1
|
Kurtyka M, Wessely F, Bau S, Ifie E, He L, de Wit NM, Pedersen ABV, Keller M, Webber C, de Vries HE, Ansorge O, Betsholtz C, De Bock M, Chaves C, Brodin B, Nielsen MS, Neuhaus W, Bell RD, Letoha T, Meyer AH, Leparc G, Lenter M, Lesuisse D, Cader ZM, Buckley ST, Loryan I, Pietrzik CU. The solute carrier SLC7A1 may act as a protein transporter at the blood-brain barrier. Eur J Cell Biol 2024; 103:151406. [PMID: 38547677 DOI: 10.1016/j.ejcb.2024.151406] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/20/2024] [Indexed: 06/29/2024] Open
Abstract
Despite extensive research, targeted delivery of substances to the brain still poses a great challenge due to the selectivity of the blood-brain barrier (BBB). Most molecules require either carrier- or receptor-mediated transport systems to reach the central nervous system (CNS). These transport systems form attractive routes for the delivery of therapeutics into the CNS, yet the number of known brain endothelium-enriched receptors allowing the transport of large molecules into the brain is scarce. Therefore, to identify novel BBB targets, we combined transcriptomic analysis of human and murine brain endothelium and performed a complex screening of BBB-enriched genes according to established selection criteria. As a result, we propose the high-affinity cationic amino acid transporter 1 (SLC7A1) as a novel candidate for transport of large molecules across the BBB. Using RNA sequencing and in situ hybridization assays, we demonstrated elevated SLC7A1 gene expression in both human and mouse brain endothelium. Moreover, we confirmed SLC7A1 protein expression in brain vasculature of both young and aged mice. To assess the potential of SLC7A1 as a transporter for larger proteins, we performed internalization and transcytosis studies using a radiolabelled or fluorophore-labelled anti-SLC7A1 antibody. Our results showed that SLC7A1 internalised a SLC7A1-specific antibody in human colorectal carcinoma (HCT116) cells. Moreover, transcytosis studies in both immortalised human brain endothelial (hCMEC/D3) cells and primary mouse brain endothelial cells clearly demonstrated that SLC7A1 effectively transported the SLC7A1-specific antibody from luminal to abluminal side. Therefore, here in this study, we present for the first time the SLC7A1 as a novel candidate for transport of larger molecules across the BBB.
Collapse
Affiliation(s)
- Magdalena Kurtyka
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Frank Wessely
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Sarah Bau
- Pathology & Imaging, Novo Nordisk A/S, Måløv, Denmark
| | - Eseoghene Ifie
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Maximilian Keller
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany
| | - Caleb Webber
- UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Olaf Ansorge
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden; Department of Medicine (Huddinge), Karolinska Institutet, Huddinge, Sweden
| | - Marijke De Bock
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica, Beerse, Belgium
| | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Morten S Nielsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Winfried Neuhaus
- Austrian Institute of Technology GmbH, Vienna, Austria; Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Krems, Austria
| | | | | | - Axel H Meyer
- AbbVie Deutschland GmbH & Co. KG, Quantitative, Translational & ADME Sciences, Ludwigshafen, Germany
| | - Germán Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG, Translational Medicine & Clinical Pharmacology, Biberach, Germany
| | - Martin Lenter
- Boehringer Ingelheim Pharma GmbH & Co. KG, Drug Discovery Sciences, Biberach, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Zameel M Cader
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - Irena Loryan
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Sóskuti E, Szilvásy N, Temesszentandrási-Ambrus C, Urbán Z, Csíkvári O, Szabó Z, Kecskeméti G, Pusztai É, Gáborik Z. Applicability of MDR1 Overexpressing Abcb1KO-MDCKII Cell Lines for Investigating In Vitro Species Differences and Brain Penetration Prediction. Pharmaceutics 2024; 16:736. [PMID: 38931858 PMCID: PMC11207571 DOI: 10.3390/pharmaceutics16060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Implementing the 3R initiative to reduce animal experiments in brain penetration prediction for CNS-targeting drugs requires more predictive in vitro and in silico models. However, animal studies are still indispensable to obtaining brain concentration and determining the prediction performance of in vitro models. To reveal species differences and provide reliable data for IVIVE, in vitro models are required. Systems overexpressing MDR1 and BCRP are widely used to predict BBB penetration, highlighting the impact of the in vitro system on predictive performance. In this study, endogenous Abcb1 knock-out MDCKII cells overexpressing MDR1 of human, mouse, rat or cynomolgus monkey origin were used. Good correlations between ERs of 83 drugs determined in each cell line suggest limited species specificities. All cell lines differentiated CNS-penetrating compounds based on ERs with high efficiency and sensitivity. The correlation between in vivo and predicted Kp,uu,brain was the highest using total ER of human MDR1 and BCRP and optimized scaling factors. MDR1 interactors were tested on all MDR1 orthologs using digoxin and quinidine as substrates. We found several examples of inhibition dependent on either substrate or transporter abundance. In summary, this assay system has the potential for early-stage brain penetration screening. IC50 comparison between orthologs is complex; correlation with transporter abundance data is not necessarily proportional and requires the understanding of modes of transporter inhibition.
Collapse
Affiliation(s)
- Emőke Sóskuti
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
- Doctoral School of Semmelweis University, Molecular Medicine Division, H-1085 Budapest, Hungary
| | - Nóra Szilvásy
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| | | | - Zoltán Urbán
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| | - Olivér Csíkvári
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (G.K.)
| | - Gábor Kecskeméti
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.S.); (G.K.)
| | - Éva Pusztai
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary;
| | - Zsuzsanna Gáborik
- Charles River Laboratories Hungary, H-1117 Budapest, Hungary; (E.S.); (N.S.); (C.T.-A.); (Z.U.); (O.C.)
| |
Collapse
|
3
|
Tremblay TL, Alata W, Slinn J, Baumann E, Delaney CE, Moreno M, Haqqani AS, Stanimirovic DB, Hill JJ. The proteome of the blood-brain barrier in rat and mouse: highly specific identification of proteins on the luminal surface of brain microvessels by in vivo glycocapture. Fluids Barriers CNS 2024; 21:23. [PMID: 38433215 PMCID: PMC10910681 DOI: 10.1186/s12987-024-00523-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.
Collapse
Affiliation(s)
- Tammy-Lynn Tremblay
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Wael Alata
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
- Biology Program, New York University Abu Dhabi, Saadiyat Island Campus, P.O. Box 129188, Abu Dhabi, United Arab Emirates
| | - Jacqueline Slinn
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Maria Moreno
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada
| | - Jennifer J Hill
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Dr., Ottawa, ON, K1A 0R6, Canada.
| |
Collapse
|
4
|
Vasilogianni AM, Alrubia S, El-Khateeb E, Al-Majdoub ZM, Couto N, Achour B, Rostami-Hodjegan A, Barber J. Complementarity of two proteomic data analysis tools in the identification of drug-metabolising enzymes and transporters in human liver. Mol Omics 2024; 20:115-127. [PMID: 37975521 DOI: 10.1039/d3mo00144j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Several software packages are available for the analysis of proteomic LC-MS/MS data, including commercial (e.g. Mascot/Progenesis LC-MS) and open access software (e.g. MaxQuant). In this study, Progenesis and MaxQuant were used to analyse the same data set from human liver microsomes (n = 23). Comparison focussed on the total number of peptides and proteins identified by the two packages. For the peptides exclusively identified by each software package, distribution of peptide length, hydrophobicity, molecular weight, isoelectric point and score were compared. Using standard cut-off peptide scores, we found an average of only 65% overlap in detected peptides, with surprisingly little consistency in the characteristics of peptides exclusively detected by each package. Generally, MaxQuant detected more peptides than Progenesis, and the additional peptides were longer and had relatively lower scores. Progenesis-specific peptides tended to be more hydrophilic and basic relative to peptides detected only by MaxQuant. At the protein level, we focussed on drug-metabolising enzymes (DMEs) and transporters, by comparing the number of unique peptides detected by the two packages for these specific proteins of interest, and their abundance. The abundance of DMEs and SLC transporters showed good correlation between the two software tools, but ABC showed less consistency. In conclusion, in order to maximise the use of MS datasets, we recommend processing with more than one software package. Together, Progenesis and MaxQuant provided excellent coverage, with a core of common peptides identified in a very robust way.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sarah Alrubia
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Certara Inc (Simcyp Division), 1 Concourse Way, Sheffield, UK
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
- Certara Inc (Simcyp Division), 1 Concourse Way, Sheffield, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
5
|
Heisel LS, Andersen FD, Joca S, Sørensen LK, Simonsen U, Hasselstrøm JB, Andersen CU, Nielsen KL. Combined in vivo metabolic effects of quetiapine and methadone in brain and blood of rats. Arch Toxicol 2024; 98:289-301. [PMID: 37870577 PMCID: PMC10761411 DOI: 10.1007/s00204-023-03620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023]
Abstract
Changes in pharmacokinetics and endogenous metabolites may underlie additive biological effects of concomitant use of antipsychotics and opioids. In this study, we employed untargeted metabolomics analysis and targeted analysis to examine the changes in drug metabolites and endogenous metabolites in the prefrontal cortex (PFC), midbrain, and blood of rats following acute co-administration of quetiapine and methadone. Rats were divided into four groups and received cumulative increasing doses of quetiapine (QTP), methadone (MTD), quetiapine + methadone (QTP + MTD), or vehicle (control). All samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Our findings revealed increased levels of the quetiapine metabolites: Norquetiapine, O-dealkylquetiapine, 7-hydroxyquetiapine, and quetiapine sulfoxide, in the blood and brain when methadone was present. Our study also demonstrated a decrease in methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in the rat brain when quetiapine was present. Despite these findings, there were only small differences in the levels of 225-296 measured endogenous metabolites due to co-administration compared to single administrations. For example, N-methylglutamic acid, glutaric acid, p-hydroxyphenyllactic acid, and corticosterone levels were significantly decreased in the brain of rats treated with both compounds. Accumulation of serotonin in the midbrain was additionally observed in the MTD group, but not in the QTP + MTD group. In conclusion, this study in rats suggests a few but important additive metabolic effects when quetiapine and methadone are co-administered.
