autophagy activation and more obvious p62 degradation under oxidative stress were observed in LECs from elder healthy donors, compared with that from young healthy donors. Using autophagy-deficiency HLE-B3 cell line, autophagy adaptor p62 was identified as the critical scaffold protein sustaining the pro-survival signaling PKCι-IKK-NF-κB cascades, which antagonized the pro-apoptotic signaling. Moreover, the pharmacological inhibitor of autophagy, 3-MA, significantly inhibited p62 degradation and rescued oxidative stress-induced apoptosis in elder LECs. Collectively, this study demonstrated that durable activation of autophagy promoted age-related cell death in LECs. Our work contributes to better understanding the pathogenesis of senescence-associated diseases.
Collapse
|
18
|
Exertier C, Montemiglio LC, Freda I, Gugole E, Parisi G, Savino C, Vallone B. Neuroglobin, clues to function and mechanism. Mol Aspects Med 2021; 84:101055. [PMID: 34876274 DOI: 10.1016/j.mam.2021.101055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches.
Collapse
Affiliation(s)
- Cécile Exertier
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy
| | - Ida Freda
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Elena Gugole
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy
| | - Giacomo Parisi
- Center for Life Nanoscience, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - Carmelinda Savino
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185, Rome, Italy.
| | - Beatrice Vallone
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli", Sapienza, Università di Roma, P.le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
19
|
Dias-Pedroso D, Ramalho JS, Sardão VA, Jones JG, Romão CC, Oliveira PJ, Vieira HLA. Carbon Monoxide-Neuroglobin Axis Targeting Metabolism Against Inflammation in BV-2 Microglial Cells. Mol Neurobiol 2021; 59:916-931. [PMID: 34797521 DOI: 10.1007/s12035-021-02630-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/29/2021] [Indexed: 01/06/2023]
Abstract
Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesised a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6 h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-α (TNF-α), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO's anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb, this phenotype was no longer observed, indicating Ngb is needed for CO's modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated inflammation in microglia.
Collapse
Affiliation(s)
| | - José S Ramalho
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vilma A Sardão
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos C Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Helena L A Vieira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, Lisbon, Portugal. .,UCIBIO, Applied Molecular Biosciences Unit, Department of Chemistry, Faculdade de Ciências e Tecnologia, NOVA School of Science and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-526, Caparica, Portugal. .,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade Nova de Lisboa, Caparica, Portugal.
| |
Collapse
|
20
|
Solar Fernandez V, Marino M, Fiocchetti M. Neuroglobin in Retinal Neurodegeneration: A Potential Target in Therapeutic Approaches. Cells 2021; 10:cells10113200. [PMID: 34831423 PMCID: PMC8621852 DOI: 10.3390/cells10113200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal neurodegeneration affects an increasing number of people worldwide causing vision impairments and blindness, reducing quality of life, and generating a great economic challenge. Due to the complexity of the tissue, and the diversity of retinal neurodegenerative diseases in terms of etiology and clinical presentation, so far, there are no cures and only a few early pathological markers have been identified. Increasing efforts have been made to identify and potentiate endogenous protective mechanisms or to abolish detrimental stress responses to preserve retinal structure and function. The discovering of the intracellular monomeric globin neuroglobin (NGB), found at high concentration in the retina, has opened new possibilities for the treatment of retinal disease. Indeed, the NGB capability to reversibly bind oxygen and its neuroprotective function against several types of insults including oxidative stress, ischemia, and neurodegenerative conditions have raised the interest in the possible role of the globin as oxygen supplier in the retina and as a target for retinal neurodegeneration. Here, we provide the undercurrent knowledge on NGB distribution in retinal layers and the evidence about the connection between NGB level modulation and the functional outcome in terms of retinal neuroprotection to provide a novel therapeutic/preventive target for visual pathway degenerative disease.
Collapse
Affiliation(s)
- Virginia Solar Fernandez
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale G. Marconi, 00146 Rome, Italy; (V.S.F.); (M.M.)
- Neuroendocrinology, Metabolism, and Neuropharmacology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
- Correspondence: ; Tel.: +39-06-5733-6455; Fax: +39-06-5733-6321
| |
Collapse
|
21
|
Zhang H, Li Y, Xun Y, Liu H, Wei C, Wang H, Yang X, Yuan S, Liu N, Xiang S. Polydatin protects neuronal cells from hydrogen peroxide damage by activating CREB/Ngb signaling. Mol Med Rep 2021; 25:9. [PMID: 34751416 PMCID: PMC8600421 DOI: 10.3892/mmr.2021.12525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/15/2021] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress‑induced neuronal cell death contributes significantly to the physiological processes of a number of neurological disorders. Polydatin (PD) has been reported to protect against Alzheimer's disease (AD), ischemic stroke and traumatic brain injury. However, the underlying neuroprotective mechanisms remain to be elucidated. The current study suggested that PD activates AKT/cAMP response element‑binding protein (CREB) signaling and induces neuroglobin (Ngb) to protect neuronal cells from hydrogen peroxide (H2O2) in vitro. PD inhibited the H2O2‑induced neuronal cell death of primary mouse cortical neurons and N2a cells. Functional studies showed that PD attenuated H2O2‑induced mitochondrial dysfunction and mitochondrial reactive oxygen species production. Mechanistically, PD was verified to induce the phosphorylation of AKT and CREB and increase the protein level of Ngb. The luciferase assay results showed that Ngb transcriptional activity was activated by CREB, especially after PD treatment. It was further indicated that PD increased the transcription of Ngb by enhancing the binding of CREB to the promoter region of Ngb. Finally, Ngb knockdown largely attenuated the neuroprotective role of PD against H2O2. The results indicated that PD protected neuronal cells from H2O2 by activating CREB/Ngb signaling in neuronal cells, indicating that PD has a neuroprotective effect against neurodegenerative diseases.
