1
|
Wu G, Qiu J, Yan G, Li A, Xu X, Wang X, Li D. Spatiotemporal distribution of lipophilic shellfish toxins in plankton and shellfish in the offshore regions of Shandong province, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135363. [PMID: 39084006 DOI: 10.1016/j.jhazmat.2024.135363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Lipophilic shellfish toxins (LSTs) threaten the ecosystem health and seafood safety. To comprehensively investigate the spatiotemporal distribution of common LSTs in phytoplankton, zooplankton and economic shellfish, three cruises were conducted in five typical offshore aquaculture regions of Shandong province, China, including Haizhou Bay, Jiaozhou Bay, Sanggou Bay, Sishili Bay and Laizhou Bay, in spring (March-April), summer (July-August) and autumn (November-December). This study revealed significant variability in the composition and content of LSTs in phytoplankton samples collected from different regions. Pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1) and okadaic acid (OA) were mainly detected in the ranges of not detected (nd)-5045 pmol g-1 dry weight (dw), nd-159 pmol g-1 dw, and nd-154 pmol g-1 dw, respectively. In zooplankton, DTX1 and OA were the predominant components of LSTs, with the highest levels of ∑LSTs in spring ranging from nd to 406 pmol g-1 dw. Spearman's correlation analysis between LSTs and environmental factors indicated significant correlations for the contents of homo-yessotoxin (hYTX), gymnodimine-A (GYM-A), and spirolide-1 (SPX1) with these factors. Totally relatively low levels of LSTs with dominative DTX1 were detected in economic shellfish, which showed a low risk to seafood safety for human health.
Collapse
Affiliation(s)
- Guangyao Wu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Guowang Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Xiaoqing Xu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoyun Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongyue Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Bourne Y, Sulzenbacher G, Chabaud L, Aráoz R, Radić Z, Conrod S, Taylor P, Guillou C, Molgó J, Marchot P. The Cyclic Imine Core Common to the Marine Macrocyclic Toxins Is Sufficient to Dictate Nicotinic Acetylcholine Receptor Antagonism. Mar Drugs 2024; 22:149. [PMID: 38667766 PMCID: PMC11050823 DOI: 10.3390/md22040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Macrocyclic imine phycotoxins are an emerging class of chemical compounds associated with harmful algal blooms and shellfish toxicity. Earlier binding and electrophysiology experiments on nAChR subtypes and their soluble AChBP surrogates evidenced common trends for substantial antagonism, binding affinities, and receptor-subtype selectivity. Earlier, complementary crystal structures of AChBP complexes showed that common determinants within the binding nest at each subunit interface confer high-affinity toxin binding, while distinctive determinants from the flexible loop C, and either capping the nest or extending toward peripheral subsites, dictate broad versus narrow receptor subtype selectivity. From these data, small spiroimine enantiomers mimicking the functional core motif of phycotoxins were chemically synthesized and characterized. Voltage-clamp analyses involving three nAChR subtypes revealed preserved antagonism for both enantiomers, despite lower subtype specificity and binding affinities associated with faster reversibility compared with their macrocyclic relatives. Binding and structural analyses involving two AChBPs pointed to modest affinities and positional variability of the spiroimines, along with a range of AChBP loop-C conformations denoting a prevalence of antagonistic properties. These data highlight the major contribution of the spiroimine core to binding within the nAChR nest and confirm the need for an extended interaction network as established by the macrocyclic toxins to define high affinities and marked subtype specificity. This study identifies a minimal set of functional pharmacophores and binding determinants as templates for designing new antagonists targeting disease-associated nAChR subtypes.
Collapse
Affiliation(s)
- Yves Bourne
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
| | - Gerlind Sulzenbacher
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
| | - Laurent Chabaud
- Institut de Chimie des Substances Naturelles (ICSN), Univ Paris-Saclay, CNRS, 91198 Gif-sur-Yvette, France; (L.C.); (C.G.)
| | - Rómulo Aráoz
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS) EMR CNRS 9004, Département Médicaments et Technologies pour la Santé, Institut des Sciences du Vivant Frédéric Joliot, CEA, INRAE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.A.); (J.M.)
| | - Zoran Radić
- Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS), University of California San Diego, La Jolla, CA 92093-0751, USA; (Z.R.); (P.T.)
| | - Sandrine Conrod
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Aix Marseille Univ, CNRS, 13344 Marseille, France;
| | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences (SSPPS), University of California San Diego, La Jolla, CA 92093-0751, USA; (Z.R.); (P.T.)
| | - Catherine Guillou
- Institut de Chimie des Substances Naturelles (ICSN), Univ Paris-Saclay, CNRS, 91198 Gif-sur-Yvette, France; (L.C.); (C.G.)
| | - Jordi Molgó
- Service d’Ingénierie Moléculaire pour la Santé (SIMoS) EMR CNRS 9004, Département Médicaments et Technologies pour la Santé, Institut des Sciences du Vivant Frédéric Joliot, CEA, INRAE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (R.A.); (J.M.)
| | - Pascale Marchot
- Lab “Architecture et Fonction des Macromolécules Biologiques” (AFMB), Aix-Marseille Univ, CNRS, Faculté des Sciences Campus Luminy, 13288 Marseille cedex 09, France; (Y.B.); (G.S.)
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), Aix Marseille Univ, CNRS, 13344 Marseille, France;
| |
Collapse
|
3
|
Zhang W, Ye Z, Qu P, Li D, Gao H, Liang Y, He Z, Tong M. Using solid phase adsorption toxin tracking and extended local similarity analysis to monitor lipophilic shellfish toxins in a mussel culture ranch in the Yangtze River Estuary. MARINE POLLUTION BULLETIN 2024; 199:116027. [PMID: 38217914 DOI: 10.1016/j.marpolbul.2024.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Harmful algal blooms (HABs) and their associated phycotoxins are increasing globally, posing great threats to local coastal ecosystems and human health. Nutrients have been carried by the freshwater Yangtze River and have entered the estuary, which was reported to be a biodiversity-rich but HAB-frequent region. Here, in situ solid phase adsorption toxin tracking (SPATT) was used to monitor lipophilic shellfish toxins (LSTs) in seawaters, and extended local similarity analysis (eLSA) was conducted to trace the temporal and special regions of those LSTs in a one-year trail in a mussel culture ranch in the Yangtze River Estuary. Nine analogs of LSTs, including okadaic acid (OA), dinophysistoxin-1 (DTX1), yessotoxin (YTX), homoyessotoxin (homoYTX), 45-OH-homoYTX, pectenotoxin-2 (PTX2), 7-epi-PTX2 seco acid (7-epi-PTX2sa), gymnodimine (GYM) and azaspiracids-3 (AZA3), were detected in seawater (SPATT) or rope farmed mussels. The concentrations of OA + DTX1 and homoYTX in mussels were positively correlated with those in SPATT samplers (Pearson test, p < 0.05), indicating that SPATT (with resin HP20) would be a good monitoring tool and potential indicator for OA + DTX1 and homoYTX in mussel Mytilus coruscus. The eLSA results indicated that late summer and early autumn were the most phycotoxin-contaminated seasons in the Yangtze River Estuary. OA + DTX1, homoYTX, PTX2 and GYM were most likely driven by the local growing HAB species in spring and summer, while Yangtze River diluted water may impact the accumulation of HAB species, causing potential phycotoxin contamination in the Yangtze River Estuary in autumn and winter. Together, the results showed that the mussel harvesting season, late summer and early autumn, would be the season with the greatest phycotoxin risk and would be the most contaminated by local growing toxic algae. Routine monitoring sites should be set up close to the local seawaters.
Collapse
Affiliation(s)
- Wenguang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zi Ye
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Peipei Qu
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Dongmei Li
- Ocean College, Zhejiang University, Zhoushan 316021, China; Dalian Phycotoxins Key Laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Han Gao
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yubo Liang
- Dalian Phycotoxins Key Laboratory, National Marine Environmental Monitoring Center, Ministry of Ecological Environment, Dalian 116023, China
| | - Zhiguo He
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Mengmeng Tong
- Ocean College, Zhejiang University, Zhoushan 316021, China; Hainan Institute of Zhejiang University, Sanya 572025, China.
| |
Collapse
|
4
|
Bele T, Turk T, Križaj I. Nicotinic acetylcholine receptors in cancer: Limitations and prospects. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166875. [PMID: 37673358 DOI: 10.1016/j.bbadis.2023.166875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) have long been considered to solely mediate neurotransmission. However, their widespread distribution in the human body suggests a more diverse physiological role. Additionally, the expression of nAChRs is increased in certain cancers, such as lung cancer, and has been associated with cell proliferation, epithelial-to-mesenchymal cell transition, angiogenesis and apoptosis prevention. Several compounds that interact with these receptors have been identified as potential therapeutic agents. They have been tested as drugs for treating nicotine addiction, alcoholism, depression, pain and Alzheimer's disease. This review focuses on nAChR-mediated signalling in cancer, presenting opportunities for the development of innovative nAChR-based anticancer drugs. It displays the differences in expression of each nAChR subunit between normal and cancer cells for selected cancer types, highlighting their possible involvement in specific cases. Antagonists of nAChRs that could complement existing cancer therapies are summarised and critically discussed. We hope that this review will stimulate further research on the role of nAChRs in cancer potentially leading to innovative cancer therapies.