Collapse
Affiliation(s)
- Laura Smedegaard Heisel
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Freja Drost Andersen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Sâmia Joca
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | | | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Jørgen Bo Hasselstrøm
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Charlotte Uggerhøj Andersen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, DK-8200, Aarhus N, Denmark
| | - Kirstine Lykke Nielsen
- Department of Forensic Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200, Aarhus N, Denmark.
| |
Collapse
|
6
|
Yu M, Nie Y, Yang J, Yang S, Li R, Rao V, Hu X, Fang C, Li S, Song D, Guo F, Snyder MP, Chang HY, Kuo CJ, Xu J, Chang J. Integrative multi-omic profiling of adult mouse brain endothelial cells and potential implications in Alzheimer's disease. Cell Rep 2023; 42:113392. [PMID: 37925638 PMCID: PMC10843806 DOI: 10.1016/j.celrep.2023.113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 09/11/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
The blood-brain barrier (BBB) is primarily manifested by a variety of physiological properties of brain endothelial cells (ECs), but the molecular foundation for these properties remains incompletely clear. Here, we generate a comprehensive molecular atlas of adult brain ECs using acutely purified mouse ECs and integrated multi-omics. Using RNA sequencing (RNA-seq) and proteomics, we identify the transcripts and proteins selectively enriched in brain ECs and demonstrate that they are partially correlated. Using single-cell RNA-seq, we dissect the molecular basis of functional heterogeneity of brain ECs. Using integrative epigenomics and transcriptomics, we determine that TCF/LEF, SOX, and ETS families are top-ranked transcription factors regulating the BBB. We then validate the identified brain-EC-enriched proteins and transcription factors in normal mouse and human brain tissue and assess their expression changes in mice with Alzheimer's disease. Overall, we present a valuable resource with broad implications for regulation of the BBB and treatment of neurological disorders.
Collapse
Affiliation(s)
- Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yage Nie
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiawen Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shilun Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Varsha Rao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoyan Hu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Cheng Fang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Simeng Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dengpan Song
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Fuyou Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Calvin J Kuo
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jin Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| | - Junlei Chang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
7
|
Bolden CT, Skibber MA, Olson SD, Zamorano Rojas M, Milewicz S, Gill BS, Cox CS. Validation and characterization of a novel blood-brain barrier platform for investigating traumatic brain injury. Sci Rep 2023; 13:16150. [PMID: 37752338 PMCID: PMC10522590 DOI: 10.1038/s41598-023-43214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a highly-selective physiologic barrier responsible for maintaining cerebral homeostasis. Innovative in vitro models of the BBB are needed to provide useful insights into BBB function with CNS disorders like traumatic brain injury (TBI). TBI is a multidimensional and highly complex pathophysiological condition that requires intrinsic models to elucidate its mechanisms. Current models either lack fluidic shear stress, or neglect hemodynamic parameters important in recapitulating the human in vivo BBB phenotype. To address these limitations in the field, we developed a fluid dynamic novel platform which closely mimics these parameters. To validate our platform, Matrigel-coated Transwells were seeded with brain microvascular endothelial cells, both with and without co-cultured primary human astrocytes and bone-marrow mesenchymal stem cells. In this article we characterized BBB functional properties such as TEER and paracellular permeability. Our platform demonstrated physiologic relevant decreases in TEER in response to an ischemic environment, while directly measuring barrier fluid fluctuation. These recordings were followed with recovery, implying stability of the model. We also demonstrate that our dynamic platform is responsive to inflammatory and metabolic cues with resultant permeability coefficients. These results indicate that this novel dynamic platform will be a valuable tool for evaluating the recapitulating BBB function in vitro, screening potential novel therapeutics, and establishing a relevant paradigm to evaluate the pathophysiology of TBI.
Collapse
Affiliation(s)
- Christopher T Bolden
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | - Max A Skibber
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Miriam Zamorano Rojas
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Samantha Milewicz
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Brijesh S Gill
- Department of Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Charles S Cox
- Department of Pediatric Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
- Center for Translational Injury Research, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
8
|
Gülave B, Budda D, Saleh MAA, van Hasselt JGC, de Lange ECM. Does nonlinear blood-brain barrier transport matter for (lower) morphine dosing strategies? Eur J Pharm Sci 2023; 187:106482. [PMID: 37247795 DOI: 10.1016/j.ejps.2023.106482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Morphine blood-brain barrier (BBB) transport is governed by passive diffusion, active efflux and saturable active influx. This may result in nonlinear plasma concentration-dependent brain extracellular fluid (brainECF) pharmacokinetics of morphine. In this study, we aim to evaluate the impact of nonlinear BBB transport on brainECF pharmacokinetics of morphine and its metabolites for different dosing strategies using a physiologically based pharmacokinetic simulation study. We extended the human physiologically based pharmacokinetic LeiCNS-PK3.0, model with equations for nonlinear BBB transport of morphine. Simulations for brainECF pharmacokinetics were performed for various dosing strategies: intravenous (IV), oral immediate (IR) and extended release (ER) with dose range of 0.25-150 mg and dosing frequencies of 1-6 times daily. The impact of nonlinear BBB transport on morphine CNS pharmacokinetics was evaluated by quantifying (i) the relative brainECF to plasma exposure (AUCu,brainECF/AUCu,plasma) and (ii) the impact on the peak-to-trough ratio (PTR) of concentration-time profiles in brainECF and plasma. We found that the relative morphine exposure and PTRs are dose dependent for the evaluated dose range. The highest relative morphine exposure value of 1.4 was found for once daily 0.25 mg ER and lowest of 0.1 for 6-daily 150 mg IV dosing. At lower doses the PTRs were smaller and increased with increasing dose and stabilized at higher doses independent of dosing frequency. Relative peak concentrations of morphine in relation to its metabolites changed with increasing dose. We conclude that nonlinearity of morphine BBB transport affects the relative brainECF exposure and the fluctuation of morphine and its metabolites mainly at lower dosing regimens.
Collapse
Affiliation(s)
- Berfin Gülave
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - Divakar Budda
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - M A A Saleh
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - J G C van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands
| | - E C M de Lange
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Leiden 2333 CC, the Netherlands.
| |
Collapse
|
9
|
Baghirov H. Receptor-mediated transcytosis of macromolecules across the blood-brain barrier. Expert Opin Drug Deliv 2023; 20:1699-1711. [PMID: 37658673 DOI: 10.1080/17425247.2023.2255138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION The blood-brain barrier (BBB) restricts brain access of virtually all macromolecules. Receptor-mediated transcytosis (RMT) is one strategy toward their brain delivery. In this strategy, targeting ligands conjugated to therapeutic payload or decorating particles containing the payload interact with targets on brain capillary endothelial cells (BCEC), triggering internalization, trafficking, and release from BCEC. AREAS COVERED RMT at the BBB has leveraged multiple formats of macromolecules and large particles. Interactions between those and BCEC have been studied primarily using antibodies, with findings applicable to the design of larger particles. BBB-penetrant constructs have also been identified in screening campaigns and directed evolution, and subsequently found to interact with RMT targets. In addition, BCEC targeted by constructs incorporating genomic payload can be made to produce therapeutic proteins. EXPERT OPINION While targeting may not be strictly necessary to reach a therapeutic effect for all macromolecules, it can improve a molecule's BBB transport, exposing it to the entire brain parenchyma and enhancing its effect. Constructs with better BCEC transcytosis may be designed rationally, leveraging knowledge about BCEC trafficking, and found in screening campaigns, where this knowledge can reduce the search space and improve iterative refinement. Identification of new targets may also help generate BBB-crossing constructs.
Collapse
Affiliation(s)
- Habib Baghirov
- Roche Informatics, F. Hoffmann-La Roche Ltd, Poznań, Poland
| |
Collapse
|
10
|
Zhang W, Liu QY, Haqqani AS, Liu Z, Sodja C, Leclerc S, Baumann E, Delaney CE, Brunette E, Stanimirovic DB. Differential Expression of ABC Transporter Genes in Brain Vessels vs. Peripheral Tissues and Vessels from Human, Mouse and Rat. Pharmaceutics 2023; 15:pharmaceutics15051563. [PMID: 37242805 DOI: 10.3390/pharmaceutics15051563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters comprise a superfamily of genes encoding membrane proteins with nucleotide-binding domains (NBD). These transporters, including drug efflux across the blood-brain barrier (BBB), carry a variety of substrates through plasma membranes against substrate gradients, fueled by hydrolyzing ATP. The expression patterns/enrichment of ABC transporter genes in brain microvessels compared to peripheral vessels and tissues are largely uncharacterized. METHODS In this study, the expression patterns of ABC transporter genes in brain microvessels, peripheral tissues (lung, liver and spleen) and lung vessels were investigated using RNA-seq and WesTM analyses in three species: human, mouse and rat. RESULTS The study demonstrated that ABC drug efflux transporter genes (including ABCB1, ABCG2, ABCC4 and ABCC5) were highly expressed in isolated brain microvessels in all three species studied; the expression of ABCB1, ABCG2, ABCC1, ABCC4 and ABCC5 was generally higher in rodent brain microvessels compared to those of humans. In contrast, ABCC2 and ABCC3 expression was low in brain microvessels, but high in rodent liver and lung vessels. Overall, most ABC transporters (with the exception of drug efflux transporters) were enriched in peripheral tissues compared to brain microvessels in humans, while in rodent species, additional ABC transporters were found to be enriched in brain microvessels. CONCLUSIONS This study furthers the understanding of species similarities and differences in the expression patterns of ABC transporter genes; this is important for translational studies in drug development. In particular, CNS drug delivery and toxicity may vary among species depending on their unique profiles of ABC transporter expression in brain microvessels and BBB.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Qing Yan Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Ziying Liu
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Sonia Leclerc
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
11
|
Barber J, Al-Majdoub ZM, Couto N, Howard M, Elmorsi Y, Scotcher D, Alizai N, de Wildt S, Stader F, Sepp A, Rostami-Hodjegan A, Achour B. Toward systems-informed models for biologics disposition: covariates of the abundance of the neonatal Fc Receptor (FcRn) in human tissues and implications for pharmacokinetic modelling. Eur J Pharm Sci 2023; 182:106375. [PMID: 36626943 DOI: 10.1016/j.ejps.2023.106375] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Biologics are a fast-growing therapeutic class, with intertwined pharmacokinetics and pharmacodynamics, affected by the abundance and function of the FcRn receptor. While many investigators assume adequacy of classical models, such as allometry, for pharmacokinetic characterization of biologics, advocates of physiologically-based pharmacokinetics (PBPK) propose consideration of known systems parameters that affect the fate of biologics to enable a priori predictions, which go beyond allometry. The aim of this study was to deploy a systems-informed modelling approach to predict the disposition of Fc-containing biologics. We used global proteomics to quantify the FcRn receptor [p51 and β2-microglobulin (B2M) subunits] in 167 samples of human tissue (liver, intestine, kidney and skin) and assessed covariates of its expression. FcRn p51 subunit was highest in liver relative to other tissues, and B2M was 1-2 orders of magnitude more abundant than FcRn p51 across all sets. There were no sex-related differences, while higher expression was confirmed in neonate liver compared with adult liver. Trends of expression in liver and kidney indicated a moderate effect of body mass index, which should be confirmed in a larger sample size. Expression of FcRn p51 subunit was approximately 2-fold lower in histologically normal liver tissue adjacent to cancer compared with healthy liver. FcRn mRNA in plasma-derived exosomes correlated moderately with protein abundance in matching liver tissue, opening the possibility of use as a potential clinical tool. Predicted effects of trends in FcRn abundance in healthy and disease (cancer and psoriasis) populations using trastuzumab and efalizumab PBPK models were in line with clinical observations, and global sensitivity analysis revealed endogenous IgG plasma concentration and tissue FcRn abundance as key systems parameters influencing exposure to Fc-conjugated biologics.