Collapse
Affiliation(s)
- Huihui Zhang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Yadan Li
- Department of Environmental Science, Changsha Environmental Protection College, Changsha, Hunan 410004, P.R. China
| | - Yu Xun
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Hui Liu
- Department of Environmental Science, Changsha Environmental Protection College, Changsha, Hunan 410004, P.R. China
| | - Chenxi Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Hao Wang
- Department of Neurosurgery, Southern Medical University Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Guangzhou, Guangdong 510020, P.R. China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shishan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Ning Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| |
Collapse
|
22
|
Role of Neuroglobin in the Neuroprotective Actions of Estradiol and Estrogenic Compounds. Cells 2021; 10:cells10081907. [PMID: 34440676 PMCID: PMC8391807 DOI: 10.3390/cells10081907] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022] Open
Abstract
Estradiol exerts neuroprotective actions that are mediated by the regulation of a variety of signaling pathways and homeostatic molecules. Among these is neuroglobin, which is upregulated by estradiol and translocated to the mitochondria to sustain neuronal and glial cell adaptation to injury. In this paper, we will discuss the role of neuroglobin in the neuroprotective mechanisms elicited by estradiol acting on neurons, astrocytes and microglia. We will also consider the role of neuroglobin in the neuroprotective actions of clinically relevant synthetic steroids, such as tibolone. Finally, the possible contribution of the estrogenic regulation of neuroglobin to the generation of sex differences in brain pathology and the potential application of neuroglobin as therapy against neurological diseases will be examined.
Collapse
|
23
|
Marin E, Tiwari N, Calderón M, Sarasua JR, Larrañaga A. Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18511-18524. [PMID: 33861060 PMCID: PMC9161222 DOI: 10.1021/acsami.1c01450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have emerged as promising biomedical systems for the release of a wide variety of therapeutic agents, owing to their tunable and controllable structure and the possibility to include several functionalities in the polymeric membrane during the fabrication process. However, the limitation of the capsules with a single functionality to overcome the challenges involved in the treatment of complex pathologies denotes the need to develop multifunctional capsules capable of targeting several mediators and/or mechanisms. Oxidative stress is caused by the accumulation of reactive oxygen species [e.g., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-)] in the cellular microenvironment and is a key modulator in the pathology of a broad range of inflammatory diseases. The disease microenvironment is also characterized by the presence of proinflammatory cytokines, increased levels of matrix metalloproteinases, and acidic pH, all of which could be exploited to trigger the release of therapeutic agents. In the present work, multifunctional capsules were fabricated via the LbL approach. Capsules were loaded with an antioxidant enzyme (catalase) and functionalized with a model drug (doxorubicin), which was conjugated to an amine-containing dendritic polyglycerol through a pH-responsive linker. These capsules efficiently scavenge H2O2 from solution, protecting cells from oxidative stress, and release the model drug in acidic microenvironments. Accordingly, in this work, a polymeric microplatform is presented as an unexplored combinatorial approach applicable for multiple targets of inflammatory diseases, in order to perform controlled spatiotemporal enzymatic reactions and drug release in response to biologically relevant stimuli.
Collapse
Affiliation(s)
- Edurne Marin
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Neha Tiwari
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jose-Ramon Sarasua
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
24
|
Xu M, Su X, Xiao X, Yu H, Li X, Keating A, Wang S, Zhao RC. Hydrogen Peroxide-Induced Senescence Reduces the Wound Healing-Promoting Effects of Mesenchymal Stem Cell-Derived Exosomes Partially via miR-146a. Aging Dis 2021; 12:102-115. [PMID: 33532131 PMCID: PMC7801275 DOI: 10.14336/ad.2020.0624] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have beneficial effects on wound healing. MSCs function through direct cell-cell communication or indirectly through paracrine secretion of exosomes. Here, we found that MSC-derived exosomes had pro-wound healing effects via promotion of angiogenesis; however, this promoting effect was significantly reduced when senescence was induced in parental MSCs by hydrogen peroxide (H2O2). Further experiments showed that decreased miR-146a expression in exosomes derived from senescent MSCs (s-exo) contributed to these findings. In vitro, the pro-angiogenic effect of s-exo on tube formation in human umbilical vein endothelial cells was significantly reduced compared with that of exosomes derived from control MSCs (c-exo). In vivo, higher tube numbers and longer tube lengths were observed in the c-exo group compared with the s-exo group. Using microarray analysis, we found that miR-146a level in s-exo was lower than that in c-exo. Knockdown of miR-146a in c-exo decreased its capacity to promote angiogenesis, and overexpression of miR-146a in s-exo partially rescued its impaired pro-angiogenic capacity, thereby confirming that downregulation of miR-146a contributed to the reduced pro-wound healing capacity of s-exo. Our study is the first to demonstrate that cell senescence induced by H2O2 alters the pro-angiogenic ability of exosomes by modulating the expression of exosomal miRNAs, especially miR-146a, thus providing new insights into the correlation between parental cell state and exosome content and function.
Collapse
Affiliation(s)
- Meiqian Xu
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaodong Su
- 2Brain Tumor Research Center, Beijing Neurosurgical Institute, Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing Laboratory of Biomedical Materials, Beijing 100070, China
| | - Xian Xiao
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Hongliang Yu
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xiaoxia Li
- 3Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Armand Keating
- 4Cell Therapy Translational Research Laboratory, Princess Margaret, Cancer Centre, Toronto, Ontario M5G 2M9, Canada.,5Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5G2M9, Canada.,6Institute of Medical Science, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| | - Shihua Wang
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Robert Chunhua Zhao
- 1Institute of Basic Medical Sciences Chinese Academy of Medical Sciences,School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing 100005, China
| |
Collapse
|
25
|
Gorabi AM, Aslani S, Barreto GE, Báez-Jurado E, Kiaie N, Jamialahmadi T, Sahebkar A. The potential of mitochondrial modulation by neuroglobin in treatment of neurological disorders. Free Radic Biol Med 2021; 162:471-477. [PMID: 33166649 DOI: 10.1016/j.freeradbiomed.2020.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023]
Abstract