Collapse
Affiliation(s)
- T Bele
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia.
| | - T Turk
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - I Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
5
|
Montuori E, De Luca D, Penna A, Stalberga D, Lauritano C. Alexandrium spp.: From Toxicity to Potential Biotechnological Benefits. Mar Drugs 2023; 22:31. [PMID: 38248656 PMCID: PMC10821459 DOI: 10.3390/md22010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Many dinoflagellates of the genus Alexandrium are well known for being responsible for harmful algal blooms (HABs), producing potent toxins that cause damages to other marine organisms, aquaculture, fishery, tourism, as well as induce human intoxications and even death after consumption of contaminated shellfish or fish. In this review, we summarize potential bioprospecting associated to the genus Alexandrium, including which Alexandrium spp. produce metabolites with anticancer, antimicrobial, antiviral, as well as anti-Alzheimer applications. When available, we report their mechanisms of action and targets. We also discuss recent progress on the identification of secondary metabolites with biological properties favorable to human health and aquaculture. Altogether, this information highlights the importance of studying which culturing conditions induce the activation of enzymatic pathways responsible for the synthesis of bioactive metabolites. It also suggests considering and comparing clones collected in different locations for toxin monitoring and marine bioprospecting. This review can be of interest not only for the scientific community, but also for the entire population and industries.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy;
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| | - Daniele De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61029 Urbino, Italy;
| | - Darta Stalberga
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, SE-58183 Linköping, Sweden;
| | - Chiara Lauritano
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Napoli, Italy
| |
Collapse
|
6
|
Barreiro-Crespo L, Fernández-Tejedor M, Diogène J, Rambla-Alegre M. The Temporal Distribution of Cyclic Imines in Shellfish in the Bays of Fangar and Alfacs, Northwestern Mediterranean Region. Toxins (Basel) 2023; 16:10. [PMID: 38251227 PMCID: PMC10819045 DOI: 10.3390/toxins16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Spirolides (SPXs), gymnodimines (GYMs), and pinnatoxins (PnTXs) have been detected in shellfish from the northwestern Mediterranean coast of Spain. Several samples of bivalves were collected from Fangar Bay and Alfacs Bay in Catalonia over a period of over 7 years (from 2015 to 2021). Shellfish samples were analyzed for cyclic imines (CIs) on an LC1200 Agilent and 3200 QTrap triple-quadrupole mass spectrometer. In shellfish, SPX-1 was detected in two cases (of 26.5 µg/kg and 34 µg/kg), and GYM-A was only detected in trace levels in thirteen samples. Pinnatoxin G (PnTX-G) was detected in 44.6% of the samples, with its concentrations ranging from 2 µg/kg to 38.4 µg/kg. Statistical analyses revealed that seawater temperature influenced the presence or absence of these toxins. PnTX-G showed an extremely significant presence/temperature relationship in both bays in comparison to SPX-1 and GYM-A. The prevalence of these toxins in different bivalve mollusks was evaluated. A seasonal pattern was observed, in which the maximum concentrations were found in the winter months for SPX-1 and GYM-A but in the summer months for PnTX-G. The obtained results indicate that it is unlikely that CIs in the studied area pose a potential health risk through the consumption of a seafood diet. However, further toxicological information about CIs is necessary in order to perform a conclusive risk assessment.
Collapse
Affiliation(s)
- Lourdes Barreiro-Crespo
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43002 Tarragona, Spain
| | - Margarita Fernández-Tejedor
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| |
Collapse
|
7
|
Tang J, Li W, Chiu TY, Martínez-Peña F, Luo Z, Chong CT, Wei Q, Gazaniga N, West TJ, See YY, Lairson LL, Parker CG, Baran PS. Synthesis of portimines reveals the basis of their anti-cancer activity. Nature 2023; 622:507-513. [PMID: 37730997 PMCID: PMC10699793 DOI: 10.1038/s41586-023-06535-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023]
Abstract
Marine-derived cyclic imine toxins, portimine A and portimine B, have attracted attention because of their chemical structure and notable anti-cancer therapeutic potential1-4. However, access to large quantities of these toxins is currently not feasible, and the molecular mechanism underlying their potent activity remains unknown until now. To address this, a scalable and concise synthesis of portimines is presented, which benefits from the logic used in the two-phase terpenoid synthesis5,6 along with other tactics such as exploiting ring-chain tautomerization and skeletal reorganization to minimize protecting group chemistry through self-protection. Notably, this total synthesis enabled a structural reassignment of portimine B and an in-depth functional evaluation of portimine A, revealing that it induces apoptosis selectively in human cancer cell lines with high potency and is efficacious in vivo in tumour-clearance models. Finally, practical access to the portimines and their analogues simplified the development of photoaffinity analogues, which were used in chemical proteomic experiments to identify a primary target of portimine A as the 60S ribosomal export protein NMD3.
Collapse
Affiliation(s)
- Junchen Tang
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Weichao Li
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Tzu-Yuan Chiu
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Zengwei Luo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Qijia Wei
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Thomas J West
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Yi Yang See
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Luke L Lairson
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | | | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
8
|
Dakkouri M. A Theoretical Investigation of Novel Sila- and Germa-Spirocyclic Imines and Their Relevance for Electron-Transporting Materials and Drug Discovery. Molecules 2023; 28:6298. [PMID: 37687127 PMCID: PMC10489060 DOI: 10.3390/molecules28176298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A new class of spirocyclic imines (SCIs) has been theoretically investigated by applying a variety of quantum chemical methods and basis sets. The uniqueness of these compounds is depicted by various peculiarities, e.g., the incidence of planar six-membered rings each with two imine groups (two π bonds) and the incorporation of the isosteres carbon, silicon, or germanium spiro centers. Additional peculiarities of these novel SCIs are mirrored by their three-dimensionality, the simultaneous occurrence of nucleophilic and electrophilic centers, and the cross-hyperconjugative (spiro-conjugation) interactions, which provoke charge mobility along the spirocyclic scaffold. Substitution of SCIs with strong electron-withdrawing substituents, like the cyano group or fluorine, enhances their docking capability and impacts their reactivity and charge mobility. To gain thorough knowledge about the molecular properties of these SCIs, their structures have been optimized and various quantum chemical concepts and models were applied, e.g., full NBO analysis and the frontier molecular orbitals (FMOs) theory (HOMO-LUMO energy gap) and the chemical reactivity descriptors derived from them. For the assessment of the charge density distribution along the SCI framework, additional complementary quantum chemical methods were used, e.g., molecular electrostatic potential (MESP) and Bader's QTAIM. Additionally, using the aromaticity index NICS (nuclear independent chemical shift) and other criteria, it could be shown that the investigated cross-hyperconjugated sila and germa SCIs are spiro-aromatics of the Heilbronner Craig-type Möbius aromaticity.
Collapse
Affiliation(s)
- Marwan Dakkouri
- Department of Electrochemistry, University of Ulm, D-89069 Ulm, Germany
| |
Collapse
|
9
|
Kim YS, An HJ, Kim J, Jeon YJ. Current Situation of Palytoxins and Cyclic Imines in Asia-Pacific Countries: Causative Phytoplankton Species and Seafood Poisoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4921. [PMID: 35457784 PMCID: PMC9026528 DOI: 10.3390/ijerph19084921] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
Among marine biotoxins, palytoxins (PlTXs) and cyclic imines (CIs), including spirolides, pinnatoxins, pteriatoxins, and gymnodimines, are not managed in many countries, such as the USA, European nations, and South Korea, because there are not enough poisoning cases or data for the limits on these biotoxins. In this article, we review unregulated marine biotoxins (e.g., PlTXs and CIs), their toxicity, causative phytoplankton species, and toxin extraction and detection protocols. Due to global warming, the habitat of the causative phytoplankton has expanded to the Asia-Pacific region. When ingested by humans, shellfish that accumulated toxins can cause various symptoms (muscle pain or diarrhea) and even death. There are no systematic reports on the occurrence of these toxins; however, it is important to continuously monitor causative phytoplankton and poisoning of accumulating shellfish by PlTXs and CI toxins because of the high risk of toxicity in human consumers.
Collapse
Affiliation(s)
- Young-Sang Kim
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| | - Hyun-Joo An
- Asia Glycomics Reference Site, Chungnam National University, Daejeon 34134, Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Jaeseong Kim
- Water and Eco-Bio Corporation, Kunsan National University, Kunsan 54150, Korea
| | - You-Jin Jeon
- Laboratory of Marine Bioresource Technology, Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University, Jeju City 63243, Korea
- Marine Science Institute, Jeju National University, Jeju City 63333, Korea
| |
Collapse
|
10
|
Li L, El Khoury A, Clement BO, Wu C, Harran PG. Asymmetric Organocatalysis Enables Rapid Assembly of Portimine Precursor Chains. Org Lett 2022; 24:2607-2612. [PMID: 35377667 DOI: 10.1021/acs.orglett.2c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sequential organocatalytic additions of 2-furanone and dihydroxyacetone derivatives to a crotonaldehyde lynchpin provide polyhydroxylated chains reminiscent of lactonized deoxo Kdn type sugars. Further homologation via Kulinkovich ring opening of the butyrolactone and acylation of the zinc homoenolate derived from the incipient cyclopropanol allows assembly of functionalized chain precursors to portimine. Our experiments probe the stability and reactivity of monosubstituted methylidene pyrrolines and generate advanced intermediates useful for exploring the biosynthesis and de novo synthesis of portimine.