Collapse
Affiliation(s)
- Jill Barber
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Martyn Howard
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Yasmine Elmorsi
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom
| | | | - Saskia de Wildt
- Radboud University Medical Center, Radboud University, Nijmegen, the Netherlands
| | - Felix Stader
- Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Armin Sepp
- Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, the University of Manchester, Manchester, United Kingdom; Certara UK Ltd. (Simcyp Division), Sheffield, United Kingdom
| | - Brahim Achour
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, the University of Rhode Island, 495A Avedisian Hall, 7 Greenhouse Road, Kingston, RI 02881, United States.
| |
Collapse
|
12
|
Di L. Special issue on applications of in vitro, in vivo, and modeling and simulation tools for central nervous system drug disposition. Biopharm Drug Dispos 2023; 44:3-6. [PMID: 36547228 DOI: 10.1002/bdd.2342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Li Di
- Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
13
|
Vasilogianni AM, Al-Majdoub ZM, Achour B, Peters SA, Rostami-Hodjegan A, Barber J. Proteomic quantification of receptor tyrosine kinases involved in the development and progression of colorectal cancer liver metastasis. Front Oncol 2023; 13:1010563. [PMID: 36890818 PMCID: PMC9986493 DOI: 10.3389/fonc.2023.1010563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction Alterations in expression and activity of human receptor tyrosine kinases (RTKs) are associated with cancer progression and in response to therapeutic intervention. Methods Thus, protein abundance of 21 RTKs was assessed in 15 healthy and 18 cancerous liver samples [2 primary and 16 colorectal cancer liver metastasis (CRLM)] matched with non-tumorous (histologically normal) tissue, by a validated QconCAT-based targeted proteomic approach. Results It was demonstrated, for the first time, that the abundance of EGFR, INSR, VGFR3 and AXL, is lower in tumours relative to livers from healthy individuals whilst the opposite is true for IGF1R. EPHA2 was upregulated in tumour compared with histologically normal tissue surrounding it. PGFRB levels were higher in tumours relative to both histologically normal tissue surrounding tumour and tissues taken from healthy individuals. The abundances of VGFR1/2, PGFRA, KIT, CSF1R, FLT3, FGFR1/3, ERBB2, NTRK2, TIE2, RET, and MET were, however, comparable in all samples. Statistically significant, but moderate correlations were observed (Rs > 0.50, p < 0.05) for EGFR with INSR and KIT. FGFR2 correlated with PGFRA and VGFR1 with NTRK2 in healthy livers. In non-tumorous (histologically normal) tissues from cancer patients, there were correlations between TIE2 and FGFR1, EPHA2 and VGFR3, FGFR3 and PGFRA (p < 0.05). EGFR correlated with INSR, ERBB2, KIT and EGFR, and KIT with AXL and FGFR2. In tumours, CSF1R correlated with AXL, EPHA2 with PGFRA, and NTRK2 with PGFRB and AXL. Sex, liver lobe and body mass index of donors had no impact on the abundance of RTKs, although donor age showed some correlations. RET was the most abundant of these kinases in non-tumorous tissues (~35%), while PGFRB was the most abundant RTK in tumours (~47%). Several correlations were also observed between the abundance of RTKs and proteins relevant to drug pharmacokinetics (enzymes and transporters). Discussion DiscussionThis study quantified perturbation to the abundance of several RTKs in cancer and the value generated in this study can be used as input to systems biology models defining liver cancer metastases and biomarkers of its progression.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States
| | - Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Darmstadt, Germany.,Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co., KG, Ingelheim am Rhein, Germany
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom.,Simcyp Division, Certara Inc., Sheffield, United Kingdom
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
14
|
Mehta A, Desai A, Rudd D, Siddiqui G, Nowell CJ, Tong Z, Creek DJ, Tayalia P, Gandhi PS, Voelcker NH. Bio-Mimicking Brain Vasculature to Investigate the Role of Heterogeneous Shear Stress in Regulating Barrier Integrity. Adv Biol (Weinh) 2022; 6:e2200152. [PMID: 35999436 DOI: 10.1002/adbi.202200152] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/04/2022] [Indexed: 01/28/2023]
Abstract
A continuous, sealed endothelial membrane is essential for the blood-brain barrier (BBB) to protect neurons from toxins present in systemic circulation. Endothelial cells are critical sensors of the capillary environment, where factors like fluid shear stress (FSS) and systemic signaling molecules activate intracellular pathways that either promote or disrupt the BBB. The brain vasculature exhibits complex heterogeneity across the bed, which is challenging to recapitulate in BBB microfluidic models with fixed dimensions and rectangular cross-section microchannels. Here, a Cayley-tree pattern, fabricated using lithography-less, fluid shaping technique in a modified Hele-Shaw cell is used to emulate the brain vasculature in a microfluidic chip. This geometry generates an inherent distribution of heterogeneous FSS, due to smooth variations in branch height and width. hCMEC/D3 endothelial cells cultured in the Cayley-tree designed chip generate a 3D monolayer of brain endothelium with branching hierarchy, enabling the study of the effect of heterogeneous FSS on the brain endothelium. The model is employed to study neuroinflammatory conditions by stimulating the brain endothelium with tumor necrosis factor-α under heterogeneous FSS conditions. The model has immense potential for studies involving drug transport across the BBB, which can be misrepresented in fixed dimension models.
Collapse
Affiliation(s)
- Ami Mehta
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.,IITB-Monash Research Academy, Mumbai, 400076, India
| | - Anal Desai
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ghizal Siddiqui
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Cameron J Nowell
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Prasanna S Gandhi
- Suman Mashruwala Advanced Microengineering Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, VIC, 3168, Australia.,Department of Materials Science and Engineering, Monash University, Clayton, VIC, 3800, Australia
| |
Collapse
|
15
|
Nissa MU, Pinto N, Varshnay A, Goswami M, Srivastava S. Ecological Monitoring and Omics: A Comprehensive Comparison of Workflows for Mass Spectrometry-Based Quantitative Proteomics of Fish ( Labeo rohita) Liver Tissue. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:489-503. [PMID: 36036978 DOI: 10.1089/omi.2022.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Introduction: The liver is highly sensitive to the environmental factors. Liver tissue, particularly from fish, is often used as a biological target in ecological monitoring, disease research, and stress response studies. Labeo rohita (rohu) is a fish with a significant role in the global aquaculture economy. Methods: Bottom-up proteomics relies on efficient sample preparation for performing mass spectrometric analysis of the liver tissue. Optimization of protein solubilization and digestion strategies is the key step to obtain reliable data for a successful proteomics experiment. Because the goal of extraction is to acquire the optimum protein quality and yield, the first step should be to choose an appropriate extraction method based on the type of sample. Solubilization buffers containing sodium dodecyl sulfate (SDS) or urea, and digestion methods such as filter-aided sample preparation (FASP), suspension trap (S-Trap) and in-solution are often used in proteomics but are in need of comparative evaluation with an eye to protocol optimization. Experiment: We applied two different solubilization buffers (one containing SDS, and other containing urea) and three digestion methods (FASP, S-Trap, and in-solution) to the proteomic analysis of the fish (L. rohita) liver tissue. Label-free quantification analysis was performed to analyze the similarities and differences in the results with each method. Gene ontology-based functional analysis was performed for the identified proteome across the experimental conditions to overview their protein classes, molecular functions, and biological processes. Results: SDS lysis followed by S-Trap digestion outperformed the other combinations of lysis and digestion in terms of higher protein coverage, consistency in the results and repeatability. Filter-based methods provided comparatively better results than in-solution digestion. Discussion: This protocol presents new insights on ways to optimize discovery and targeted proteomic analyses of liver tissue using the fish L. rohita as a case study. Other tissues can also be evaluated in the future drawing from the results in this study. This would help the scientific community with hypothesis-driven studies on topics ranging from basic biology to applied aquaculture research and ecological monitoring. This is particularly relevant in the current era of ecological crises and environmental pollution, where advances and optimization in research protocols can contribute to in-depth studies of ecosystems and planetary health.