Neuroglobin is the third member of the globin family to be identified in 2000 in neurons of both human and mouse nervous systems. Neuroglobin is an oxygen-binding globin found in neurons within the central nervous system as well as in peripheral neurons, that produces a protective effect against hypoxic/ischemic damage induced by promoting oxygen availability within the mitochondria. Numerous investigations have demonstrated that impaired neuroglobin functioning is implicated in the pathogenesis of multiple neurodegenerative disorders. Several in vitro and animal studies have reported the potential of neuroglobin upregulation in improving the neuroprotection through modulation of mitochondrial functions, such as ATP production, clearing reactive oxygen species (ROS), promoting the dynamics of mitochondria, and controlling apoptosis. Neuroglobin acts as a stress-inducible globin, which has been associated hypoxic/ischemic insults where it acts to protect the heart and brain, providing a wide range of applicability in the treatment of human disorders. This review article discusses normal physiological functions of neuroglobin in mitochondria-associated pathways, as well as outlining how dysregulation of neuroglobin is associated with the pathogenesis of neurodegenerative disorders.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | - Eliana Báez-Jurado
- Departamento de Química, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
26
|
Laabbar W, Abbaoui A, Elgot A, Mokni M, Amri M, Masmoudi-Kouki O, Gamrani H. Aluminum induced oxidative stress, astrogliosis and cell death in rat astrocytes, is prevented by curcumin. J Chem Neuroanat 2020; 112:101915. [PMID: 33370573 DOI: 10.1016/j.jchemneu.2020.101915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022]
Abstract
Aluminum (Al) is recognized potent neurotoxic metal, which causes oxidative stress leading to intracellular accumulation of reactive oxygen species (ROS) and neuronal cell death in various neurodegenerative diseases. Among several medicinal plants with beneficial effects on health, curcumin acts as a multi-functional drug with antioxidant activity. Thus, the purpose of the present study was to evaluate the protective effect of curcumin against aluminum induced-oxidative stress and astrocytes death, in vitro ad in vivo. Incubation of cultured rat astrocytes with two concentrations of Al (37 μM and 150 μM) for 1 h provoked a dose-dependent reduction of the number of living cells as evaluated by Fluorescein diacetate and lactate dehydrogenase assay. Al-treated cells exhibited a reduction of both superoxide dismutase (SOD) and catalase activities. Pretreatment of astrocytes with curcumin (81 μM) prevented Al-induced cell death. Regarding in vivo study, rats were exposed acutely during three consecutive days to three different doses of Al (25 mg/kg, 50 mg/kg and 100 mg/kg, i.p injection), together with curcumin treatment (30 mg/kg). For the chronic model, animals were exposed to Al (3 g/l) in drinking water from intrauterine age to 4 months ages, plus curcumin treatment (175 mg/kg). Data showed that both acute and chronic Al intoxication induced an obvious astrogliosis within motor cortex and hippocampus, while, such effects were restored by curcumin. We showed herein that Al was highly toxic, induced astrocytes death. Then, curcumin protected astrocytes against Al-toxicity. The cytoprotective potential of curcumin is initiated by stimulation of endogenous antioxidant system.
Collapse
Affiliation(s)
- Wafaa Laabbar
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdellatif Abbaoui
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Abdeljalil Elgot
- Epidemiology and Biomedical Sciences Unit, Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat, Morocco
| | - Meherzia Mokni
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia.
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Science of Tunis, UR/11ES09 Laboratory of Functional Neurophysiology and Pathology, 2092 Tunis, Tunisia
| | - Halima Gamrani
- Neurosciences, Pharmacology and Environment Team, Laboratory of Clinical, Experimental and Environmental Neurosciences, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco; Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco.
| |
Collapse
|
27
|
de Vidania S, Palomares-Perez I, Frank-García A, Saito T, Saido TC, Draffin J, Szaruga M, Chávez-Gutierrez L, Calero M, Medina M, Guix FX, Dotti CG. Prodromal Alzheimer's Disease: Constitutive Upregulation of Neuroglobin Prevents the Initiation of Alzheimer's Pathology. Front Neurosci 2020; 14:562581. [PMID: 33343276 PMCID: PMC7744294 DOI: 10.3389/fnins.2020.562581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, a considerable number of the autopsy samples of cognitively normal individuals aged between 57 and 102 years have revealed the presence of amyloid plaques, one of the typical signs of AD, indicating that many of us use mechanisms that defend ourselves from the toxic consequences of Aß. The human APP NL/F (hAPP NL/F) knockin mouse appears as the ideal mouse model to identify these mechanisms, since they have high Aß42 levels at an early age and moderate signs of disease when old. Here we show that in these mice, the brain levels of the hemoprotein Neuroglobin (Ngb) increase with age, in parallel with the increase in Aß42. In vitro, in wild type neurons, exogenous Aß increases the expression of Ngb and Ngb over-expression prevents Aß toxicity. In vivo, in old hAPP NL/F mice, Ngb knockdown leads to dendritic tree simplification, an early sign of Alzheimer’s disease. These results could indicate that Alzheimer’s symptoms may start developing at the time when defense mechanisms start wearing out. In agreement, analysis of plasma Ngb levels in aged individuals revealed decreased levels in those whose cognitive abilities worsened during a 5-year longitudinal follow-up period.
Collapse
Affiliation(s)
- Silvia de Vidania
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Irene Palomares-Perez
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Ana Frank-García
- Department of Neurology, Instituto de Salud Carlos III (ISCIII), Division Neurodegenerative Disease, University Hospital La Paz, Madrid, Spain
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Japan
| | - Takaomi C Saido
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Jonathan Draffin
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - María Szaruga
- KU Leuven Department for Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Lucía Chávez-Gutierrez
- KU Leuven Department for Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Miguel Calero
- CIBERNED, Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Medina
- CIBERNED, Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc X Guix
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Carlos G Dotti
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| |
Collapse
|
28
|
Song G, Wang R, Cui Y, Hao CJ, Xia HF, Ma X. Diethylhexyl phthalate induces teratogenic effects through oxidative stress response in a chick embryo model. Toxicol Res (Camb) 2020; 9:622-631. [PMID: 33178422 DOI: 10.1093/toxres/tfaa058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 11/14/2022] Open
Abstract
Diethylhexyl phthalate (DEHP) is known as a persistent environmental pollutant. However, the possible effects of DEHP on human neural tube defects (NTDs) remain elusive. We set out to investigate the exposure of DEHP in human and explore the association of DEHP and NTDs. The level of DEHP in maternal urine was measured and analyzed by GC-MS. To further validate the results in human NTDs, chick embryos were used as animal models. Viability, reactive oxygen species (ROS) level, oxidative stress indicators and apoptosis were detected in DEHP-treated chick embryos. Our research revealed that the detection ratio of positive DEHP and its metabolites in maternal urine were observed dramatically higher in NTDs population than that in normal controls (P < 0.01, P < 0.05, respectively). Moreover, DEHP treatment (10-6 M) led to developmental toxicity in chick embryos via accelerating oxidative stress response and cell apoptosis, and changing the level of oxidative stress-related indicators. Moreover, high dose choline (100 μg/μl) could partially restrain the toxicity effects induced by DEHP. Our data collectively imply that the incidence of NTDs may closely associate with DEHP exposure, which disturbs the development of neural tubes by enhancing oxidative stress.