Collapse
Affiliation(s)
- Liubo Li
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Anton El Khoury
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Brennan O'Neil Clement
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| | - Patrick G Harran
- Department of Chemistry and Biochemistry, University of California-Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, United States
| |
Collapse
|
11
|
Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This research was aimed at investigating the Saharan dust cloud recorded on 11 and 12 May 2020, by AERONET AOD stations in Italy, Austria, Slovakia, Poland, Ukraine, and Romania and determining whether it affected the area of the Republic of Moldova. During this period, the Chisinau AERONET monitoring site was not operational. The incentive for the investigation was the discovery of a high sediment load in rainwater collected on 12 May 2020 in Pelinia, a village in the Dochia district of the Republic of Moldova, in the southeastern part of Europe (47.8780 latitude, 27.8344 longitude), which could have originated from the Saharan dust storm. Backward trajectory analysis with NOAA’s HYSPLIT model confirmed that the Saharan dust storm impacted the village of Pelinia. Scanning electron microscopy coupled with electron dispersive X-ray spectroscopy (SEM-EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of Pelinia rainwater sediments confirmed the chemical composition and morphological structure of Saharan dust particles. The particle size of the sediments matched the measurements at the AOD stations at Timisoara and Magurele, supporting the suggestion that Saharan dust probably entered the Republic of Moldova from Romania. FTIR analysis identified chemical compounds such as carbon dioxide, carbonates, sulfates, ferrocyanides, and organics (amines, amides, polypeptides, imines, oximes, pyrroles, aldehydes, sulfoxides, sulfones, nitro-derivatives) that were adsorbed and/or absorbed from the atmosphere, consistent with Saharan dust aerosols. Bio-allergens such as pollen were detected in the SEM images, showing the role of Saharan dust in transporting and spreading this kind of biological material. This study highlights the risk of Saharan dust clouds to humans, animals, and plants, but also its potential benefits for agriculture when suitable conditions are met in this regard.
Collapse
|
12
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
13
|
Zhang X, Gao Y, Deng B, Hu B, Zhao L, Guo H, Yang C, Ma Z, Sun M, Jiao B, Wang L. Selection, Characterization, and Optimization of DNA Aptamers against Challenging Marine Biotoxin Gymnodimine-A for Biosensing Application. Toxins (Basel) 2022; 14:195. [PMID: 35324692 PMCID: PMC8949142 DOI: 10.3390/toxins14030195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Gymnodimines (GYMs), belonging to cyclic imines (CIs), are characterized as fast-acting toxins, and may pose potential risks to human health and the aquaculture industry through the contamination of sea food. The existing detection methods of GYMs have certain defects in practice, such as ethical problems or the requirement of complicated equipment. As novel molecular recognition elements, aptamers have been applied in many areas, including the detection of marine biotoxins. However, GYMs are liposoluble molecules with low molecular weight and limited numbers of chemical groups, which are considered as "challenging" targets for aptamers selection. In this study, Capture-SELEX was used as the main strategy in screening aptamers targeting gymnodimine-A (GYM-A), and an aptamer named G48nop, with the highest KD value of 95.30 nM, was successfully obtained by screening and optimization. G48nop showed high specificity towards GYM-A. Based on this, a novel aptasensor based on biolayer interferometry (BLI) technology was established in detecting GYM-A. This aptasensor showed a detection range from 55 to 1400 nM (linear range from 55 to 875 nM) and a limit of detection (LOD) of 6.21 nM. Spiking experiments in real samples indicated the recovery rate of this aptasensor, ranging from 96.65% to 109.67%. This is the first study to report an aptamer with high affinity and specificity for the challenging marine biotoxin GYM-A, and the new established aptasensor may be used as a reliable and efficient tool for the detection and monitoring of GYMs in the future.
Collapse
Affiliation(s)
- Xiaojuan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
- College of Medicine, Shaoxing University, 900th Chengnan Avenue, Shaoxing 312000, China
| | - Yun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bowen Deng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Bo Hu
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center of PLA, Navy Medical University, Shanghai 200433, China;
| | - Luming Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Han Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Chengfang Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Zhenxia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Navy Medical University, Shanghai 200433, China; (X.Z.); (Y.G.); (B.D.); (L.Z.); (H.G.); (C.Y.); (Z.M.); (M.S.)
| |
Collapse
|
14
|
Feng T, Liu C, Wu Z, Wu X, Zhu C. Redox-neutral manganese-catalyzed synthesis of 1-pyrrolines. Chem Sci 2022; 13:2669-2673. [PMID: 35340851 PMCID: PMC8890122 DOI: 10.1039/d2sc00015f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
This report describes a manganese-catalyzed radical [3 + 2] cyclization of cyclopropanols and oxime ethers, leading to valuable multi-functional 1-pyrrolines. In this redox-neutral process, the oxime ethers function as internal oxidants and H-donors. The reaction involves sequential rupture of C-C, C-H and N-O bonds and proceeds under mild conditions. This intermolecular protocol provides an efficient approach for the synthesis of structurally diverse 1-pyrrolines.
Collapse
Affiliation(s)
- Tingting Feng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Canxiang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Zhen Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Xinxin Wu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
| | - Chen Zhu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren-Ai Road Suzhou Jiangsu 215123 People's Republic of China
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
15
|
Díaz PA, Álvarez G, Pizarro G, Blanco J, Reguera B. Lipophilic Toxins in Chile: History, Producers and Impacts. Mar Drugs 2022; 20:122. [PMID: 35200651 PMCID: PMC8874607 DOI: 10.3390/md20020122] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of microalgal species produce lipophilic toxins (LT) that are accumulated by filter-feeding bivalves. Their negative impacts on human health and shellfish exploitation are determined by toxic potential of the local strains and toxin biotransformations by exploited bivalve species. Chile has become, in a decade, the world's major exporter of mussels (Mytilus chilensis) and scallops (Argopecten purpuratus) and has implemented toxin testing according to importing countries' demands. Species of the Dinophysis acuminata complex and Protoceratium reticulatum are the most widespread and abundant LT producers in Chile. Dominant D. acuminata strains, notwithstanding, unlike most strains in Europe rich in okadaic acid (OA), produce only pectenotoxins, with no impact on human health. Dinophysis acuta, suspected to be the main cause of diarrhetic shellfish poisoning outbreaks, is found in the two southernmost regions of Chile, and has apparently shifted poleward. Mouse bioassay (MBA) is the official method to control shellfish safety for the national market. Positive results from mouse tests to mixtures of toxins and other compounds only toxic by intraperitoneal injection, including already deregulated toxins (PTXs), force unnecessary harvesting bans, and hinder progress in the identification of emerging toxins. Here, 50 years of LST events in Chile, and current knowledge of their sources, accumulation and effects, are reviewed. Improvements of monitoring practices are suggested, and strategies to face new challenges and answer the main questions are proposed.
Collapse
Affiliation(s)
- Patricio A. Díaz
- Centro i~mar (CeBiB), Universidad de Los Lagos, Casilla 557, Puerto Montt 5480000, Chile;
| | - Gonzalo Álvarez
- Departamento de Acuicultura, Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 1781421, Chile;
- Centro de Investigación y Desarrollo Tecnológico en Algas (CIDTA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo 17811421, Chile
| | - Gemita Pizarro
- Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Enrique Abello 0552, Punta Arenas 6200000, Chile;
| | - Juan Blanco
- Centro de Investigacións Mariñas (Xunta de Galicia), Apto. 13, 36620 Vilanova de Arousa, Pontevedra, Spain;
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Pontevedra, Spain
| |
Collapse
|
16
|
Marine Origin Ligands of Nicotinic Receptors: Low Molecular Compounds, Peptides and Proteins for Fundamental Research and Practical Applications. Biomolecules 2022; 12:biom12020189. [PMID: 35204690 PMCID: PMC8961598 DOI: 10.3390/biom12020189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The purpose of our review is to briefly show what different compounds of marine origin, from low molecular weight ones to peptides and proteins, offer for understanding the structure and mechanism of action of nicotinic acetylcholine receptors (nAChRs) and for finding novel drugs to combat the diseases where nAChRs may be involved. The importance of the mentioned classes of ligands has changed with time; a protein from the marine snake venom was the first excellent tool to characterize the muscle-type nAChRs from the electric ray, while at present, muscle and α7 receptors are labeled with the radioactive or fluorescent derivatives prepared from α-bungarotoxin isolated from the many-banded krait. The most sophisticated instruments to distinguish muscle from neuronal nAChRs, and especially distinct subtypes within the latter, are α-conotoxins. Such information is crucial for fundamental studies on the nAChR revealing the properties of their orthosteric and allosteric binding sites and mechanisms of the channel opening and closure. Similar data are provided by low-molecular weight compounds of marine origin, but here the main purpose is drug design. In our review we tried to show what has been obtained in the last decade when the listed classes of compounds were used in the nAChR research, applying computer modeling, synthetic analogues and receptor mutants, X-ray and electron-microscopy analyses of complexes with the nAChRs, and their models which are acetylcholine-binding proteins and heterologously-expressed ligand-binding domains.