Collapse
Affiliation(s)
- Mehar Un Nissa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Nevil Pinto
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Mumbai, Maharashtra, India
| | | | - Mukunda Goswami
- Central Institute of Fisheries Education, Indian Council of Agricultural Research, Mumbai, Maharashtra, India
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| |
Collapse
|
16
|
Vasilogianni AM, Al-Majdoub ZM, Achour B, Annie Peters S, Barber J, Rostami-Hodjegan A. Quantitative Proteomics of Hepatic Drug-Metabolizing Enzymes and Transporters in Patients with Colorectal Cancer Metastasis. Clin Pharmacol Ther 2022; 112:699-710. [PMID: 35510337 PMCID: PMC9540503 DOI: 10.1002/cpt.2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
The impact of liver cancer metastasis on protein abundance of 22 drug‐metabolizing enzymes (DMEs) and 25 transporters was investigated using liquid chromatography‐tandem accurate mass spectrometry targeted proteomics. Microsomes were prepared from liver tissue taken from 15 healthy individuals and 18 patients with cancer (2 primary and 16 metastatic). Patient samples included tumors and matching histologically normal tissue. The levels of cytochrome P450 (CYPs 2B6, 2D6, 2E1, 3A4, and 3A5) and uridine 5′‐diphospho‐glucuronosyltransferases (UGTs 1A1, 1A6, 1A9, 2B15, 2B4, and 2B7) were lower in histologically normal tissue from patients relative to healthy controls (up to 6.6‐fold) and decreased further in tumors (up to 21‐fold for CYPs and 58‐fold for UGTs). BSEP and MRPs were also suppressed in histologically normal (up to 3.1‐fold) and tumorous tissue (up to 6.3‐fold) relative to healthy individuals. Abundance of OCT3, OAT2, OAT7, and OATPs followed similar trends (up to 2.9‐fold lower in histologically normal tissue and up to 16‐fold lower in tumors). Abundance of NTCP and OCT1 was also lower (up to 9‐fold). Interestingly, monocarboxylate transporter MCT1 was more abundant (3.3‐fold) in tumors, the only protein target to show this pattern. These perturbations could be attributed to inflammation. Interindividual variability was substantially higher in patients with cancer. Proteomics‐informed physiologically‐based pharmacokinetic (PBPK) models of 50 drugs with different attributes and hepatic extraction ratios (Simcyp) showed substantially lower drug clearance with cancer‐specific parameters compared with default parameters. In conclusion, this study provides values for decreased abundance of DMEs and transporters in liver cancer, which enables using population‐specific abundance for these patients in PBPK modeling.
Collapse
Affiliation(s)
- Areti-Maria Vasilogianni
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Sheila Annie Peters
- Translational Quantitative Pharmacology, BioPharma, R&D Global Early Development, Merck KGaA, Darmstadt, Germany
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Manchester, UK.,Certara Inc. (Simcyp Division), Sheffield, UK
| |
Collapse
|
17
|
Krysa M, Makuch-Kocka A, Susniak K, Plech T, Andres-Mach M, Zagaja M, Sroka-Bartnicka A. Spectroscopic Evaluation of the Potential Neurotoxic Effects of a New Candidate for Anti-Seizure Medication-TP-315 during Chronic Administration (In Vivo). Int J Mol Sci 2022; 23:ijms23094607. [PMID: 35562996 PMCID: PMC9101731 DOI: 10.3390/ijms23094607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the potential neurotoxic effect of the new anti-seizure medication candidate—5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP-315), after chronic administration to mice. TP-315 was administered to mice intraperitoneally for 14 days. At 24 h post the last injection, animals were decapitated, their brains were acquired, flash-frozen in liquid nitrogen and cut into 10 µm slices. The FT-IR chemical imaging technique was used for the investigation of the potential neurotoxic effect in the cerebral cortex and hippocampus. The effect on the lipidomic and proteomic profile and on oxidative stress was investigated. The results showed no statistically significant changes in the above-mentioned parameters. TP-315 seems to pose no neurotoxic effect on the mouse brain after chronic use, therefore, its use should be safe.
Collapse
Affiliation(s)
- Mikolaj Krysa
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Anna Makuch-Kocka
- Department of Pharmacology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: (A.M.-K.); (A.S.-B.); Tel.: +48-81448-6772 (A.M.-K.); +48-81448-7225 (A.S.-B.)
| | - Katarzyna Susniak
- Department of Genetics and Microbiology, Institute of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
- Correspondence: (A.M.-K.); (A.S.-B.); Tel.: +48-81448-6772 (A.M.-K.); +48-81448-7225 (A.S.-B.)
| |
Collapse
|
18
|
Vasilogianni AM, El-Khateeb E, Achour B, Alrubia S, Rostami-Hodjegan A, Barber J, Al-Majdoub ZM. A family of QconCATs (Quantification conCATemers) for the quantification of human pharmacological target proteins. J Proteomics 2022; 261:104572. [DOI: 10.1016/j.jprot.2022.104572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022]
|
19
|
Murata Y, Neuhoff S, Rostami-Hodjegan A, Takita H, Al-Majdoub ZM, Ogungbenro K. In Vitro to In Vivo Extrapolation Linked to Physiologically Based Pharmacokinetic Models for Assessing the Brain Drug Disposition. AAPS J 2022; 24:28. [PMID: 35028763 PMCID: PMC8817058 DOI: 10.1208/s12248-021-00675-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022] Open
Abstract
Drug development for the central nervous system (CNS) is a complex endeavour with low success rates, as the structural complexity of the brain and specifically the blood-brain barrier (BBB) poses tremendous challenges. Several in vitro brain systems have been evaluated, but the ultimate use of these data in terms of translation to human brain concentration profiles remains to be fully developed. Thus, linking up in vitro-to-in vivo extrapolation (IVIVE) strategies to physiologically based pharmacokinetic (PBPK) models of brain is a useful effort that allows better prediction of drug concentrations in CNS components. Such models may overcome some known aspects of inter-species differences in CNS drug disposition. Required physiological (i.e. systems) parameters in the model are derived from quantitative values in each organ. However, due to the inability to directly measure brain concentrations in humans, compound-specific (drug) parameters are often obtained from in silico or in vitro studies. Such data are translated through IVIVE which could be also applied to preclinical in vivo observations. In such exercises, the limitations of the assays and inter-species differences should be adequately understood in order to verify these predictions with the observed concentration data. This report summarizes the state of IVIVE-PBPK-linked models and discusses shortcomings and areas of further research for better prediction of CNS drug disposition. Graphical abstract ![]()
Collapse
Affiliation(s)
- Yukiko Murata
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.,Sohyaku.Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Sibylle Neuhoff
- Certara UK Ltd, Simcyp Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.,Certara UK Ltd, Simcyp Division, 1 Concourse Way, Level 2-Acero, Sheffield, S1 2BJ, UK
| | - Hiroyuki Takita
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.,Development Planning, Clinical Development Center, Asahi Kasei Pharma Corporation, Hibiya Mitsui Tower, 1-1-2 Yurakucho, Chiyoda-ku, Tokyo, 100-0006, Japan
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
20
|
Proteome of the Luminal Surface of the Blood-Brain Barrier. Proteomes 2021; 9:proteomes9040045. [PMID: 34842825 PMCID: PMC8629012 DOI: 10.3390/proteomes9040045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
Interrogation of the molecular makeup of the blood–brain barrier (BBB) using proteomic techniques has contributed to the cataloguing and functional understanding of the proteins uniquely organized at this specialized interface. The majority of proteomic studies have focused on cellular components of the BBB, including cultured brain endothelial cells (BEC). Detailed proteome mapping of polarized BEC membranes and their intracellular endosomal compartments has led to an improved understanding of the processes leading to internalization and transport of various classes of molecules across the BBB. Quantitative proteomic methods have further enabled absolute and comparative quantification of key BBB transporters and receptors in isolated BEC and microvessels from various species. However, translational studies further require in vivo/in situ analyses of the proteins exposed on the luminal surface of BEC in vessels under various disease and treatment conditions. In vivo proteomics approaches, both profiling and quantitative, usually rely on ‘capturing’ luminally-exposed proteins after perfusion with chemical labeling reagents, followed by analysis with various mass spectrometry-based approaches. This manuscript reviews recent advances in proteomic analyses of luminal membranes of BEC in vitro and in vivo and their applications in translational studies focused on developing novel delivery methods across the BBB.
Collapse
|
21
|
Dugan AJ, Nelson PT, Katsumata Y, Shade LMP, Boehme KL, Teylan MA, Cykowski MD, Mukherjee S, Kauwe JSK, Hohman TJ, Schneider JA, Fardo DW. Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study. Acta Neuropathol Commun 2021; 9:152. [PMID: 34526147 PMCID: PMC8442328 DOI: 10.1186/s40478-021-01250-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is the most prevalent subtype of TDP-43 proteinopathy, affecting up to 1/3rd of aged persons. LATE-NC often co-occurs with hippocampal sclerosis (HS) pathology. It is currently unknown why some individuals with LATE-NC develop HS while others do not, but genetics may play a role. Previous studies found associations between LATE-NC phenotypes and specific genes: TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data from research participants with genomic and autopsy measures from the National Alzheimer’s Coordinating Center (NACC; n = 631 subjects included) and the Religious Orders Study and Memory and the Rush Aging Project (ROSMAP; n = 780 included) were analyzed in the current study. Our goals were to reevaluate disease-associated genetic variants using newly collected data and to query whether the specific genotype/phenotype associations could provide new insights into disease-driving pathways. Research subjects included in prior LATE/HS genome-wide association studies (GWAS) were excluded. Single nucleotide variants (SNVs) within 10 kb of TMEM106B, GRN, ABCC9, KCNMB2, and APOE were tested for association with HS and LATE-NC, and separately for Alzheimer’s pathologies, i.e. amyloid plaques and neurofibrillary tangles. Significantly associated SNVs were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE had significant gene-based associations with both LATE and HS, whereas ABCC9 had significant associations with HS only. In a sensitivity analysis limited to LATE-NC + cases, ABCC9 variants were again associated with HS. By contrast, the associations of TMEM106B, GRN, and APOE with HS were attenuated when adjusting for TDP-43 proteinopathy, indicating that these genes may be associated primarily with TDP-43 proteinopathy. None of these genes except APOE appeared to be associated with Alzheimer’s-type pathology. In summary, using data not included in prior studies of LATE or HS genomics, we replicated several previously reported gene-based associations and found novel evidence that specific risk alleles can differentially affect LATE-NC and HS.