Collapse
Affiliation(s)
- Ge Song
- Reproductive and Genetic Center of National Research Institute for Family Planning, Da Hui Si Road, Beijing 100081, China
| | - Rui Wang
- Department of Blood Transfusion, First medical center, Chinese People's Liberation Army General Hospital, Fu Xing Road, Beijing 100853, China
| | - Yi Cui
- Reproductive and Genetic Center of National Research Institute for Family Planning, Da Hui Si Road, Beijing 100081, China
| | - Chan Juan Hao
- Reproductive and Genetic Center of National Research Institute for Family Planning, Da Hui Si Road, Beijing 100081, China
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Da Hui Si Road, Beijing 100081, China
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Da Hui Si Road, Beijing 100081, China
| |
Collapse
|
29
|
Gao XF, Liu Q, Qing H, Mu KM, Zhang J, Zhang D, Li H, Mao SJ. Development of eugenol-loaded submicron emulsion and its antiepileptic effect through regulating the oxidative stress. Int J Pharm 2020; 587:119724. [PMID: 32755685 DOI: 10.1016/j.ijpharm.2020.119724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/13/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to develop an injectable submicron emulsion of eugenol (Eug-SE) and to investigate its antagonism on epilepsy. The formulation was optimized using a complete randomized design, comprising 5% (w/v) eugenol, 5% (w/v) soybean oil, 1.2% (w/v) egg phosphatidylcholine, 0.3% (w/v) poloxamer 188, and 0.03% (w/v) sodium oleate. The prepared Eug-SE was comprehensively evaluated in terms of its pharmaceutical characteristics, physicochemical stability, injection safety, antioxidant activity in vitro, and anti-epileptic effect in vivo. The mean particle size of Eug-SE was 176.1 ± 10.3 nm, the ζ-potential was -40.2 ± 1.8 mV, and the drug content was (95.3 ± 0.4) %. Moreover, the Eug-SE displayed excellent stability and improved safety compared to the eugenol solution. The Eug-SE (20 μg/mL) produced a significant neuroprotective effect against H2O2-induced oxidative damage in PC12 cells, which was attributed to the decrease of cellular reactive oxygen species level and mitochondrial damage. Besides, the in vivo test indicated that Eug-SE exerted an anti-epileptic effect in the PTZ treated mice. These results suggested that Eug-SE was a suitable dosage form of eugenol for injection, and displayed great therapeutic potential for neurological disease in the future.
Collapse
Affiliation(s)
- Xiao-Feng Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qi Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hong Qing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ke-Man Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jian Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Di Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hui Li
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital & Affiliated Hospital of University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Sheng-Jun Mao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
30
|
Fiocchetti M, Solar Fernandez V, Segatto M, Leone S, Cercola P, Massari A, Cavaliere F, Marino M. Extracellular Neuroglobin as a Stress-Induced Factor Activating Pre-Adaptation Mechanisms against Oxidative Stress and Chemotherapy-Induced Cell Death in Breast Cancer. Cancers (Basel) 2020; 12:cancers12092451. [PMID: 32872414 PMCID: PMC7564643 DOI: 10.3390/cancers12092451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/26/2020] [Indexed: 12/16/2022] Open
Abstract
Components of tumor microenvironment, including tumor and/or stromal cells-derived factors, exert a critical role in breast cancer (BC) progression. Here we evaluated the possible role of neuroglobin (NGB), a monomeric globin that acts as a compensatory protein against oxidative and apoptotic processes, as part of BC microenvironment. The extracellular NGB levels were evaluated by immunofluorescence of BC tissue sections and by Western blot of the culture media of BC cell lines. Moreover, reactive oxygen species (ROS) generation, cell apoptosis, and cell migration were evaluated in different BC cells and non-tumorigenic epithelial mammary cells treated with BC cells (i.e., Michigan Cancer Foundation-7, MCF-7) conditioned culture media and extracellular NGB. Results demonstrate that NGB is a component of BC microenvironment. NGB is released in tumor microenvironment by BC cells only under oxidative stress conditions where it can act as autocrine/paracrine factor able to communicate cell resilience against oxidative stress and chemotherapeutic treatment.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| | - Virginia Solar Fernandez
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy;
| | - Stefano Leone
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
| | - Paolo Cercola
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Annalisa Massari
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Francesco Cavaliere
- Division of Senology, Belcolle Hospital, Str. Sammartinese, 01100 Viterbo, Italy; (P.C.); (A.M.); (F.C.)
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy; (V.S.F.); (S.L.)
- Correspondence: (M.F.); (M.M.); Tel.: +39-06-5733-6455 (M.F.); +39-06-5733-6320 (M.M.); Fax: +39-06-5733-6321 (M.F. & M.M.)
| |
Collapse
|
31
|
Li M, Wu X, An P, Dang H, Liu Y, Liu R. Effects of resveratrol on autophagy and the expression of inflammasomes in a placental trophoblast oxidative stress model. Life Sci 2020; 256:117890. [PMID: 32497634 DOI: 10.1016/j.lfs.2020.117890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/21/2020] [Accepted: 05/29/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE We aim to investigate whether there is activation of NLRP1 and autophagy in trophoblast oxidative stress model. Resveratrol was taken to clarify its role in oxidative damage of placental trophoblasts. METHODS H2O2 was added to HTR-8/SVneo cell for 3 h, then the ROS level and apoptosis panel was performed. The levels of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 were detected. Resveratrol was added after 8 h, the ROS level and apoptosis rate were detected, the expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 were detected. RESULTS 300 μmol/L H2O2 for 3 h is the optimum combination in establishing the oxidative stress injury model (P < 0.01). LDH, ROS and MDA level was increased, the activity of SOD, CAT were declined (P < 0.01). Apoptosis rate increased (P < 0.01). The expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 protein was higher (P < .01). Resveratrol (50 μmol/L) treatment for 8 h could improve the changes caused by H2O2, increase the survival rate of cells (P < 0.01), reduce the release of LDH, decrease the level of MDA, increase the level of SOD and CAT (P < 0.01). The expression of IL-1β, caspase-1, NLRP1, LC3 and Beclin-1 protein decreased (P < 0.01). CONCLUSION Trophoblast oxidative damage model can be established under 300 μmol/L H2O2 for 3 h, the expression of NLRP1and autophagy after H2O2 treatment were detected. Resveratrol reduces apoptotic cells, thus ensuring the normal biological functions of trophoblasts. CAPSULE H2O2-induced oxidative stress damage model in HTR-8/SVneo cells can be successfully established under 300 μmol/L H2O2 for 3 h, resveratrol alleviates of H2O2-induced damage by its antioxidant and autophagy regulation function.