Collapse
|
17
|
Tang Z, Qiu J, Wang G, Ji Y, Hess P, Li A. Development of an Efficient Extraction Method for Harvesting Gymnodimine-A from Large-Scale Cultures of Karenia selliformis. Toxins (Basel) 2021; 13:793. [PMID: 34822577 PMCID: PMC8621799 DOI: 10.3390/toxins13110793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022] Open
Abstract
Gymnodimine-A (GYM-A) is a fast-acting microalgal toxin and its production of certified materials requires an efficient harvesting technology from the large-scale cultures of toxigenic microalgae. In this study the recoveries of GYM-A were compared between several liquid-liquid extraction (LLE) treatments including solvents, ratios and stirring times to optimize the LLE technique for harvesting GYM-A from Karenia selliformis cultures, of which the dichloromethane was selected as the extractant and added to microalgal cultures at the ratio 55 mL L-1 (5.5%, v/v). The recovery of GYM-A obtained by the LLE technique was also compared with filtration and centrifugation methods. The stability of GYM-A in culture media were also tested under different pH conditions. Results showed that both the conventional filter filtration and centrifugation methods led to fragmentation of microalgal cells and loss of GYM-A in the harvesting processes. A total of 5.1 µg of GYM-A were obtained from 2 L of K. selliformis cultures with a satisfactory recovery of 88%. Interestingly, GYM-A obviously degraded in the culture media with the initial pH 8.2 and the adjusted pH of 7.0 after 7 days, but there was no obvious degradation in the acidic medium at pH 5.0. Therefore, the LLE method developed here permits the collection of large-volume cultures of K. selliformis and the high-efficiency extraction of GYM-A. This work provides a simple and valuable technique for harvesting toxins from large-scale cultures of GYM-producing microalgae.
Collapse
Affiliation(s)
- Zhixuan Tang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Philipp Hess
- Ifremer, DYNECO, Phycotoxins Laboratory, F-44000 Nantes, France;
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; (Z.T.); (J.Q.); (G.W.); (Y.J.)
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| |
Collapse
|
18
|
Servent D, Malgorn C, Bernes M, Gil S, Simasotchi C, Hérard AS, Delzescaux T, Thai R, Barbe P, Keck M, Beau F, Zakarian A, Dive V, Molgó J. First evidence that emerging pinnatoxin-G, a contaminant of shellfish, reaches the brain and crosses the placental barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148125. [PMID: 34380275 DOI: 10.1016/j.scitotenv.2021.148125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Massive proliferation of some toxic marine dinoflagellates is responsible for the occurrence of harmful algal blooms and the contamination of fish and shellfish worldwide. Pinnatoxins (PnTx) (A-H) comprise an emerging phycotoxin family belonging to the cyclic imine toxin group. Interest has been focused on these lipophilic, fast-acting and highly potent toxins because they are widely found in contaminated shellfish, and can represent a risk for seafood consumers. PnTx display a potent antagonist effect on nicotinic acetylcholine receptors (nAChR), and in this study we assessed in vivo the ability of PnTx-G to cross physiological barriers to reach its molecular target. Radiolabeled [3H]-PnTx-G synthesized with good radiochemical purity and yield retained the high affinity of the natural toxin. Oral gavage or intravenous administration to adult rats and digital autoradiographic analyses revealed the biodistribution and toxicokinetics of [3H]-PnTx-G, which is rapidly cleared from blood, and accumulates in the liver and small intestine. The labeling of peripheral and brain adult/embryo rat tissues highlights its ability to cross the intestinal, blood-brain and placental barriers. High-resolution 3D-imaging and in vitro competition studies on rat embryo sections revealed the specificity of [3H]-PnTx-G binding and its selectivity for muscle and neuronal nAChR subtypes (such as α7 subtype). The use of a human perfused cotyledon model and mass spectrometry analyses disclosed that PnTx-G crosses the human placental barrier. The increasing worldwide occurrence of both the dinoflagellate Vulcanodinium rugosum and PnTx-contaminated shellfish, due to climate warming, raises concerns about the potential adverse impact that exposure to pinnatoxins may have for human health.
Collapse
Affiliation(s)
- Denis Servent
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mylène Bernes
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Sophie Gil
- Université de Paris, UMR-S1139, Faculté de Pharmacie de Paris, France
| | | | - Anne-Sophie Hérard
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Thierry Delzescaux
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Armen Zakarian
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, CA 93106-9510, USA
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Jordi Molgó
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| |
Collapse
|
19
|
Ding XB, Aitken HRM, Pearl ES, Furkert DP, Brimble MA. Synthesis of the C4-C16 Polyketide Fragment of Portimines A and B. J Org Chem 2021; 86:12840-12850. [PMID: 34469687 DOI: 10.1021/acs.joc.1c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stereoselective synthesis of the C4-C16 polyketide fragment of portimines A and B is reported, enabled by our previously established method for the stereoselective synthesis of syn-α,α'-dihydroxyketones. The preparation of this advanced fragment provides insights useful for the total synthesis of portimines A and B. An asymmetric Evans aldol reaction was used to install the C10-C11 adjacent stereogenic centers before incorporation of indantrione, followed by epoxidation and epoxide opening to forge the challenging syn-α,α'-dihydroxyketone functionality.
Collapse
Affiliation(s)
- Xiao-Bo Ding
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Harry R M Aitken
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Esperanza S Pearl
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
20
|
Chen X, Huang B, Zhao Q, Wang Z, Liu W, Zhang J, Zhou Y, Sun Q, Huang H, Huang X, Jiang T, Liu J. Shellfish contamination with lipophilic toxins and dietary exposure assessments from consumption of shellfish products in Shenzhen, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112446. [PMID: 34175823 DOI: 10.1016/j.ecoenv.2021.112446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Lipophilic shellfish toxins (LSTs) can cause human illness and therefore represent a serious threat to public health. Shellfish are the main dietary source of LSTs, but very few studies have appraised dietary exposure to LSTs through shellfish consumption in China. We measured levels of multiple LSTs in shellfish samples sold in the principal wholesale seafood market in the southern coastal city of Shenzhen, and we estimated the potential for acute and chronic LST exposure of the Shenzhen population via ingestion of shellfish. LST contamination data were obtained from a total of 14 species of 188 commercial samples. Eleven individual LSTs, namely okadaic acid (OA), dinophysis toxin-1 and -2 (DTX1 and DTX2), pectenotoxin-2 (PTX2), yessotoxin and homo yessotoxin (YTX and hYTX), azaspiracid-1, -2 and -3 (AZA1, AZA2, AZA3), spirolides (SPXs), and gymnodimine (GYM), were determined using liquid chromatography electrospray-ionization tandem mass spectrometry (LC-ESI-MS/MS). More than two thirds of samples showed undetectable LSTs, while the detection rates (the proportion of samples with detectable LSTs) of individual LSTs ranged from 0% to 45.7%. Most shellfish samples had lower levels of LST contamination than the corresponding limits of detection (LODs), while some samples had levels of hYTX and GYM that exceeded the limits of quantification (LOQs). Overall, levels of LSTs in the 188 samples were below the regulatory limits set by most countries. Acute and chronic exposures of LST were estimated by a point-estimate modeling method that combined sample contamination data with consumption data from dietary survey of Shenzhen residents and consumption figures proposed by EFSA, the European Food Safety Authority. Seasonal variations in LST concentrations were noted in some instances. Overall, the estimated acute exposure to LSTs based on consumption of large-size shellfish portions and the maximum LSTs contamination level were below the provisional acute reference doses (ARfDs) proposed by the EFSA. Chronic exposure estimates based on mean and 99th percentile consumption of shellfish by Shenzhen residents and mean LSTs contamination levels in the collected samples were from 2452 to 74 times lower than those associated with estimated acute exposure levels.
Collapse
Affiliation(s)
- Xiao Chen
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Baiqiang Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China; Research Center of Harmful Algae & Marine Biology, Jinan University, No. 601 Shipai Street, Tianhe District, Guangzhou 510632, China
| | - Qionghui Zhao
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong 518045, China
| | - Zhou Wang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Wei Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Jianying Zhang
- Food Inspection & Quarantine Center, Shenzhen Custom, Shenzhen, Guangdong 518045, China
| | - Yan Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Qian Sun
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Tianjiu Jiang
- Research Center of Harmful Algae & Marine Biology, Jinan University, No. 601 Shipai Street, Tianhe District, Guangzhou 510632, China.
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Medical Key Discipline of Health Toxicology (2020-2024), Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
21
|
Visible-Light Radical–Radical Coupling vs. Radical Addition: Disentangling a Mechanistic Knot. Catalysts 2021. [DOI: 10.3390/catal11080922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A highly enantioselective protocol has been recently described as allowing the synthesis of five-membered cyclic imines harnessing the selective generation of a β-Csp3-centered radical of acyl heterocyclic derivatives and its subsequent interaction with diverse NH-ketimines. The overall transformation represents a novel cascade process strategy crafted by individual well-known steps; however, the construction of the new C-C bond highlights a crucial knot from a mechanistically perspective. We believe that the full understanding of this enigmatic step may enrich the current literature and expand latent future ideas. Therefore, a detailed mechanistic study of the protocol has been conducted. Here, we provide theoretical insight into the mechanism using quantum chemistry calculations. Two possible pathways have been investigated: (a) imine reduction followed by radical–radical coupling and (b) radical addition followed by product reduction. In addition, investigations to unveil the origin behind the enantioselectivity of the 1-pyrroline derivatives have been conducted as well.