Collapse
|
22
|
El-Khateeb E, Achour B, Al-Majdoub ZM, Barber J, Rostami-Hodjegan A. Non-uniformity of Changes in Drug-Metabolizing Enzymes and Transporters in Liver Cirrhosis: Implications for Drug Dosage Adjustment. Mol Pharm 2021; 18:3563-3577. [PMID: 34428046 PMCID: PMC8424631 DOI: 10.1021/acs.molpharmaceut.1c00462] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Liver cirrhosis is
a chronic disease that affects the liver structure,
protein expression, and overall metabolic function. Abundance data
for drug-metabolizing enzymes and transporters (DMET) across all stages
of disease severity are scarce. Levels of these proteins are crucial
for the accurate prediction of drug clearance in hepatically impaired
patients using physiologically based pharmacokinetic (PBPK) models,
which can be used to guide the selection of more precise dosing. This
study aimed to experimentally quantify these proteins in human liver
samples and assess how they can impact the predictive performance
of the PBPK models. We determined the absolute abundance of 51 DMET
proteins in human liver microsomes across the three degrees of cirrhosis
severity (n = 32; 6 mild, 13 moderate, and 13 severe),
compared to histologically normal controls (n = 14),
using QconCAT-based targeted proteomics. The results revealed a significant
but non-uniform reduction in the abundance of enzymes and transporters,
from control, by 30–50% in mild, 40–70% in moderate,
and 50–90% in severe cirrhosis groups. Cancer and/or non-alcoholic
fatty liver disease-related cirrhosis showed larger deterioration
in levels of CYP3A4, 2C8, 2E1, 1A6, UGT2B4/7, CES1, FMO3/5, EPHX1,
MGST1/3, BSEP, and OATP2B1 than the cholestasis set. Drug-specific
pathways together with non-uniform changes of abundance across the
enzymes and transporters under various degrees of cirrhosis necessitate
the use of PBPK models. As case examples, such models for repaglinide,
dabigatran, and zidovudine were successful in recovering disease-related
alterations in drug exposure. In conclusion, the current study provides
the biological rationale behind the absence of a single dose adjustment
formula for all drugs in cirrhosis and demonstrates the utility of
proteomics-informed PBPK modeling for drug-specific dose adjustment
in liver cirrhosis.
Collapse
Affiliation(s)
- Eman El-Khateeb
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester M13 9PT, U.K.,Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester M13 9PT, U.K
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester M13 9PT, U.K
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester M13 9PT, U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester M13 9PT, U.K.,Certara UK Ltd. (Simcyp Division), Sheffield S1 2BJ, U.K
| |
Collapse
|
23
|
Chandra PK, Cikic S, Baddoo MC, Rutkai I, Guidry JJ, Flemington EK, Katakam PV, Busija DW. Transcriptome analysis reveals sexual disparities in gene expression in rat brain microvessels. J Cereb Blood Flow Metab 2021; 41:2311-2328. [PMID: 33715494 PMCID: PMC8392780 DOI: 10.1177/0271678x21999553] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sex is an important determinant of brain microvessels (MVs) function and susceptibility to cerebrovascular and neurological diseases, but underlying mechanisms are unclear. Using high throughput RNA sequencing analysis, we examined differentially expressed (DE) genes in brain MVs from young, male, and female rats. Bioinformatics analysis of the 23,786 identified genes indicates that 298 (1.2%) genes were DE using False Discovery Rate criteria (FDR; p < 0.05), of which 119 (40%) and 179 (60%) genes were abundantly expressed in male and female MVs, respectively. Nucleic acid binding, enzyme modulator, and transcription factor were the top three DE genes, which were more highly expressed in male than female MVs. Synthesis of glycosylphosphatidylinositol (GPI), biosynthesis of GPI-anchored proteins, steroid and cholesterol synthesis, were the top three significantly enriched canonical pathways in male MVs. In contrast, respiratory chain, ribosome, and 3 ́-UTR-mediated translational regulation were the top three enriched canonical pathways in female MVs. Different gene functions of MVs were validated by proteomic analysis and western blotting. Our novel findings reveal major sex disparities in gene expression and canonical pathways of MVs and these differences provide a foundation to study the underlying mechanisms and consequences of sex-dependent differences in cerebrovascular and other neurological diseases.
Collapse
Affiliation(s)
- Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Melody C Baddoo
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jessie J Guidry
- Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Erik K Flemington
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
24
|
Al-Majdoub ZM, Scotcher D, Achour B, Barber J, Galetin A, Rostami-Hodjegan A. Quantitative Proteomic Map of Enzymes and Transporters in the Human Kidney: Stepping Closer to Mechanistic Kidney Models to Define Local Kinetics. Clin Pharmacol Ther 2021; 110:1389-1400. [PMID: 34390491 DOI: 10.1002/cpt.2396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/03/2021] [Indexed: 12/20/2022]
Abstract
The applications of translational modeling of local drug concentrations in various organs had a sharp increase over the last decade. These are part of the model-informed drug development initiative, adopted by the pharmaceutical industry and promoted by drug regulatory agencies. With respect to the kidney, the models serve as a bridge for understanding animal vs. human observations related to renal drug disposition and any consequential adverse effects. However, quantitative data on key drug-metabolizing enzymes and transporters relevant for predicting renal drug disposition are limited. Using targeted and global quantitative proteomics, we determined the abundance of multiple enzymes and transporters in 20 human kidney cortex samples. Nine enzymes and 22 transporters were quantified (8 for the first time in the kidneys). In addition, > 4,000 proteins were identified and used to form an open database. CYP2B6, CYP3A5, and CYP4F2 showed comparable, but generally low expression, whereas UGT1A9 and UGT2B7 levels were the highest. Significant correlation between abundance and activity (measured by mycophenolic acid clearance) was observed for UGT1A9 (Rs = 0.65, P = 0.004) and UGT2B7 (Rs = 0.70, P = 0.023). Expression of P-gp ≈ MATE-1 and OATP4C1 transporters were high. Strong intercorrelations were observed between several transporters (P-gp/MRP4, MRP2/OAT3, and OAT3/OAT4); no correlation in expression was apparent for functionally related transporters (OCT2/MATEs). This study extends our knowledge of pharmacologically relevant proteins in the kidney cortex, with implications on more prudent use of mechanistic kidney models under the general framework of quantitative systems pharmacology and toxicology.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, UK.,Certara UK (Simcyp Division), Sheffield, UK
| |
Collapse
|
25
|
Differences in P-glycoprotein activity in human and rodent blood-brain barrier assessed by mechanistic modelling. Arch Toxicol 2021; 95:3015-3029. [PMID: 34268580 PMCID: PMC8380243 DOI: 10.1007/s00204-021-03115-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022]
Abstract
Variation in the efficacy and safety of central nervous system drugs between humans and rodents can be explained by physiological differences between species. An important factor could be P-glycoprotein (Pgp) activity in the blood–brain barrier (BBB), as BBB expression of this drug efflux transporter is reportedly lower in humans compared to mouse and rat and subject to an age-dependent increase. This might complicate animal to human extrapolation of brain drug disposition and toxicity, especially in children. In this study, the potential species-specific effect of BBB Pgp activity on brain drug exposure was investigated. An age-dependent brain PBPK model was used to predict cerebrospinal fluid and brain mass concentrations of Pgp substrate drugs. For digoxin, verapamil and quinidine, in vitro kinetic data on their transport by Pgp were derived from literature and used to scale to in vivo parameters. In addition, age-specific digoxin transport was simulated for children with a postnatal age between 25 and 81 days. BBB Pgp activity in the model was optimized using measured CSF data for the Pgp substrates ivermectin, indinavir, vincristine, docetaxel, paclitaxel, olanzapine and citalopram, as no useful in vitro data were available. Inclusion of Pgp activity in the model resulted in optimized predictions of their brain concentration. Total brain-to-plasma AUC values (Kp,brain) in the simulations without Pgp were divided by the Kp,brain values with Pgp. Kp ratios ranged from 1 to 45 for the substrates investigated. Comparison of human with rodent Kp,brain ratios indicated ≥ twofold lower values in human for digoxin, verapamil, indinavir, paclitaxel and citalopram and ≥ twofold higher values for vincristine. In conclusion, BBB Pgp activity appears species-specific. An age-dependent PBPK model-based approach could be useful to extrapolate animal data to human adult and paediatric predictions by taking into account species-specific and developmental BBB Pgp expression.
Collapse
|
26
|
Lumbar cerebrospinal fluid-to-brain extracellular fluid surrogacy is context-specific: insights from LeiCNS-PK3.0 simulations. J Pharmacokinet Pharmacodyn 2021; 48:725-741. [PMID: 34142308 PMCID: PMC8405486 DOI: 10.1007/s10928-021-09768-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/01/2021] [Indexed: 11/01/2022]
Abstract
Predicting brain pharmacokinetics is critical for central nervous system (CNS) drug development yet difficult due to ethical restrictions of human brain sampling. CNS pharmacokinetic (PK) profiles are often altered in CNS diseases due to disease-specific pathophysiology. We previously published a comprehensive CNS physiologically-based PK (PBPK) model that predicted the PK profiles of small drugs at brain and cerebrospinal fluid compartments. Here, we improved this model with brain non-specific binding and pH effect on drug ionization and passive transport. We refer to this improved model as Leiden CNS PBPK predictor V3.0 (LeiCNS-PK3.0). LeiCNS-PK3.0 predicted the unbound drug concentrations of brain ECF and CSF compartments in rats and humans with less than two-fold error. We then applied LeiCNS-PK3.0 to study the effect of altered cerebrospinal fluid (CSF) dynamics, CSF volume and flow, on brain extracellular fluid (ECF) pharmacokinetics. The effect of altered CSF dynamics was simulated using LeiCNS-PK3.0 for six drugs and the resulting drug exposure at brain ECF and lumbar CSF were compared. Simulation results showed that altered CSF dynamics changed the CSF PK profiles, but not the brain ECF profiles, irrespective of the drug's physicochemical properties. Our analysis supports the notion that lumbar CSF drug concentration is not an accurate surrogate of brain ECF, particularly in CNS diseases. Systems approaches account for multiple levels of CNS complexity and are better suited to predict brain PK.