Collapse
Affiliation(s)
- Meihe Li
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Medical School of Xi'an Jiaotong University, China
| | - Peng An
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huimin Dang
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| | - Yanqiao Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Runxia Liu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| |
Collapse
|
32
|
Alahmadi BA, El-Alfy SH, Hemaid AM, Abdel-Nabi IM. The protective effects of vitamin E against selenium-induced oxidative damage and hepatotoxicity in rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2020. [DOI: 10.1080/16583655.2020.1769256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Sherif Helmy El-Alfy
- Department of Biology, College of Science, Taibah University, Almadina Almunawara, Saudi Arabia
- Department of Zoology, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Alaa Mohamed Hemaid
- Department of Biology, College of Science, Taibah University, Almadina Almunawara, Saudi Arabia
| | - Ismail Mohamed Abdel-Nabi
- Department of Biology, College of Science, Taibah University, Almadina Almunawara, Saudi Arabia
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
33
|
Ming L, Qiao X, Yi L, Siren D, He J, Hai L, Guo F, Xiao Y, Ji R. Camel milk modulates ethanol-induced changes in the gut microbiome and transcriptome in a mouse model of acute alcoholic liver disease. J Dairy Sci 2020; 103:3937-3949. [PMID: 32171514 DOI: 10.3168/jds.2019-17247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Morbidity and mortality as a result of liver disease are major problems around the world, especially from alcoholic liver disease (ALD), which is characterized by hepatic inflammation and intestinal microbial imbalance. In this study, we investigated the hepatoprotective effects of camel milk (CM) in a mouse model of acute ALD and the underlying mechanism at the gut microbiota and transcriptome level. Male Institute of Cancer Research mice (n = 24; Beijing Weitong Lihua Experimental Animal Technology Co. Ltd., China) were divided into 3 groups: normal diet (NC); normal diet, then ethanol (ET); and normal diet and camel milk (CM), then ethanol (ET+CM). Analysis of serum biochemical indexes and histology revealed a reduction in hepatic inflammation in the ET+CM group. Sequencing of 16S rRNA showed that CM modulated the microbial communities, with an increased proportion of Lactobacillus and reduced Bacteroides, Alistipes, and Rikenellaceae RC9 gut group. Comparative hepatic transcriptome analysis revealed 315 differentially expressed genes (DEG) in the ET+CM and ET groups (150 upregulated and 165 downregulated). Enrichment analysis revealed that CM downregulated the expression of inflammation-related (ILB and CXCL1) genes in the IL-17 and tumor necrosis factor (TNF-α) pathways. We conclude that CM modulates liver inflammation and alleviates the intestinal microbial disorder caused by acute alcohol injury, indicating the potential of dietary CM in protection against alcohol-induced liver injury.
Collapse
Affiliation(s)
- Liang Ming
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - XiangYu Qiao
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dalai Siren
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China
| | - Jing He
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Hai
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fucheng Guo
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuchen Xiao
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China.
| |
Collapse
|
34
|
Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Garcia-Segura LM, Melcangi RC, Barreto GE. Lipotoxicity, neuroinflammation, glial cells and oestrogenic compounds. J Neuroendocrinol 2020; 32:e12776. [PMID: 31334878 DOI: 10.1111/jne.12776] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023]
Abstract
The high concentrations of free fatty acids as a consequence of obesity and being overweight have become risk factors for the development of different diseases, including neurodegenerative ailments. Free fatty acids are strongly related to inflammatory events, causing cellular and tissue alterations in the brain, including cell death, deficits in neurogenesis and gliogenesis, and cognitive decline. It has been reported that people with a high body mass index have a higher risk of suffering from Alzheimer's disease. Hormones such as oestradiol not only have beneficial effects on brain tissue, but also exert some adverse effects on peripheral tissues, including the ovary and breast. For this reason, some studies have evaluated the protective effect of oestrogen receptor (ER) agonists with more specific tissue activities, such as the neuroactive steroid tibolone. Activation of ERs positively affects the expression of pro-survival factors and cell signalling pathways, thus promoting cell survival. This review aims to discuss the relationship between lipotoxicity and the development of neurodegenerative diseases. We also elaborate on the cellular and molecular mechanisms involved in neuroprotection induced by oestrogens.
Collapse
Affiliation(s)
- Oscar Hidalgo-Lanussa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Eliana Baez-Jurado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
- Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Roberto C Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
35
|
Effects of Exogenous Neuroglobin (Ngb) on retinal inflammatory chemokines and microglia in a rat model of transient hypoxia. Sci Rep 2019; 9:18799. [PMID: 31827177 PMCID: PMC6906524 DOI: 10.1038/s41598-019-55315-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/20/2019] [Indexed: 12/04/2022] Open
Abstract
Neuroglobin is an endogenous neuroprotective protein. We determined the safety of direct delivery of Neuroglobin in the rat retina and its effects on retinal inflammatory chemokines and microglial during transient hypoxia. Exogenous Neuroglobin protein was delivered to one eye and a sham injection to the contralateral eye of six rats intravitreally. Fundus photography, Optical Coherence Topography, electroretinogram, histology and Neuroglobin, chemokines level were determined on days 7 and 30. Another 12 rats were subjected to transient hypoxia to assess the effect of Neuroglobin in hypoxia exposed retina by immunohistochemistry, retinal Neuroglobin concentration and inflammatory chemokines. Intravitreal injection of Neuroglobin did not incite morphology or functional changes in the retina. Retinal Neuroglobin protein was reduced by 30% at day 7 post hypoxia. It was restored to normoxic control levels with intravitreal exogenous Neuroglobin injections and sustained up to 30 days. IL-6, TNFα, IL-1B, RANTES, MCP-1 and VEGF were significantly decreased in Neuroglobin treated hypoxic retinae compared to non-treated hypoxic controls. This was associated with decreased microglial activation in the retina. Our findings provide proof of concept suggesting intravitreal Neuroglobin injection is non-toxic to the retina and can achieve the functional level to abrogate microglial and inflammatory chemokines responses during transient hypoxia.