Collapse
|
22
|
Clarke MR, Jones B, Squires CLM, Imhoff FM, Harwood DT, Rhodes L, Selwood AI, McNabb PS, Baird SK. Cyclic Imine Pinnatoxin G is Cytotoxic to Cancer Cell Lines via Nicotinic Acetylcholine Receptor-Driven Classical Apoptosis. JOURNAL OF NATURAL PRODUCTS 2021; 84:2035-2042. [PMID: 34170700 DOI: 10.1021/acs.jnatprod.1c00418] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pinnatoxin G is a cyclic imine neurotoxin produced by dinoflagellates that has been reported in shellfish. Like other members of the pinnatoxin family, it has been shown to have its effects via antagonism of the nicotinic acetylcholine receptors, with preferential binding to the α7 subunit often upregulated in cancer. Because increased activity of α7 nicotinic acetylcholine receptors contributes to increased growth and resistance to apoptosis, the effect of pinnatoxin G on cancer cell viability was tested. In a panel of six cancer cell lines, all cell types lost viability, but HT29 colon cancer and LN18 and U373 glioma cell lines were more sensitive than MDA-MB-231 breast cancer cells, PC3 prostate cancer cells, and U87 glioma cells, correlating with expression levels of α7, α4, and α9 nicotinic acetylcholine receptors. Some loss of cell viability could be attributed to cell cycle arrest, but significant levels of classical apoptosis were found, characterized by caspase activity, phosphatidylserine exposure, mitochondrial membrane permeability, and fragmented DNA. Intracellular Ca2+ levels also dropped immediately upon pinnatoxin G treatment, which may relate to antagonism of nicotinic acetylcholine receptor-mediated Ca2+ inflow. In conclusion, pinnatoxin G can decrease cancer cell viability, with both cytostatic and cytotoxic effects.
Collapse
Affiliation(s)
- Mitchell R Clarke
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Ben Jones
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Chloe L M Squires
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - Floriane M Imhoff
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| | - D Tim Harwood
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand
| | - Lesley Rhodes
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand
| | | | - Paul S McNabb
- Cawthron Institute, Private Bag 2, Nelson 7040, New Zealand
| | - Sarah K Baird
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin 9016, New Zealand
| |
Collapse
|
23
|
Rodríguez RI, Mollari L, Alemán J. Light‐Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ricardo I. Rodríguez
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Leonardo Mollari
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
24
|
Hassoun AER, Ujević I, Mahfouz C, Fakhri M, Roje-Busatto R, Jemaa S, Nazlić N. Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142542. [PMID: 33035983 DOI: 10.1016/j.scitotenv.2020.142542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Marine biotoxins are naturally existing chemicals produced by toxic algae and can accumulate in marine biota. When consumed with seafood, these phycotoxins can cause human intoxication with symptoms varying from barely-noticed illness to death depending on the type of toxin and its concentration. Recently, the occurrence of marine biotoxins has been given special attention in the Mediterranean as it increased in frequency and severity due to anthropogenic pressures and climate change. Up to our knowledge, no previous study reported the presence of lipophilic toxins (LTs) and cyclic imines (CIs) in marine biota in Lebanon. Hence, this study reports LTs and CIs in marine organisms: one gastropod (Phorcus turbinatus), two bivalves (Spondylus spinosus and Patella rustica complex) and one fish species (Siganus rivulatus), collected from various Lebanese coastal areas. The results show values below the limit of detection (LOD) for okadaic acid, dinophysistoxin-1 and 2, pectenotoxin-1 and 2, yessotoxins, azaspiracids and saxitoxins. The spiny oyster (S. spinosus) showed the highest levels of domoic acid (DA; 3.88 mg kg-1), gymnodimine (GYM-B) and spirolide (SPX) (102.9 and 15.07 μg kg-1, respectively) in congruence with the occurrence of high abundance of Pseudo-nitzchia spp., Gymnodinium spp., and Alexandrium spp. DA levels were below the European Union (EU) regulatory limit, but higher than the Lowest Observed Adverse Effect Level (0.9 μg g-1) for neurotoxicity in humans and lower than the Acute Reference Dose (30 μg kg-1 bw) both set by the European Food Safety Authority (EFSA, 2009). Based on these findings, it is unlikely that a health risk exists due to the exposure to these toxins through seafood consumption in Lebanon. Despite this fact, the chronic toxicity of DA, GYMs and SPXs remains unclear and the effect of the repetitive consumption of contaminated seafood needs to be more investigated.
Collapse
Affiliation(s)
- Abed El Rahman Hassoun
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon.
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Céline Mahfouz
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Milad Fakhri
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Romana Roje-Busatto
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Sharif Jemaa
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Nikša Nazlić
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| |
Collapse
|
25
|
Mayer AMS, Guerrero AJ, Rodríguez AD, Taglialatela-Scafati O, Nakamura F, Fusetani N. Marine Pharmacology in 2016-2017: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2021; 19:49. [PMID: 33494402 PMCID: PMC7910995 DOI: 10.3390/md19020049] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
The review of the 2016-2017 marine pharmacology literature was prepared in a manner similar as the 10 prior reviews of this series. Preclinical marine pharmacology research during 2016-2017 assessed 313 marine compounds with novel pharmacology reported by a growing number of investigators from 54 countries. The peer-reviewed literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral activities for 123 marine natural products, 111 marine compounds with antidiabetic and anti-inflammatory activities as well as affecting the immune and nervous system, while in contrast 79 marine compounds displayed miscellaneous mechanisms of action which upon further investigation may contribute to several pharmacological classes. Therefore, in 2016-2017, the preclinical marine natural product pharmacology pipeline generated both novel pharmacology as well as potentially new lead compounds for the growing clinical marine pharmaceutical pipeline, and thus sustained with its contributions the global research for novel and effective therapeutic strategies for multiple disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Aimee J. Guerrero
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | | | - Fumiaki Nakamura
- Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan;
| | | |
Collapse
|
26
|
Rodríguez RI, Mollari L, Alemán J. Light‐Driven Enantioselective Synthesis of Pyrroline Derivatives by a Radical/Polar Cascade Reaction. Angew Chem Int Ed Engl 2021; 60:4555-4560. [DOI: 10.1002/anie.202013020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Ricardo I. Rodríguez
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Leonardo Mollari
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| | - José Alemán
- Organic Chemistry Department, Módulo 1 Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
27
|
Ho TNT, Abraham N, Lewis RJ. Structure-Function of Neuronal Nicotinic Acetylcholine Receptor Inhibitors Derived From Natural Toxins. Front Neurosci 2020; 14:609005. [PMID: 33324158 PMCID: PMC7723979 DOI: 10.3389/fnins.2020.609005] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are prototypical cation-selective, ligand-gated ion channels that mediate fast neurotransmission in the central and peripheral nervous systems. nAChRs are involved in a range of physiological and pathological functions and hence are important therapeutic targets. Their subunit homology and diverse pentameric assembly contribute to their challenging pharmacology and limit their drug development potential. Toxins produced by an extensive range of algae, plants and animals target nAChRs, with many proving pivotal in elucidating receptor pharmacology and biochemistry, as well as providing templates for structure-based drug design. The crystal structures of these toxins with diverse chemical profiles in complex with acetylcholine binding protein (AChBP), a soluble homolog of the extracellular ligand-binding domain of the nAChRs and more recently the extracellular domain of human α9 nAChRs, have been reported. These studies have shed light on the diverse molecular mechanisms of ligand-binding at neuronal nAChR subtypes and uncovered critical insights useful for rational drug design. This review provides a comprehensive overview and perspectives obtained from structure and function studies of diverse plant and animal toxins and their associated inhibitory mechanisms at neuronal nAChRs.
Collapse
Affiliation(s)
| | | | - Richard J. Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
28
|
Otero P, Vale C, Boente-Juncal A, Costas C, Louzao MC, Botana LM. Detection of Cyclic Imine Toxins in Dietary Supplements of Green Lipped Mussels ( Perna canaliculus) and in Shellfish Mytilus chilensis. Toxins (Basel) 2020; 12:E613. [PMID: 32987858 PMCID: PMC7601114 DOI: 10.3390/toxins12100613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Seafood represents a significant part of the human staple diet. In the recent years, the identification of emerging lipophilic marine toxins has increased, leading to the potential for consumers to be intoxicated by these toxins. In the present work, we investigate the presence of lipophilic marine toxins (both regulated and emerging) in commercial seafood products from non-European locations, including mussels Mytilus chilensis from Chile, clams Tawerea gayi and Metetrix lyrate from the Southeast Pacific and Vietnam, and food supplements based on mussels formulations of Perna canaliculus from New Zealand. All these products were purchased from European Union markets and they were analyzed by UPLC-MS/MS. Results showed the presence of the emerging pinnatoxin-G in mussels Mytilus chilensis at levels up to 5.2 µg/kg and azaspiracid-2 and pectenotoxin-2 in clams Tawera gayi up to 4.33 µg/kg and 10.88 µg/kg, respectively. This study confirms the presence of pinnatoxins in Chile, one of the major mussel producers worldwide. Chromatograms showed the presence of 13-desmethyl spirolide C in dietary supplements in the range of 33.2-97.9 µg/kg after an extraction with water and methanol from 0.39 g of the green lipped mussels powder. As far as we know, this constitutes the first time that an emerging cyclic imine toxin in dietary supplements is reported. Identifying new matrix, locations, and understanding emerging toxin distribution area are important for preventing the risks of spreading and contamination linked to these compounds.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (C.V.); (A.B.-J.); (C.C.); (M.C.L.); (L.M.B.)
| | | | | | | | | | | |
Collapse
|
29
|
Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal blooms: Ecological functions and genetic variability. HARMFUL ALGAE 2020; 98:101850. [PMID: 33129462 DOI: 10.1016/j.hal.2020.101850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention. Here, the major themes of biochemistry and genetics, ecological functions, signaling mechanisms, and evolution are addressed, with parallels and connections drawn between the two. Of the 17 major classes of dinoflagellate toxins, only two are produced by bioluminescent species: saxitoxin (STX) and yessotoxin. Of these, STX has been extensively studied, including the identification of the STX biosynthetic genes. While numerous theories have been put forward as to the eco-evolutionary roles of both bioluminescence and toxicity, a general consensus is that both function as grazing deterrents. Thus, both bioluminescence and toxicity may aid in HAB initiation as they alleviate grazing pressure on the HAB species. A large gap in our understanding is the genetic variability among natural bloom populations, as both toxic and non-toxic strains have been isolated from the same geographic location. The same applies to bioluminescence, as there exist both bioluminescent and non-bioluminescent strains of the same species. Recent evidence demonstrating that blooms are not monoclonal events necessitates a greater level of understanding as to the genetic variability of these traits among sub-populations as well as the mechanisms by which cells acquire or lose the trait, as sequence analysis of STX+ and STX- species indicate the key gene required for toxicity is lost rather than gained. While the extent of genetic variability for both bioluminescence and toxicity among natural HAB sub-populations remains unknown, it is an area that needs to be explored in order to gain greater insights into the molecular mechanisms and environmental parameters driving HAB evolution.