Collapse
|
27
|
Abstract
Our brains consist of 80% water, which is continuously shifted between different compartments and cell types during physiological and pathophysiological processes. Disturbances in brain water homeostasis occur with pathologies such as brain oedema and hydrocephalus, in which fluid accumulation leads to elevated intracranial pressure. Targeted pharmacological treatments do not exist for these conditions owing to our incomplete understanding of the molecular mechanisms governing brain water transport. Historically, the transmembrane movement of brain water was assumed to occur as passive movement of water along the osmotic gradient, greatly accelerated by water channels termed aquaporins. Although aquaporins govern the majority of fluid handling in the kidney, they do not suffice to explain the overall brain water movement: either they are not present in the membranes across which water flows or they appear not to be required for the observed flow of water. Notably, brain fluid can be secreted against an osmotic gradient, suggesting that conventional osmotic water flow may not describe all transmembrane fluid transport in the brain. The cotransport of water is an unconventional molecular mechanism that is introduced in this Review as a missing link to bridge the gap in our understanding of cellular and barrier brain water transport.
Collapse
Affiliation(s)
- Nanna MacAulay
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Christensen SC, Hudecz D, Jensen A, Christensen S, Nielsen MS. Basigin Antibodies with Capacity for Drug Delivery Across Brain Endothelial Cells. Mol Neurobiol 2021; 58:4392-4403. [PMID: 34014436 DOI: 10.1007/s12035-021-02421-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 01/06/2023]
Abstract
The blood-brain barrier (BBB) poses challenges for delivering antibody-based therapeutics to the brain and is a main obstacle for the successful application of biotherapeutics for the treatment of brain disorders. As only a small fraction of monoclonal antibodies (mAbs) is penetrating the BBB, high doses of therapeutics are required to elicit a pharmacological effect. This limitation has evoked research to improve transport across the BBB through receptor-mediated transcytosis, and several receptors have been explored for mediating this process. A recently suggested candidate is the brain endothelial cells (BECs) expressed basigin. Here, we explore the transcytosis capacity of different basigin mAbs targeting distinct epitopes using the porcine in vitro BBB models and provide data showing the intracellular vesicle sorting of these basigin mAbs in porcine BECs. Our data suggest that basigin mAbs avoid the lysosomal degradation pathway and are internalized to vesicles used by recycling receptors. Engagement of basigin mAbs with basigin led to the translocation of the mAbs across the tight BECs into the astrocytes in our in vitro BBB co-culture model. Although mAbs with higher binding affinity to basigin showed a greater astrocyte internalization, based on our experiments, it is not clear whether the transcytosis is affinity- or epitope-dependent or a combination of both. Overall, this study provides information about the intra- and intercellular fate of basigin mAbs in BECs, which are valuable for the future design of basigin-mediated drug delivery platforms.
Collapse
Affiliation(s)
- Sarah Christine Christensen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.,Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Diána Hudecz
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark
| | - Allan Jensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Søren Christensen
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Copenhagen, Denmark
| | - Morten Schallburg Nielsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, Building 1116, 8000, Aarhus C, Denmark.
| |
Collapse
|
29
|
Ogata S, Ito S, Masuda T, Ohtsuki S. Efficient isolation of brain capillary from a single frozen mouse brain for protein expression analysis. J Cereb Blood Flow Metab 2021; 41:1026-1038. [PMID: 32703112 PMCID: PMC8054721 DOI: 10.1177/0271678x20941449] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Isolated brain capillaries are essential for analyzing the changes of protein expressions at the blood-brain barrier (BBB) under pathological conditions. The standard brain capillary isolation methods require the use of at least five mouse brains in order to obtain a sufficient amount and purity of brain capillaries. The purpose of this study was to establish a brain capillary isolation method from a single mouse brain for protein expression analysis. We successfully isolated brain capillaries from a single frozen mouse brain by using a bead homogenizer in the brain homogenization step and combination of cell strainers and glass beads in the purification step. Western blot and proteomic analysis showed that proteins expressed at the BBB in mouse brain capillaries isolated by the developed method were more enriched than those isolated from a pool of five mouse brains by the standard method. By using the developed method, we further verified the changes in expression of BBB proteins in Glut1-deficient mouse. The developed method is useful for the analysis of various mice models with low numbers and enables us to understand, in more detail, the physiology and pathology of BBB.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
30
|
Bourasset F, Auvity S, Thorne RG, Scherrmann JM. Brain Distribution of Drugs: Brain Morphology, Delivery Routes, and Species Differences. Handb Exp Pharmacol 2021; 273:97-120. [PMID: 33474672 DOI: 10.1007/164_2020_402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neuropharmacokinetics considers cerebral drug distribution as a critical process for central nervous system drug action as well as for drug penetration through the CNS barriers. Brain distribution of small molecules obeys classical rules of drug partition, permeability, binding to fluid proteins or tissue components, and tissue perfusion. The biodistribution of all drugs, including both small molecules and biologics, may also be influenced by specific brain properties related to brain anatomy and physiological barriers, fluid dynamics, and cellular and biochemical composition, each of which can exhibit significant interspecies differences. All of these properties contribute to select optimal dosing paradigms and routes of drug delivery to reach brain targets for classical small molecule drugs as well as for biologics. The importance of these properties for brain delivery and exposure also highlights the need for efficient new analytical technologies to more comprehensively investigate drug distribution in the CNS, a complex multi-compartmentalized organ system.
Collapse
Affiliation(s)
- Fanchon Bourasset
- Faculty of Pharmacy, University of Paris, Paris, France.,INSERM UMR-S1144, Paris, France
| | - Sylvain Auvity
- Faculty of Pharmacy, University of Paris, Paris, France.,INSERM UMR-S1144, Paris, France
| | - Robert G Thorne
- Denali Therapeutics, Inc., South San Francisco, CA, USA. .,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA.
| | - Jean-Michel Scherrmann
- Faculty of Pharmacy, University of Paris, Paris, France. .,INSERM UMR-S1144, Paris, France.
| |
Collapse
|
31
|
Saleh MAA, de Lange ECM. Impact of CNS Diseases on Drug Delivery to Brain Extracellular and Intracellular Target Sites in Human: A "WHAT-IF" Simulation Study. Pharmaceutics 2021; 13:95. [PMID: 33451111 PMCID: PMC7828633 DOI: 10.3390/pharmaceutics13010095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) is equipped with unique physical and functional processes that control central nervous system (CNS) drug transport and the resulting concentration-time profiles (PK). In CNS diseases, the altered BBB and CNS pathophysiology may affect the CNS PK at the drug target sites in the brain extracellular fluid (brainECF) and intracellular fluid (brainICF) that may result in changes in CNS drug effects. Here, we used our human CNS physiologically-based PK model (LeiCNS-PK3.0) to investigate the impact of altered cerebral blood flow (CBF), tight junction paracellular pore radius (pararadius), brainECF volume, and pH of brainECF (pHECF) and of brainICF (pHICF) on brainECF and brainICF PK for 46 small drugs with distinct physicochemical properties. LeiCNS-PK3.0 simulations showed a drug-dependent effect of the pathophysiological changes on the rate and extent of BBB transport and on brainECF and brainICF PK. Altered pararadius, pHECF, and pHICF affected both the rate and extent of BBB drug transport, whereas changes in CBF and brainECF volume modestly affected the rate of BBB drug transport. While the focus is often on BBB paracellular and active transport processes, this study indicates that also changes in pH should be considered for their important implications on brainECF and brainICF target site PK.
Collapse
Affiliation(s)
| | - Elizabeth C. M. de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
32
|
Achour B, Al‐Majdoub ZM, Grybos‐Gajniak A, Lea K, Kilford P, Zhang M, Knight D, Barber J, Schageman J, Rostami‐Hodjegan A. Liquid Biopsy Enables Quantification of the Abundance and Interindividual Variability of Hepatic Enzymes and Transporters. Clin Pharmacol Ther 2021; 109:222-232. [PMID: 33141922 PMCID: PMC7839483 DOI: 10.1002/cpt.2102] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Variability in individual capacity for hepatic elimination of therapeutic drugs is well recognized and is associated with variable expression and activity of liver enzymes and transporters. Although genotyping offers some degree of stratification, there is often large variability within the same genotype. Direct measurement of protein expression is impractical due to limited access to tissue biopsies. Hence, determination of variability in hepatic drug metabolism and disposition using liquid biopsy (blood samples) is an attractive proposition during drug development and in clinical practice. This study used a multi-"omic" strategy to establish a liquid biopsy technology intended to assess hepatic capacity for metabolism and disposition in individual patients. Plasma exosomal analysis (n = 29) revealed expression of 533 pharmacologically relevant genes at the RNA level, with 147 genes showing evidence of expression at the protein level in matching liver tissue. Correction of exosomal RNA expression using a novel shedding factor improved correlation against liver protein expression for 97 liver-enriched genes. Strong correlation was demonstrated for 12 key drug-metabolizing enzymes and 4 drug transporters. The developed test allowed reliable patient stratification, and in silico trials demonstrated utility in adjusting drug dose to achieve similar drug exposure between patients with variable hepatic elimination. Accordingly, this approach can be applied in characterization of volunteers prior to enrollment in clinical trials and for patient stratification in clinical practice to achieve more precise individual dosing.