Collapse
|
36
|
Mitra S, Nguyen LN, Akter M, Park G, Choi EH, Kaushik NK. Impact of ROS Generated by Chemical, Physical, and Plasma Techniques on Cancer Attenuation. Cancers (Basel) 2019; 11:E1030. [PMID: 31336648 PMCID: PMC6678366 DOI: 10.3390/cancers11071030] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/17/2022] Open
Abstract
For the last few decades, while significant improvements have been achieved in cancer therapy, this family of diseases is still considered one of the deadliest threats to human health. Thus, there is an urgent need to find novel strategies in order to tackle this vital medical issue. One of the most pivotal causes of cancer initiation is the presence of reactive oxygen species (ROS) inside the body. Interestingly, on the other hand, high doses of ROS possess the capability to damage malignant cells. Moreover, several important intracellular mechanisms occur during the production of ROS. For these reasons, inducing ROS inside the biological system by utilizing external physical or chemical methods is a promising approach to inhibit the growth of cancer cells. Beside conventional technologies, cold atmospheric plasmas are now receiving much attention as an emerging therapeutic tool for cancer treatment due to their unique biophysical behavior, including the ability to generate considerable amounts of ROS. This review summarizes the important mechanisms of ROS generated by chemical, physical, and plasma approaches. We also emphasize the biological effects and cancer inhibition capabilities of ROS.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Mahmuda Akter
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Plasma Bio-display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea.
| |
Collapse
|
37
|
He J, Xu L, Yang L, Sun C. Anti-oxidative effects of catechins and theaflavins on glutamate-induced HT22 cell damage. RSC Adv 2019; 9:21418-21428. [PMID: 35521307 PMCID: PMC9066190 DOI: 10.1039/c9ra02721a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/30/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Glutamate is an excitatory neurotransmitter that is involved in cell stress caused by oxidation. Polyphenolic compounds display various potential neuroprotective properties due to their ability to donate electrons and hydrogen atoms. Method: In this study, we evaluate the protective effect towards glutamate-induced HT22 cell damage. Two families of polyphenolic compounds are investigated, including the monomer polyphenol catechins, as well as the dimerized theaflavins. The cell apoptosis and intercellular ROS production are quantified by flow cytometry, and the protective mechanism is evaluated by quantifying the expression of cell apoptosis and energy related proteins. Result: Both sets of compounds protect cells against glutamate-induced oxidative stress, partially restore the cell viability, and prevent cells from apoptosis via bcl-2 and bax regulation, and attenuate intercellular ROS production. We demonstrate here that the protective effect is mediated by multiple factors, including reducing intracellular Ca2+ concentration, increasing glutathione level and related enzyme activity. Thus, the phosphorylation of AMP-activated protein kinase (AMPK) and extracellular signal-regulated kinase (ERK) show inverse correlation of activity after catechins and theaflavins stimulation. Conclusion: These results suggest both catechins and theaflavins compounds protect cells from glutamate-induced damage via cell apoptosis-related proteins and indirect regulation of cellular energy enzymes. These natural sourced antioxidants provide potential therapeutic agents for glutamate accumulation and toxicity related diseases.
Collapse
Affiliation(s)
- Jinting He
- Department of Neurology, China-Japan Union Hospital, Jilin University Changchun China 130031
| | - Lei Xu
- Department of Neurology, China-Japan Union Hospital, Jilin University Changchun China 130031
| | - Le Yang
- People's Hospital of Jilin Province Changchun China 130021
| | - Caixia Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University 126 Xiantai St, Erdao Qu Changchun Jilin China 130031
| |
Collapse
|
38
|
Fiocchetti M, Fernandez VS, Montalesi E, Marino M. Neuroglobin: A Novel Player in the Oxidative Stress Response of Cancer Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6315034. [PMID: 31354909 PMCID: PMC6636438 DOI: 10.1155/2019/6315034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022]
Abstract
Reactive oxygen species (ROS) result from intracellular aerobic metabolism and/or extracellular stimuli. Although endogenous antioxidant systems exquisitely balance ROS production, an excess of ROS production, commonly found in diverse human degenerative pathologies including cancer, gives rise to the oxidative stress. Increased oxidative stress in cancer is related to the sustained proliferation and metabolism of cancer cells. However, cancer cells show an intrinsic higher antioxidant capacity with respect to the normal counterpart as well as an ability to cope with oxidative stress-induced cell death by establishing mechanisms of adaptation, which define a selective advantage against the adverse oxidative stress environment. The identification of survival factors and adaptive pathways, set up by cancer cells against oxidative stress, provides multiple targets for the therapeutic intervention against cancer. Neuroglobin (NGB), a globin primarily described in neurons as an oxidative stress sensor and cytoprotective factor against redox imbalance, has been recently recognized as a novel tumor-associated protein. In this review, the involvement of NGB in the cancer cell adaptation and resistance to oxidative stress will be discussed highlighting the globin role in the regulation of both the stress-induced apoptotic pathway and antioxidant systems activated by cancer cells.
Collapse
Affiliation(s)
- Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy
| |
Collapse
|
39
|
Neuroglobin protects offspring rats from neuronal damage induced by sevoflurane exposure to pregnant rats by inhibiting endogenous apoptosis. Int J Dev Neurosci 2019; 76:17-24. [DOI: 10.1016/j.ijdevneu.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022] Open
|
40
|
Kim J, Fukuda Y, Inoue T. Crystal structure of Kumaglobin: a hexacoordinated heme protein from an anhydrobiotic tardigrade,
Ramazzottius varieornatus. FEBS J 2018; 286:1287-1304. [DOI: 10.1111/febs.14713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/28/2018] [Accepted: 11/29/2018] [Indexed: 01/05/2023]
Affiliation(s)
- JeeEun Kim
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Japan
| | - Yohta Fukuda
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry Graduate School of Engineering Osaka University Suita Japan
- Graduate School of Pharmaceutical Science Suita Japan
| |
Collapse
|
41
|
Mitochondrial Neuroglobin Is Necessary for Protection Induced by Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells in Astrocytic Cells Subjected to Scratch and Metabolic Injury. Mol Neurobiol 2018; 56:5167-5187. [PMID: 30536184 DOI: 10.1007/s12035-018-1442-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
Astrocytes are specialized cells capable of regulating inflammatory responses in neurodegenerative diseases or traumatic brain injury. In addition to playing an important role in neuroinflammation, these cells regulate essential functions for the preservation of brain tissue. Therefore, the search for therapeutic alternatives to preserve these cells and maintain their functions contributes in some way to counteract the progress of the injury and maintain neuronal survival in various brain pathologies. Among these strategies, the conditioned medium from human adipose-derived mesenchymal stem cells (CM-hMSCA) has been reported with a potential beneficial effect against several neuropathologies. In this study, we evaluated the potential effect of CM-hMSCA in a model of human astrocytes (T98G cells) subjected to scratch injury. Our findings demonstrated that CM-hMSCA regulates the cytokines IL-2, IL-6, IL-8, IL-10, GM-CSF, and TNF-α, downregulates calcium at the cytoplasmic level, and regulates mitochondrial dynamics and the respiratory chain. These actions are accompanied by modulation of the expression of different proteins involved in signaling pathways such as AKT/pAKT and ERK1/2/pERK, and may mediate the localization of neuroglobin (Ngb) at the cellular level. We also confirmed that Ngb mediated the protective effects of CM-hMSCA through regulation of proteins involved in survival pathways and oxidative stress. In conclusion, regulation of brain inflammation combined with the recovery of fundamental cellular aspects in the face of injury makes CM-hMSCA a promising candidate for the protection of astrocytes in brain pathologies.