Collapse
Affiliation(s)
- Kathleen D Cusick
- University of Maryland Baltimore County, Department of Biological Sciences, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Edith A Widder
- Ocean Research and Conservation Association, 1420 Seaway Dr, Fort Pierce, FL 34949, United States.
| |
Collapse
|
30
|
Arnich N, Abadie E, Delcourt N, Fessard V, Fremy JM, Hort V, Lagrange E, Maignien T, Molgó J, Peyrat MB, Vernoux JP, Mattei C. Health risk assessment related to pinnatoxins in French shellfish. Toxicon 2020; 180:1-10. [DOI: 10.1016/j.toxicon.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/02/2023]
|
31
|
Sosa S, Pelin M, Cavion F, Hervé F, Hess P, Tubaro A. Acute Oral Toxicity of Pinnatoxin G in Mice. Toxins (Basel) 2020; 12:toxins12020087. [PMID: 32012834 PMCID: PMC7076786 DOI: 10.3390/toxins12020087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 01/18/2023] Open
Abstract
Pinnatoxin G (PnTx-G) is a marine cyclic imine toxin produced by the dinoflagellate Vulcanodinium rugosum, frequently detected in edible shellfish from Ingril Lagoon (France). As other pinnatoxins, to date, no human poisonings ascribed to consumption of PnTx-G contaminated seafood have been reported, despite its potent antagonism at nicotinic acetylcholine receptors and its high and fast-acting toxicity after intraperitoneal or oral administration in mice. The hazard characterization of PnTx-G by oral exposure is limited to a single acute toxicity study recording lethality and clinical signs in non-fasted mice treated by gavage or through voluntary food ingestion, which showed differences in PnTx-G toxic potency. Thus, an acute toxicity study was carried out using 3 h-fasted CD-1 female mice, administered by gavage with PnTx-G (8–450 µg kg−1). At the dose of 220 µg kg−1 and above, the toxin induced a rapid onset of clinical signs (piloerection, prostration, hypothermia, abdominal breathing, paralysis of the hind limbs, and cyanosis), leading to the death of mice within 30 min. Except for moderate mucosal degeneration in the small intestine recorded at doses of 300 µg kg−1, the toxin did not induce significant morphological changes in the other main organs and tissues, or alterations in blood chemistry parameters. This acute oral toxicity study allowed to calculate an oral LD50 for PnTx-G equal to 208 μg kg−1 (95% confidence limits: 155–281 µg kg−1) and to estimate a provisional NOEL of 120 µg kg−1.
Collapse
Affiliation(s)
- Silvio Sosa
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
- Correspondence: ; Tel.: +39-040-558-8836
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| | - Federica Cavion
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| | - Fabienne Hervé
- Ifremer, Laboratoire Phycotoxines, Centre Atlantique, 44311 Nantes CEDEX, France; (F.H.); (P.H.)
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Centre Atlantique, 44311 Nantes CEDEX, France; (F.H.); (P.H.)
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| |
Collapse
|
32
|
Analysis of Cyclic Imines in Mussels ( Mytilus galloprovincialis) from Galicia (NW Spain) by LC-MS/MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010281. [PMID: 31906079 PMCID: PMC6981759 DOI: 10.3390/ijerph17010281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
Cyclic imines (CIs) are being considered as emerging toxins in the European Union, and a scientific opinion has been published by the European Food Safety Authority (EFSA) in which an assessment of the risks to human health related to their consumption has been carried out. Recommendations on the EFSA opinion include the search for data occurrence of CIs in shellfish and using confirmatory methods by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which need to be developed and optimized. The aim of this work is the application of LC-MS/MS to the analysis of gymnodimines (GYMs), spirolides (SPXs), pinnatoxins (PnTXs), and pteriatoxins (PtTXs) in mussels from Galician Rias, northwest Spain, the main production area in Europe, and therefore a representative emplacement for their evaluation. Conditions were adjusted using commercially available certified reference standards of GYM-A, SPX-1, and PnTX-G and evaluated through quality control studies. The EU-Harmonised Standard Operating Procedure for determination of lipophilic marine biotoxins in molluscs by LC-MS/MS was followed, and the results obtained from the analysis of eighteen samples from three different locations that showed the presence of PnTXs and SPXs are presented and discussed. Concentrations of PnTX-G and SPX-1 ranged from 1.8 to 3.1 µg/kg and 1.2 to 6.9 µg/kg, respectively, and PnTX-A was detected in the group of samples with higher levels of PnTX-G after a solid phase extraction (SPE) step used for the concentration of extracts.
Collapse
|
33
|
He X, Chen J, Wu D, Sun P, Ma X, Wang J, Liu L, Chen K, Wang B. Distribution Characteristics and Environmental Control Factors of Lipophilic Marine Algal Toxins in Changjiang Estuary and the Adjacent East China Sea. Toxins (Basel) 2019; 11:E596. [PMID: 31614878 PMCID: PMC6833110 DOI: 10.3390/toxins11100596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/31/2022] Open
Abstract
Marine algal toxins, highly toxic secondary metabolites, have significant influences on coastal ecosystem health and mariculture safety. The occurrence and environmental control factors of lipophilic marine algal toxins (LMATs) in the surface seawater of the Changjiang estuary (CJE) and the adjacent East China Sea (ECS) were investigated. Pectenotoxin-2 (PTX2), okadaic acid (OA), dinophysistoxin-1(DTX1), and gymnodimine (GYM) were detected in the CJE surface seawater in summer, with concentration ranges of not detected (ND)-105.54 ng/L, ND-13.24 ng/L, ND-5.48 ng/L, and ND-12.95 ng/L, respectively. DTX1 (ND-316.15 ng/L), OA (ND-16.13 ng/L), and PTX2 (ND-4.97 ng/L) were detected in the ECS during spring. LMATs formed a unique low-concentration band in the Changjiang diluted water (CJDW) coverage area in the typical large river estuary. PTX2, OA, and DTX1 in seawater were mainly derived from Dinophysis caudate and Dinophysis rotundata, while GYM was suspected to be from Karenia selliformis. Correlation analyses showed that LMAT levels in seawater were positively correlated with dissolved oxygen and salinity, but negatively correlated with temperature and nutrients, indicating that the hydrological condition and nutritional status of seawater and climatic factors exert significant effects on the distribution of LMATs.
Collapse
Affiliation(s)
- Xiuping He
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Junhui Chen
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| | - Danni Wu
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Ping Sun
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Xin Ma
- Qinhuangdao Marine Environmental Monitoring Central Station, Qinhuangdao 066000, China.
| | - Jiuming Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Lijun Liu
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Marine College, Shandong University, Weihai 264200, China.
| | - Kan Chen
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Baodong Wang
- Key Laboratory for Marine Bioactive Substances and Modern Analytical Technology, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
- Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
34
|
Izumida M, Suga K, Ishibashi F, Kubo Y. The Spirocyclic Imine from a Marine Benthic Dinoflagellate, Portimine, Is a Potent Anti-Human Immunodeficiency Virus Type 1 Therapeutic Lead Compound. Mar Drugs 2019; 17:md17090495. [PMID: 31450557 PMCID: PMC6780162 DOI: 10.3390/md17090495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/13/2019] [Accepted: 08/22/2019] [Indexed: 02/04/2023] Open
Abstract
In this study, we aimed to find chemicals from lower sea animals with defensive effects against human immunodeficiency virus type 1 (HIV-1). A library of marine natural products consisting of 80 compounds was screened for activity against HIV-1 infection using a luciferase-encoding HIV-1 vector. We identified five compounds that decreased luciferase activity in the vector-inoculated cells. In particular, portimine, isolated from the benthic dinoflagellate Vulcanodinium rugosum, exhibited significant anti-HIV-1 activity. Portimine inhibited viral infection with an 50% inhibitory concentration (IC50) value of 4.1 nM and had no cytotoxic effect on the host cells at concentrations less than 200 nM. Portimine also inhibited vesicular stomatitis virus glycoprotein (VSV-G)-pseudotyped HIV-1 vector infection. This result suggested that portimine mainly targeted HIV-1 Gag or Pol protein. To analyse which replication steps portimine affects, luciferase sequences were amplified by semi-quantitative PCR in total DNA. This analysis revealed that portimine inhibits HIV-1 vector infection before or at the reverse transcription step. Portimine has also been shown to have a direct effect on reverse transcriptase using an in vitro reverse transcriptase assay. Portimine efficiently inhibited HIV-1 replication and is a potent lead compound for developing novel therapeutic drugs against HIV-1-induced diseases.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan.