Collapse
Affiliation(s)
- Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| | - Zubida M. Al‐Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| | | | | | | | | | - David Knight
- Biological Mass Spectrometry Core FacilityUniversity of ManchesterManchesterUK
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
| | | | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health SciencesUniversity of ManchesterManchesterUK
- Certara Ltd.PrincetonNew JerseyUSA
| |
Collapse
|
33
|
Nishibori M, Wang D, Ousaka D, Wake H. High Mobility Group Box-1 and Blood-Brain Barrier Disruption. Cells 2020; 9:cells9122650. [PMID: 33321691 PMCID: PMC7764171 DOI: 10.3390/cells9122650] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests that inflammatory responses are involved in the progression of brain injuries induced by a diverse range of insults, including ischemia, hemorrhage, trauma, epilepsy, and degenerative diseases. During the processes of inflammation, disruption of the blood–brain barrier (BBB) may play a critical role in the enhancement of inflammatory responses and may initiate brain damage because the BBB constitutes an interface between the brain parenchyma and the bloodstream containing blood cells and plasma. The BBB has a distinct structure compared with those in peripheral tissues: it is composed of vascular endothelial cells with tight junctions, numerous pericytes surrounding endothelial cells, astrocytic endfeet, and a basement membrane structure. Under physiological conditions, the BBB should function as an important element in the neurovascular unit (NVU). High mobility group box-1 (HMGB1), a nonhistone nuclear protein, is ubiquitously expressed in almost all kinds of cells. HMGB1 plays important roles in the maintenance of chromatin structure, the regulation of transcription activity, and DNA repair in nuclei. On the other hand, HMGB1 is considered to be a representative damage-associated molecular pattern (DAMP) because it is translocated and released extracellularly from different types of brain cells, including neurons and glia, contributing to the pathophysiology of many diseases in the central nervous system (CNS). The regulation of HMGB1 release or the neutralization of extracellular HMGB1 produces beneficial effects on brain injuries induced by ischemia, hemorrhage, trauma, epilepsy, and Alzheimer’s amyloidpathy in animal models and is associated with improvement of the neurological symptoms. In the present review, we focus on the dynamics of HMGB1 translocation in different disease conditions in the CNS and discuss the functional roles of extracellular HMGB1 in BBB disruption and brain inflammation. There might be common as well as distinct inflammatory processes for each CNS disease. This review will provide novel insights toward an improved understanding of a common pathophysiological process of CNS diseases, namely, BBB disruption mediated by HMGB1. It is proposed that HMGB1 might be an excellent target for the treatment of CNS diseases with BBB disruption.
Collapse
|
34
|
Al‐Majdoub ZM, Achour B, Couto N, Howard M, Elmorsi Y, Scotcher D, Alrubia S, El‐Khateeb E, Vasilogianni A, Alohali N, Neuhoff S, Schmitt L, Rostami‐Hodjegan A, Barber J. Mass spectrometry-based abundance atlas of ABC transporters in human liver, gut, kidney, brain and skin. FEBS Lett 2020; 594:4134-4150. [PMID: 33128234 PMCID: PMC7756589 DOI: 10.1002/1873-3468.13982] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022]
Abstract
ABC transporters (ATP-binding cassette transporter) traffic drugs and their metabolites across membranes, making ABC transporter expression levels a key factor regulating local drug concentrations in different tissues and individuals. Yet, quantification of ABC transporters remains challenging because they are large and low-abundance transmembrane proteins. Here, we analysed 200 samples of crude and membrane-enriched fractions from human liver, kidney, intestine, brain microvessels and skin, by label-free quantitative mass spectrometry. We identified 32 (out of 48) ABC transporters: ABCD3 was the most abundant in liver, whereas ABCA8, ABCB2/TAP1 and ABCE1 were detected in all tissues. Interestingly, this atlas unveiled that ABCB2/TAP1 may have TAP2-independent functions in the brain and that biliary atresia (BA) and control livers have quite different ABC transporter profiles. We propose that meaningful biological information can be derived from a direct comparison of these data sets.
Collapse
Affiliation(s)
- Zubida M. Al‐Majdoub
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Brahim Achour
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Narciso Couto
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Martyn Howard
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Yasmine Elmorsi
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | - Daniel Scotcher
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| | - Sarah Alrubia
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Chemistry DepartmentCollege of PharmacyKing Saud UniversityRiyadhSaudi Arabia
| | - Eman El‐Khateeb
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Clinical Pharmacy DepartmentFaculty of PharmacyTanta UniversityEgypt
| | | | - Noura Alohali
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Pharmaceutical Practice DepartmentCollege of PharmacyPrincess Noura Bint Abdul Rahman UniversityRiyadhSaudi Arabia
| | | | - Lutz Schmitt
- Institute of BiochemistryHeinrich Heine University DüsseldorfGermany
| | - Amin Rostami‐Hodjegan
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
- Simcyp DivisionCertara UK LtdSheffieldUK
| | - Jill Barber
- Centre for Applied Pharmacokinetic ResearchSchool of Health SciencesUniversity of ManchesterUK
| |
Collapse
|
35
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
36
|
Couto N, Newton JRA, Russo C, Karunakaran E, Achour B, Al-Majdoub ZM, Sidaway J, Rostami-Hodjegan A, Clench MR, Barber J. Label-Free Quantitative Proteomics and Substrate-Based Mass Spectrometry Imaging of Xenobiotic Metabolizing Enzymes in Ex Vivo Human Skin and a Human Living Skin Equivalent Model. Drug Metab Dispos 2020; 49:39-52. [PMID: 33139459 DOI: 10.1124/dmd.120.000168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/08/2020] [Indexed: 01/15/2023] Open
Abstract
We report for the first time label-free quantification of xenobiotic metabolizing enzymes (XME), transporters, redox enzymes, proteases, and nucleases in six human skin explants and a three-dimensional living skin equivalent model from LabSkin. We aimed to evaluate the suitability of LabSkin as an alternative to animal testing for the development of topical formulations. More than 2000 proteins were identified and quantified from total cellular protein. Alcohol dehydrogenase 1C, the most abundant phase I XME in human skin, and glutathione S-transferase pi 1, the most abundant phase II XME in human skin, were present in similar abundance in LabSkin. Several esterases were quantified and esterase activity was confirmed in LabSkin using substrate-based mass spectrometry imaging. No cytochrome P450 (P450) activity was observed for the substrates tested, in agreement with the proteomics data, where the cognate P450s were absent in both human skin and LabSkin. Label-free protein quantification allowed insights into other related processes such as redox homeostasis and proteolysis. For example, the most abundant antioxidant enzymes were thioredoxin and peroxiredoxin-1. This systematic determination of functional equivalence between human skin and LabSkin is a key step toward the construction of a representative human in vitro skin model, which can be used as an alternative to current animal-based tests for chemical safety and for predicting dosage of topically administered drugs. SIGNIFICANCE STATEMENT: The use of label-free quantitative mass spectrometry to elucidate the abundance of xenobiotic metabolizing enzymes, transporters, redox enzymes, proteases, and nucleases in human skin enhance our understanding of the skin physiology and biotransformation of topical drugs and cosmetics. This will help to develop mathematical models to predict drug metabolism in human skin and to develop more robust in vitro engineered human skin tissue as alternatives to animal testing.
Collapse
Affiliation(s)
- Narciso Couto
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jillian R A Newton
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Cristina Russo
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Brahim Achour
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Zubida M Al-Majdoub
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - James Sidaway
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Amin Rostami-Hodjegan
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Malcolm R Clench
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| | - Jill Barber
- Department of Chemical and Biological Engineering (N.C., E.K.) and Sheffield Collaboratorium for Antimicrobial Resistance and Biofilms (SCARAB) (N.C., E.K.), University of Sheffield, Sheffield, United Kingdom; Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., B.A., Z.M.A.-M., A.R.-H., J.B.); Centre for Mass Spectrometry Imaging, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom (J.R.A.N., C.R., M.R.C.); Phenotox Ltd., Bollington, United Kingdom (J.S.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (A.R.-H.)
| |
Collapse
|
37
|
Non-Human Primate Blood-Brain Barrier and In Vitro Brain Endothelium: From Transcriptome to the Establishment of a New Model. Pharmaceutics 2020; 12:pharmaceutics12100967. [PMID: 33066641 PMCID: PMC7602447 DOI: 10.3390/pharmaceutics12100967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
The non-human primate (NHP)-brain endothelium constitutes an essential alternative to human in the prediction of molecule trafficking across the blood–brain barrier (BBB). This study presents a comparison between the NHP transcriptome of freshly isolated brain microcapillaries and in vitro-selected brain endothelial cells (BECs), focusing on important BBB features, namely tight junctions, receptors mediating transcytosis (RMT), ABC and SLC transporters, given its relevance as an alternative model for the molecule trafficking prediction across the BBB and identification of new brain-specific transport mechanisms. In vitro BECs conserved most of the BBB key elements for barrier integrity and control of molecular trafficking. The function of RMT via the transferrin receptor (TFRC) was characterized in this NHP-BBB model, where both human transferrin and anti-hTFRC antibody showed increased apical-to-basolateral passage in comparison to control molecules. In parallel, eventual BBB-related regional differences were Investig.igated in seven-day in vitro-selected BECs from five brain structures: brainstem, cerebellum, cortex, hippocampus, and striatum. Our analysis retrieved few differences in the brain endothelium across brain regions, suggesting a rather homogeneous BBB function across the brain parenchyma. The presently established NHP-derived BBB model closely mimics the physiological BBB, thus representing a ready-to-use tool for assessment of the penetration of biotherapeutics into the human CNS.