Collapse
|
42
|
Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon MC, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O. Antioxidant and Anti-Apoptotic Activity of Octadecaneuropeptide Against 6-OHDA Toxicity in Cultured Rat Astrocytes. J Mol Neurosci 2018; 69:1-16. [PMID: 30343367 DOI: 10.1007/s12031-018-1181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Oxidative stress, associated with various neurodegenerative diseases, promotes ROS generation, impairs cellular antioxidant defenses, and finally, triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN acts as a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10-14 to 10-8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. 6-OHDA-treated cells also exhibited enhanced levels of ROS associated with a generation of H2O2 and O2°-, and a reduction of both superoxide dismutase (SOD) and catalase (CAT) activities. Co-treatment of astrocytes with low concentrations of ODN dose-dependently blocked 6-OHDA-evoked production of ROS and inhibition of antioxidant enzyme activities. Concomitantly, ODN stimulated Mn-SOD, CAT, glutathione peroxidase-1, and sulfiredoxin-1 gene transcription and rescued 6-OHDA-associated reduced expression of endogenous antioxidant enzymes. Taken together, these data indicate that, in rat astrocytes, ODN exerts anti-apoptotic and anti-oxidative activities, and hence prevents 6-OHDA-induced oxidative assault and cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Hadhemi Kaddour
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,CIRB, CNRS UMR 7241/INSERM U1050, PSL University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, 75231, Paris, France.,Imagine Institute and Center of Psychiatry and Neuroscience, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Yosra Hamdi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Fatma Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - Ibtissem Bouannee
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Sami Zekri
- USCR Transmission Electron Microscopy, Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Sana Mezghani
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.
| |
Collapse
|
43
|
Choi DH, Yun JH, Lee J. Protective effect of the imidazoline I2 receptor agonist 2-BFI on oxidative cytotoxicity in astrocytes. Biochem Biophys Res Commun 2018; 503:3011-3016. [DOI: 10.1016/j.bbrc.2018.08.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/11/2018] [Indexed: 12/29/2022]
|
44
|
Growth Factors and Neuroglobin in Astrocyte Protection Against Neurodegeneration and Oxidative Stress. Mol Neurobiol 2018; 56:2339-2351. [PMID: 29982985 DOI: 10.1007/s12035-018-1203-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
Neurodegenerative diseases, such as Parkinson and Alzheimer, are among the main public health issues in the world due to their effects on life quality and high mortality rates. Although neuronal death is the main cause of disruption in the central nervous system (CNS) elicited by these pathologies, other cells such as astrocytes are also affected. There is no treatment for preventing the cellular death during neurodegenerative processes, and current drug therapy is focused on decreasing the associated motor symptoms. For these reasons, it has been necessary to seek new therapeutical procedures, including the use of growth factors to reduce α-synuclein toxicity and misfolding in order to recover neuronal cells and astrocytes. Additionally, it has been shown that some growth factors are able to reduce the overproduction of reactive oxygen species (ROS), which are associated with neuronal death through activation of antioxidative enzymes such as catalase, superoxide dismutase, glutathione peroxidase, and neuroglobin. In the present review, we discuss the use of growth factors such as PDGF-BB, VEGF, BDNF, and the antioxidative enzyme neuroglobin in the protection of astrocytes and neurons during the development of neurodegenerative diseases.
Collapse
|
45
|
Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R. Neurotoxicity Linked to Dysfunctional Metal Ion Homeostasis and Xenobiotic Metal Exposure: Redox Signaling and Oxidative Stress. Antioxid Redox Signal 2018; 28:1669-1703. [PMID: 29402131 PMCID: PMC5962337 DOI: 10.1089/ars.2017.7272] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Essential metals such as copper, iron, manganese, and zinc play a role as cofactors in the activity of a wide range of processes involved in cellular homeostasis and survival, as well as during organ and tissue development. Throughout our life span, humans are also exposed to xenobiotic metals from natural and anthropogenic sources, including aluminum, arsenic, cadmium, lead, and mercury. It is well recognized that alterations in the homeostasis of essential metals and an increased environmental/occupational exposure to xenobiotic metals are linked to several neurological disorders, including neurodegeneration and neurodevelopmental alterations. Recent Advances: The redox activity of essential metals is key for neuronal homeostasis and brain function. Alterations in redox homeostasis and signaling are central to the pathological consequences of dysfunctional metal ion homeostasis and increased exposure to xenobiotic metals. Both redox-active and redox-inactive metals trigger oxidative stress and damage in the central nervous system, and the exact mechanisms involved are starting to become delineated. CRITICAL ISSUES In this review, we aim to appraise the role of essential metals in determining the redox balance in the brain and the mechanisms by which alterations in the homeostasis of essential metals and exposure to xenobiotic metals disturb the cellular redox balance and signaling. We focus on recent literature regarding their transport, metabolism, and mechanisms of toxicity in neural systems. FUTURE DIRECTIONS Delineating the specific mechanisms by which metals alter redox homeostasis is key to understand the pathological processes that convey chronic neuronal dysfunction in neurodegenerative and neurodevelopmental disorders. Antioxid. Redox Signal. 28, 1669-1703.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska.,2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Yanahi Posadas
- 3 Departamentos de Farmacología y de, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México .,4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - Liliana Quintanar
- 4 Departamentos de Química, Centro de Investigación y de Estudios Avanzados (CINVESTAV) , Mexico City, México
| | - María E Gonsebatt
- 2 Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México, Mexico City, México
| | - Rodrigo Franco
- 1 Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln , Lincoln, Nebraska
| |
Collapse
|
46
|
|
47
|
Oxidative stress, caspase-3 activation and cleavage of ROCK-1 play an essential role in MeHg-induced cell death in primary astroglial cells. Food Chem Toxicol 2018; 113:328-336. [PMID: 29428217 DOI: 10.1016/j.fct.2018.01.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022]
Abstract
Methylmercury is a toxic environmental contaminant that elicits significant toxicity in humans. The central nervous system is the primary target of toxicity, and is particularly vulnerable during development. Rho-associated protein kinase 1 (ROCK-1) is a major downstream effector of the small GTPase RhoA and a direct substrate of caspase-3. The activation of ROCK-1 is necessary for membrane blebbing during apoptosis. In this work, we examined whether MeHg could affect the RhoA/ROCK-1 signaling pathway in primary cultures of mouse astrocytes. Exposure of cells with 10 μM MeHg decreased cellular viability after 24 h of incubation. This reduction in viability was preceded by a significant increase in intracellular and mitochondrial reactive oxygen species levels, as well as a reduced NAD+/NADH ratio. MeHg also induced an increase in mitochondrial-dependent caspase-9 and caspase-3, while the levels of RhoA protein expression were reduced or unchanged. We further found that MeHg induced ROCK-1 cleavage/activation and promoted LIMK1 and MYPT1 phosphorylation, both of which are the best characterized ROCK-1 downstream targets. Inhibiting ROCK-1 and caspases activation attenuated the MeHg-induced cell death. Collectively, these findings are the first to show that astrocytes exposed to MeHg showed increased cleavage/activation of ROCK-1, which was independent of the small GTPase RhoA.