- Department of Community Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| | - Koushirou Suga
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Fumito Ishibashi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Yoshinao Kubo
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan.
| |
Collapse
|
35
|
Delcourt N, Lagrange E, Abadie E, Fessard V, Frémy JM, Vernoux JP, Peyrat MB, Maignien T, Arnich N, Molgó J, Mattei C. Pinnatoxins' Deleterious Effects on Cholinergic Networks: From Experimental Models to Human Health. Mar Drugs 2019; 17:md17070425. [PMID: 31330850 PMCID: PMC6669724 DOI: 10.3390/md17070425] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/17/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Pinnatoxins (PnTXs) are emerging neurotoxins that were discovered about 30 years ago. They are solely produced by the marine dinoflagellate Vulcanodinium rugosum, and may be transferred into the food chain, as they have been found in various marine invertebrates, including bivalves. No human intoxication has been reported to date although acute toxicity was induced by PnTxs in rodents. LD50 values have been estimated for the different PnTXs through the oral route. At sublethal doses, all symptoms are reversible, and no neurological sequelae are visible. These symptoms are consistent with impairment of central and peripheral cholinergic network functions. In fact, PnTXs are high-affinity competitive antagonists of nicotinic acetylcholine receptors (nAChRs). Moreover, their lethal effects are consistent with the inhibition of muscle nAChRs, inducing respiratory distress and paralysis. Human intoxication by ingestion of PnTXs could result in various symptoms observed in episodes of poisoning with natural nAChR antagonists. This review updates the available data on PnTX toxicity with a focus on their mode of action on cholinergic networks and suggests the effects that could be extrapolated on human physiology.
Collapse
Affiliation(s)
- Nicolas Delcourt
- Poison Control Centre, Toulouse-Purpan University Hospital and Toulouse NeuroImaging Centre (ToNIC), INSERM1214, Toulouse-Purpan University Hospital, 31059 Toulouse, France
| | - Emmeline Lagrange
- Department of Neurology, Reference Center of Neuromuscular Disease, Grenoble University Hospital, 38000 Grenoble, France
| | - Eric Abadie
- Laboratoire Environnement Ressources du Languedoc-Roussillon, Centre for Marine Biodiversity, Exploitation and Conservation (MARBEC), IRD, Institut Français de Recherche pour l'Exploitation de la Mer (Ifremer), CNRS, Université de Montpellier, CS30171, 34200 Sete Cedex 03, France
| | - Valérie Fessard
- Toxicology of Contaminants Unit, ANSES-French Agency for Food, Environmental and Occupational Health & Safety, 35306 Fougères, France
| | - Jean-Marc Frémy
- Retired from ANSES-French Agency for Food, Environmental and Occupational Health & Safety, 94701 Maisons-Alfort, France
| | - Jean-Paul Vernoux
- Research Unit EA 4651 Aliments Bioprocédés Toxicologie Environnements (ABTE), Normandie University, 14000 Caen, France
| | - Marie-Bénédicte Peyrat
- Risk Assessment Department, ANSES-French Agency for Food, Environmental and Occupational Health & Safety, 94701 Maisons-Alfort, France
| | - Thomas Maignien
- Risk Assessment Department, ANSES-French Agency for Food, Environmental and Occupational Health & Safety, 94701 Maisons-Alfort, France
| | - Nathalie Arnich
- Risk Assessment Department, ANSES-French Agency for Food, Environmental and Occupational Health & Safety, 94701 Maisons-Alfort, France
| | - Jordi Molgó
- Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Commissariat à l'Energie Atomique et aux énergies alternatives (CEA) Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Institut des Neurosciences Paris-Saclay, Centre National de la Recherche Scientifique (CNRS), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - César Mattei
- Mitochondrial and Cardiovascular Pathophysiology (MITOVASC), Cardiovascular Mechanotransduction, UMR CNRS 6015, INSERM U1083, Angers University, 49045 Angers, France.
| |
Collapse
|
36
|
Otero P, Miguéns N, Rodríguez I, Botana LM. LC-MS/MS Analysis of the Emerging Toxin Pinnatoxin-G and High Levels of Esterified OA Group Toxins in Galician Commercial Mussels. Toxins (Basel) 2019; 11:toxins11070394. [PMID: 31284457 PMCID: PMC6669594 DOI: 10.3390/toxins11070394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
The occurrence of marine harmful algae is increasing worldwide and, therefore, the accumulation of lipophilic marine toxins from harmful phytoplankton represents a food safety threat in the shellfish industry. Galicia, which is a commercially important EU producer of edible bivalve mollusk have been subjected to recurring cases of mussel farm closures, in the last decades. This work aimed to study the toxic profile of commercial mussels (Mytilus galloprovincialis) in order to establish a potential risk when ingested. For this, a total of 41 samples of mussels farmed in 3 Rías (Ares-Sada, Arousa, and Pontevedra) and purchased in 5 local markets were analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS). Chromatograms showed the presence of okadaic acid (OA), dinophysistoxin-2 (DTX-2), pectenotoxin-2 (PTX-2), azaspiracid-2 (AZA-2), and the emerging toxins 13-desmethyl spirolide C (SPX-13), and pinnatoxin-G (PnTX-G). Quantification of each toxin was determined using their own standard calibration in the range 0.1%–50 ng/mL (R2 > 0.99) and by considering the toxin recovery (62–110%) and the matrix correction (33–211%). Data showed that OA and DTX-2 (especially in the form of esters) are the main risk in Galician mollusks, which was detected in 38 samples (93%) and 3 of them exceeded the legal limit (160 µg/kg), followed by SPX-13 that was detected in 19 samples (46%) in quantities of up to 28.9 µg/kg. Analysis from PTX-2, AZA-2, and PnTX-G showed smaller amounts. Fifteen samples (37%) were positive for PTX-2 (0.7–2.9 µg/kg), 12 samples (29%) for AZA-2 (0.1–1.8 µg/kg), and PnTX-G was detected in 5 mussel samples (12%) (0.4 µg/kg–0.9 µg/kg). This is the first time Galician mollusk was contaminated with PnTX-G. Despite results indicating that this toxin was not a potential risk through the mussel ingestion, it should be considered in the shellfish safety monitoring programs through the LC–MS/MS methods.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - Natalia Miguéns
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Inés Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
37
|
Benoit E, Couesnon A, Lindovsky J, Iorga BI, Aráoz R, Servent D, Zakarian A, Molgó J. Synthetic Pinnatoxins A and G Reversibly Block Mouse Skeletal Neuromuscular Transmission In Vivo and In Vitro. Mar Drugs 2019; 17:md17050306. [PMID: 31137661 PMCID: PMC6562580 DOI: 10.3390/md17050306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pinnatoxins (PnTXs) A-H constitute an emerging family belonging to the cyclic imine group of phycotoxins. Interest has been focused on these fast-acting and highly-potent toxins because they are widely found in contaminated shellfish. Despite their highly complex molecular structure, PnTXs have been chemically synthetized and demonstrated to act on various nicotinic acetylcholine receptor (nAChR) subtypes. In the present work, PnTX-A, PnTX-G and analogue, obtained by chemical synthesis with a high degree of purity (>98%), have been studied in vivo and in vitro on adult mouse and isolated nerve-muscle preparations expressing the mature muscle-type (α1)2β1δε nAChR. The results show that PnTX-A and G acted on the neuromuscular system of anesthetized mice and blocked the compound muscle action potential (CMAP) in a dose- and time-dependent manner, using a minimally invasive electrophysiological method. The CMAP block produced by both toxins in vivo was reversible within 6–8 h. PnTX-A and G, applied to isolated extensor digitorum longus nerve-muscle preparations, blocked reversibly isometric twitches evoked by nerve stimulation. The action of PnTX-A was reversed by 3,4-diaminopyridine. Both toxins exerted no direct action on muscle fibers, as revealed by direct muscle stimulation. PnTX-A and G blocked synaptic transmission at mouse neuromuscular junctions and PnTX-A amino ketone analogue (containing an open form of the imine ring) had no effect on neuromuscular transmission. These results indicate the importance of the cyclic imine for interacting with the adult mammalian muscle-type nAChR. Modeling and docking studies revealed molecular determinants responsible for the interaction of PnTXs with the muscle-type nAChR.