Collapse
|
48
|
Xu WC, Liang JZ, Li C, He ZX, Yuan HY, Huang BY, Liu XL, Tang B, Pang DW, Du HN, Yang Y, Chen J, Wang L, Zhang M, Liang Y. Pathological hydrogen peroxide triggers the fibrillization of wild-type SOD1 via sulfenic acid modification of Cys-111. Cell Death Dis 2018; 9:67. [PMID: 29358575 PMCID: PMC5833406 DOI: 10.1038/s41419-017-0106-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) involves the abnormal posttranslational modifications and fibrillization of copper, zinc superoxide dismutase (SOD1) and TDP-43. However, how SOD1-catalyzed reaction product hydrogen peroxide affects amyloid formation of SOD1 and TDP-43 remains elusory. 90% of ALS cases are sporadic and the remaining cases are familial ALS. In this paper, we demonstrate that H2O2 at pathological concentrations triggers the fibrillization of wild-type SOD1 both in vitro and in SH-SY5Y cells. Using an anti-dimedone antibody that detects sulfenic acid modification of proteins, we found that Cys-111 in wild-type SOD1 is oxidized to C-SOH by pathological concentration of H2O2, followed by the formation of sulfenic acid modified SOD1 oligomers. Furthermore, we show that such SOD1 oligomers propagate in a prion-like manner, and not only drive wild-type SOD1 to form fibrils in the cytoplasm but also induce cytoplasm mislocalization and the subsequent fibrillization of wild-type TDP-43, thereby inducing apoptosis of living cells. Thus, we propose that H2O2 at pathological concentrations triggers the fibrillization of wild-type SOD1 and subsequently induces SOD1 toxicity and TDP-43 toxicity in neuronal cells via sulfenic acid modification of Cys-111 in SOD1. Our Western blot and ELISA data demonstrate that sulfenic acid modified wild-type SOD1 level in cerebrospinal fluid of 15 sporadic ALS patients is significantly increased compared with 6 age-matched control patients. These findings can explain how H2O2 at pathologic concentrations regulates the misfolding and toxicity of SOD1 and TDP-43 associated with ALS, and suggest that sulfenic acid modification of wild-type SOD1 should play pivotal roles in the pathogenesis of sporadic ALS.
Collapse
Affiliation(s)
- Wen-Chang Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin-Zhao Liang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Han-Ye Yuan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ben-Yan Huang
- Department of Neurology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Ling Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Tang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China
| | - Dai-Wen Pang
- College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan University, Wuhan, 430072, China
| | - Hai-Ning Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yi Yang
- State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Zhang
- Department of Neurology Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Liang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
49
|
Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C, Hubel P, Pennemann FL, Schnepf D, Wettmarshausen J, Braun M, Leung DW, Amarasinghe GK, Perocchi F, Staeheli P, Ryffel B, Pichlmair A. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 2017; 19:130-140. [PMID: 29255269 PMCID: PMC5786482 DOI: 10.1038/s41590-017-0013-y] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 11/17/2017] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are generated by virally-infected cells however the physiological significance of ROS generated under these conditions is unclear. Here we show that inflammation and cell death induced by exposure of mice or cells to sources of ROS is not altered in the absence of canonical ROS-sensing pathways or known cell death pathways. ROS-induced cell death signaling involves interaction between the cellular ROS sensor and antioxidant factor KEAP1, the phosphatase PGAM5 and the proapoptotic factor AIFM1. Pgam5−/− mice show exacerbated lung inflammation and proinflammatory cytokines in an ozone exposure model. Similarly, challenge with influenza A virus leads to increased virus infiltration, lymphocytic bronchiolitis and reduced survival of Pgam5−/− mice. This pathway, which we term ‘oxeiptosis’, is a ROS-sensitive, caspase independent, non-inflammatory cell death pathway and is important to protect against inflammation induced by ROS or ROS-generating agents such as viral pathogens.
Collapse
Affiliation(s)
- Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Chloé Michaudel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Claire Mackowiak
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France
| | - Darya A Haas
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Friederike L Pennemann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany
| | - Daniel Schnepf
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Jennifer Wettmarshausen
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Marianne Braun
- EM-Histo Lab, Max-Planck Institute of Neurobiology, Martinsried, Munich, Germany
| | - Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Fabiana Perocchi
- Department of Biochemistry, Gene Center Munich, Munich, Germany.,Institute for Diabetes and Obesity, Helmholtz Zentrum Munchen, Neuherberg, Germany
| | - Peter Staeheli
- Institute of Virology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernhard Ryffel
- INEM, Experimental Molecular Immunology, UMR7355 CNRS and University, Orleans, France.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, Munich, Germany. .,School of Medicine, Institute of Virology, Technical University of Munich, Munich, Germany. .,German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
50
|
Hidalgo-Lanussa O, Ávila-Rodriguez M, Baez-Jurado E, Zamudio J, Echeverria V, Garcia-Segura LM, Barreto GE. Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. Mol Neurobiol 2017; 55:5462-5477. [DOI: 10.1007/s12035-017-0777-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
|