Collapse
Affiliation(s)
- Evelyne Benoit
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Aurélie Couesnon
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Jiri Lindovsky
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Bogdan I Iorga
- Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, Labex LERMIT, F-91198 Gif-sur-Yvette, France.
| | - Rómulo Aráoz
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Denis Servent
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Jordi Molgó
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| |
Collapse
|
38
|
|
39
|
Ishihara J, Usui F, Kurose T, Baba T, Kawaguchi Y, Watanabe Y, Hatakeyama S. Synthetic Studies on Spirolides A and B: Formation of the Upper Carbon Framework Based on a Lewis Acid Template-Catalyzed Diels-Alder Reaction. Chemistry 2018; 25:1543-1552. [DOI: 10.1002/chem.201804977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Ishihara
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Fuma Usui
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Tomohiro Kurose
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Tomohiro Baba
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Yasunori Kawaguchi
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Yuki Watanabe
- Graduate School of Biomedical Sciences; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| | - Susumi Hatakeyama
- Medical Innovation Center; Nagasaki University; 1-14, Bunkyo-machi Nagasaki 852-8521 Japan
| |
Collapse
|
40
|
Identification of Novel Gymnodimines and Spirolides from the Marine Dinoflagellate Alexandrium ostenfeldii. Mar Drugs 2018; 16:md16110446. [PMID: 30441860 PMCID: PMC6266918 DOI: 10.3390/md16110446] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/26/2018] [Accepted: 11/05/2018] [Indexed: 01/08/2023] Open
Abstract
Cyclic imine toxins are neurotoxic, macrocyclic compounds produced by marine dinoflagellates. Mass spectrometric screenings of extracts from natural plankton assemblages revealed a high chemical diversity among this toxin class, yet only few toxins are structurally known. Here we report the structural characterization of four novel cyclic-imine toxins (two gymnodimines (GYMs) and two spirolides (SPXs)) from cultures of Alexandrium ostenfeldii. A GYM with m/z 510 (1) was identified as 16-desmethylGYM D. A GYM with m/z 526 was identified as the hydroxylated degradation product of (1) with an exocyclic methylene at C-17 and an allylic hydroxyl group at C-18. This compound was named GYM E (2). We further identified a SPX with m/z 694 as 20-hydroxy-13,19-didesmethylSPX C (10) and a SPX with m/z 696 as 20-hydroxy-13,19-didesmethylSPX D (11). This is the first report of GYMs without a methyl group at ring D and SPXs with hydroxyl groups at position C-20. These compounds can be conceived as derivatives of the same nascent polyketide chain, supporting the hypothesis that GYMs and SPXs are produced through common biosynthetic genes. Both novel GYMs 1 and 2 were detected in significant amounts in extracts from natural plankton assemblages (1: 447 pg; 2: 1250 pg; 11: 40 pg per mL filtered seawater respectively).
Collapse
|
41
|
Boente-Juncal A, Méndez AG, Vale C, Vieytes MR, Botana LM. In Vitro Effects of Chronic Spirolide Treatment on Human Neuronal Stem Cell Differentiation and Cholinergic System Development. ACS Chem Neurosci 2018. [PMID: 29518322 DOI: 10.1021/acschemneuro.8b00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spirolides (SPX) are marine toxins, produced by dinoflagellates that act as potent antagonists of nicotinic acetylcholine receptors. These compounds are not toxic for humans, and since there are no reports of human intoxications caused by this group of toxins they are not yet currently regulated in Europe. Currently 13-desmethyl spirolide C, 13,19-didesmethyl spirolide C, and 20-methyl spirolide G are commercially available as reference materials. Previous work in our laboratory has demonstrated that after 4 days of treatment of primary mice cortical neurons with 13-desmethyl spirolide C, the compound ameliorated the glutamate induced toxicity and increased acetylcholine levels and the expression of the acetylcholine synthesizing enzyme being useful both in vitro and in vivo to decrease the brain pathology associated with Alzheimer's disease. In this work, we aimed to extend the study of the neuronal effects of spirolides in human neuronal cells. To this end, human neuronal progenitor cells CTX0E16 were employed to evaluate the in vitro effect of spirolides on neuronal development. The results presented here indicate that long-term exposure (30 days) of human neuronal stem cells to SPX compounds, at concentrations up to 50 nM, ameliorated the MPP+-induced neurotoxicity and increased the expression of neuritic and dendritic markers, the levels of the choline acetyltransferase enzyme and the protein levels of the α7 subunit of nicotinic acetylcholine receptors. These effects are presumably due to the previously described interaction of these compounds with nicotinic receptors containing both α7 and α4 subunits. All together, these data emphasize the idea that SPX could be attractive lead molecules against neurodegenerative disorders.
Collapse
Affiliation(s)
- Andrea Boente-Juncal
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Aida G. Méndez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Carmen Vale
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Mercedes R. Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| | - Luis M. Botana
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27001 Lugo, Spain
| |
Collapse
|
42
|
Prorocentrolide-A from Cultured Prorocentrum lima Dinoflagellates Collected in Japan Blocks Sub-Types of Nicotinic Acetylcholine Receptors. Toxins (Basel) 2018; 10:toxins10030097. [PMID: 29495549 PMCID: PMC5869385 DOI: 10.3390/toxins10030097] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 01/19/2023] Open
Abstract
Prorocentrolides are members of the cyclic imine phycotoxins family. Their chemical structure includes a 26-membered carbo-macrocycle and a 28-membered macrocyclic lactone arranged around a hexahydroisoquinoline that incorporates the characteristic cyclic imine group. Six prorocentrolides are already known. However, their mode of action remains undetermined. The aim of the present work was to explore whether prorocentrolide-A acts on nicotinic acetylcholine receptors (nAChRs), using competition-binding assays and electrophysiological techniques. Prorocentrolide-A displaced [125I]α-bungarotoxin binding to Torpedo membranes, expressing the muscle-type (α12β1γδ) nAChR, and in HEK-293 cells, expressing the chimeric chick neuronal α7-5HT3 nAChR. Functional studies revealed that prorocentrolide-A had no agonist action on nAChRs, but inhibited ACh-induced currents in Xenopus oocytes that had incorporated the muscle-type α12β1γδ nAChR to their membranes, or that expressed the human α7 nAChR, as revealed by voltage-clamp recordings. Molecular docking calculations showed the absence of the characteristic hydrogen bond between the iminium group of prorocentrolide-A and the backbone carbonyl group of Trp147 in the receptor, explaining its weaker affinity as compared to all other cyclic imine toxins. In conclusion, this is the first study to show that prorocentrolide-A acts on both muscle and neuronal nAChRs, but with higher affinity on the muscle-type nAChR.
Collapse
|
43
|
Alarcan J, Biré R, Le Hégarat L, Fessard V. Mixtures of Lipophilic Phycotoxins: Exposure Data and Toxicological Assessment. Mar Drugs 2018; 16:E46. [PMID: 29385038 PMCID: PMC5852474 DOI: 10.3390/md16020046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023] Open
Abstract
Lipophilic phycotoxins are secondary metabolites produced by phytoplanktonic species. They accumulate in filter-feeding shellfish and can cause human intoxication. Regulatory limits have been set for individual toxins, and the toxicological features are well characterized for some of them. However, phycotoxin contamination is often a co-exposure phenomenon, and toxicological data regarding mixtures effects are very scarce. Moreover, the type and occurrence of phycotoxins can greatly vary from one region to another. This review aims at summarizing the knowledge on (i) multi-toxin occurrence by a comprehensive literature review and (ii) the toxicological assessment of mixture effects. A total of 79 publications was selected for co-exposure evaluation, and 44 of them were suitable for toxin ratio calculations. The main toxin mixtures featured okadaic acid in combination with pectenotoxin-2 or yessotoxin. Only a few toxicity studies dealing with co-exposure were published. In vivo studies did not report particular mixture effects, whereas in vitro studies showed synergistic or antagonistic effects. Based on the combinations that are the most reported, further investigations on mixture effects must be carried out.
Collapse
Affiliation(s)
- Jimmy Alarcan
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Ronel Biré
- Marine Biotoxins Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 94706 Maisons-Alfort, France.
| | - Ludovic Le Hégarat
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| | - Valérie Fessard
- Toxicology of Contaminants Unit, French Agency for Food, Environmental and Occupational Health and Safety, ANSES, 35300 Fougères, France.
| |
Collapse
|
44
|
Iwanejko J, Wojaczyńska E. Cyclic imines – preparation and application in synthesis. Org Biomol Chem 2018; 16:7296-7314. [DOI: 10.1039/c8ob01874j] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cyclic imines, available from various nitrogen-containing reactants, serve as versatile synthetic intermediates for biologically active compounds.
Collapse
Affiliation(s)
- Jakub Iwanejko
- Department of Organic Chemistry
- Wrocław University of Science and Technology
- 50 370 Wrocław
- Poland
| | - Elżbieta Wojaczyńska
- Department of Organic Chemistry
- Wrocław University of Science and Technology
- 50 370 Wrocław
- Poland
| |
Collapse
|
45
|
Prado MAM, Marchot P, Silman I. Preface: Cholinergic Mechanisms. J Neurochem 2017; 142 Suppl 2:3-6. [PMID: 28791707 DOI: 10.1111/jnc.14027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 01/28/2023]
Abstract
This special issue is a companion to the meeting 'XVth International Symposium on Cholinergic Mechanisms', and is edited by Israel Silman, Marco Prado and Pascale Marchot. In the review articles, renowned researchers in the field capture key mechanisms of cholinergic neurotransmission, from genomic amplification of cholinesterase genes, splicing and post-translational modifications; features of the neuromuscular junction, implications of cholinergic circuitry that are relevant to addiction, anxiety and mood, to preclinical models, protein biomarkers, and clinical findings that are relevant to pathology, for example, developmental neurotoxicity. The broad variety of features reflects the impact of cholinergic mechanisms on many physiological events and emphasizes the importance of research in this area. This is the Preface for the special issue XVth International Symposium on Cholinergic Mechanisms.
Collapse
Affiliation(s)
- Marco A M Prado
- Robarts Research Institute, Department of Physiology and Pharmacology and Department of Anatomy and Cell Biology, The University of Western Ontario London, Ontario, Canada
| | - Pascale Marchot
- Centre National de la Recherche Scientifique, Aix-Marseille Universite, Marseille
| | - Israel Silman
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|