Collapse
|
38
|
Zhang J, Zhang M, Zhang J, Wang R. Enhanced P-glycoprotein expression under high-altitude hypoxia contributes to increased phenytoin levels and reduced clearance in rats. Eur J Pharm Sci 2020; 153:105490. [PMID: 32721527 DOI: 10.1016/j.ejps.2020.105490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 01/25/2023]
Abstract
To study the effect of plateau hypoxia on the concentration of P-glycoprotein (P-gp) substrate phenytoin, Wistar rats are randomly divided into the control group and the hypoxic group, including P-gp inhibited groups respectively. Blood, cerebrospinal fluid, brain tissue, and blood-brain barrier were collected in plain areas at an altitude of 1500 m and plateau areas at an altitude of 4010 m. Evans Blue exclusion was used to assess the integrity of the blood-brain barrier. Western blot and qPCR were used to detect changes in P-gp expression. LC-MS/MS was used to determine the concentration of phenytoin in plasma and cerebrospinal fluid. In the high-altitude plateau group, phenytoin AUC0-t, MRT0-t and t1/2 increased significantly by 60%, 48%, and 61%, respectively, and clearance decreased by 67% (p <0.05 for all parameter). The protein expression of P-gp in the blood-brain barrier of the plateau group was up-regulated 1.84 times and the gene expression was up-regulated 2.21 times. The concentrations of phenytoin in the CSF of rats in the plain and high-altitude groups were 864.7 ± 348.3 and 1000±273.9 ng•mL-1, respectively. However, after inhibiting P-gp, the concentration of phenytoin in the CSF decreased significantly. It indicates that the increased expression of P-gp on the blood-brain barrier may lead to an increase in the amount of phenytoin excreted from the blood into the CSF, which may cause neurotoxic side effects. These results demonstrate significant changes in the pharmacokinetics of phenytoin under hypoxic conditions, supporting the need for careful dose titration for drugs with a narrow therapeutic range under high-altitude conditions.
Collapse
Affiliation(s)
- Juanhong Zhang
- Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou 730050, China; School of Pharmacy, 222 South Tianshui Road, Lanzhou University, Lanzhou, 730000, Gansu, China; College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730030, China
| | - Mingxia Zhang
- School of Pharmacy, 222 South Tianshui Road, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Junmin Zhang
- School of Pharmacy, 222 South Tianshui Road, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Rong Wang
- Key Laboratory for Prevention and Remediation of Plateau Environmental Damage, 940th Hospital of Joint Logistics Support Force of CPLA, Lanzhou 730050, China; School of Pharmacy, 222 South Tianshui Road, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
39
|
Cobo-Calvo A, Ruiz A, Richard C, Blondel S, Cavagna S, Strazielle N, Ghersi-Egea JF, Giraudon P, Marignier R. Purified IgG from aquaporin-4 neuromyelitis optica spectrum disorder patients alters blood-brain barrier permeability. PLoS One 2020; 15:e0238301. [PMID: 32881954 PMCID: PMC7470361 DOI: 10.1371/journal.pone.0238301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) is a primary astrocytopathy driven by antibodies directed against the aquaporin-4 water channel located at the end-feet of the astrocyte. Although blood-brain barrier (BBB) breakdown is considered one of the key steps for the development and lesion formation, little is known about the molecular mechanisms involved. The aim of the study was to evaluate the effect of human immunoglobulins from NMOSD patients (NMO-IgG) on BBB properties. METHODS Freshly isolated brain microvessels (IBMs) from rat brains were used as a study model. At first, analysis of the secretome profile from IBMs exposed to purified NMO-IgG, to healthy donor IgG (Control-IgG), or non-treated, was performed. Second, tight junction (TJ) proteins expression in fresh IBMs and primary cultures of brain microvascular endothelial cells (BMEC) was analysed by Western blotting (Wb) after exposition to NMO-IgG and Control-IgG. Finally, functional BBB properties were investigated evaluating the presence of rat-IgG in tissue lysate from brain using Wb in the rat-model, and the passage of NMO-IgG and sucrose in a bicameral model. RESULTS We found that NMO-IgG induces functional and morphological BBB changes, including: 1) increase of pro-inflammatory cytokines production (CXCL-10 [IP-10], IL-6, IL-1RA, IL-1β and CXCL-3) in IBMs when exposed to NMO-IgG; 2) decrease of Claudin-5 levels by 25.6% after treatment of fresh IBMs by NMO-IgG compared to Control-IgG (p = 0.002), and similarly, decrease of Claudin-5 by at least 20% when BMEC were cultured with NMO-IgG from five different patients; 3) a higher level of rat-IgG accumulated in periventricular regions of NMO-rats compared to Control-rats and an increase in the permeability of BBB after NMO-IgG treatment in the bicameral model. CONCLUSION Human NMO-IgG induces both structural and functional alterations of BBB properties, suggesting a direct role of NMO-IgG on modulation of BBB permeability in NMOSD.
Collapse
Affiliation(s)
- Alvaro Cobo-Calvo
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation and Centre de Référence Pour les Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM)–Hôpital Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
- Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| | - Anne Ruiz
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
| | - Chloé Richard
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
| | - Sandrine Blondel
- Centre d’Esclerosi Múltiple de Catalunya (Cemcat), Department of Neurology/Neuroimmunology, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sylvie Cavagna
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
| | - Nathalie Strazielle
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
- BIP Facility, CRNL, Lyon, France
| | - Jean-François Ghersi-Egea
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
- BIP Facility, CRNL, Lyon, France
| | - Pascale Giraudon
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
| | - Romain Marignier
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuroinflammation and Centre de Référence Pour les Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM)–Hôpital Neurologique Pierre Wertheimer Hospices Civils de Lyon, Lyon, France
- Centre de Recherche en Neurosciences de Lyon, U1028 INSERM-CNRS UMR5292-UCBL, Bron, France
| |
Collapse
|
40
|
Abstract
Group B Streptococcus (GBS) remains the leading cause of neonatal meningitis, a disease associated with high rates of adverse neurological sequelae. The in vivo relationship between GBS and brain tissues remains poorly characterized, partly because past studies had focused on microbial rather than host processes. Additionally, the field has not capitalized on systems-level technologies to probe the host-pathogen relationship. Here, we use multiplexed quantitative proteomics to investigate the effect of GBS infection in the murine brain at various levels of tissue complexity, beginning with the whole organ and moving to brain vascular substructures. Infected whole brains showed classical signatures associated with the acute-phase response. In isolated brain microvessels, classical blood-brain barrier proteins were unaltered, but interferon signaling and leukocyte recruitment proteins were upregulated. The choroid plexus showed increases in peripheral immune cell proteins. Proteins that increased in abundance in the vasculature during GBS invasion were associated with major histocompatibility complex (MHC) class I antigen processing and endoplasmic reticulum dysfunction, a finding which correlated with altered host protein glycosylation profiles. Globally, there was low concordance between the infection proteome of whole brains and isolated vascular tissues. This report underscores the utility of unbiased, systems-scale analyses of functional tissue substructures for understanding disease.IMPORTANCE Group B Streptococcus (GBS) meningitis remains a major cause of poor health outcomes very early in life. Both the host-pathogen relationship leading to disease and the massive host response to infection contributing to these poor outcomes are orchestrated at the tissue and cell type levels. GBS meningitis is thought to result when bacteria present in the blood circumvent the selectively permeable vascular barriers that feed the brain. Additionally, tissue damage subsequent to bacterial invasion is mediated by inflammation and by immune cells from the periphery crossing the blood-brain barrier. Indeed, the vasculature plays a central role in disease processes occurring during GBS infection of the brain. Here, we employed quantitative proteomic analysis of brain vascular substructures during invasive GBS disease. We used the generated data to map molecular alterations associated with tissue perturbation, finding widespread intracellular dysfunction and punctuating the importance of investigations relegated to tissue type over the whole organ.
Collapse
|
41
|
Glucose transporters in brain in health and disease. Pflugers Arch 2020; 472:1299-1343. [PMID: 32789766 PMCID: PMC7462931 DOI: 10.1007/s00424-020-02441-x] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022]
Abstract
Energy demand of neurons in brain that is covered by glucose supply from the blood is ensured by glucose transporters in capillaries and brain cells. In brain, the facilitative diffusion glucose transporters GLUT1-6 and GLUT8, and the Na+-d-glucose cotransporters SGLT1 are expressed. The glucose transporters mediate uptake of d-glucose across the blood-brain barrier and delivery of d-glucose to astrocytes and neurons. They are critically involved in regulatory adaptations to varying energy demands in response to differing neuronal activities and glucose supply. In this review, a comprehensive overview about verified and proposed roles of cerebral glucose transporters during health and diseases is presented. Our current knowledge is mainly based on experiments performed in rodents. First, the functional properties of human glucose transporters expressed in brain and their cerebral locations are described. Thereafter, proposed physiological functions of GLUT1, GLUT2, GLUT3, GLUT4, and SGLT1 for energy supply to neurons, glucose sensing, central regulation of glucohomeostasis, and feeding behavior are compiled, and their roles in learning and memory formation are discussed. In addition, diseases are described in which functional changes of cerebral glucose transporters are relevant. These are GLUT1 deficiency syndrome (GLUT1-SD), diabetes mellitus, Alzheimer’s disease (AD), stroke, and traumatic brain injury (TBI). GLUT1-SD is caused by defect mutations in GLUT1. Diabetes and AD are associated with changed expression of glucose transporters in brain, and transporter-related energy deficiency of neurons may contribute to pathogenesis of AD. Stroke and TBI are associated with changes of glucose transporter expression that influence clinical outcome.
Collapse
|
42
|
Achour B, Al-Majdoub ZM, Rostami-Hodjegan A, Barber J. Mass Spectrometry of Human Transporters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:223-247. [PMID: 32084322 DOI: 10.1146/annurev-anchem-091719-024553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transporters are key to understanding how an individual will respond to a particular dose of a drug. Two patients with similar systemic concentrations may have quite different local concentrations of a drug at the required site. The transporter profile of any individual depends upon a variety of genetic and environmental factors, including genotype, age, and diet status. Robust models (virtual patients) are therefore required and these models are data hungry. Necessary data include quantitative transporter profiles at the relevant organ. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is currently the most powerful method available for obtaining this information. Challenges include sourcing the tissue, isolating the hydrophobic membrane-embedded transporter proteins, preparing the samples for MS (including proteolytic digestion), choosing appropriate quantification methodology, and optimizing the LC-MS/MS conditions. Great progress has been made with all of these, especially within the last few years, and is discussed here.
Collapse
Affiliation(s)
- Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
- Certara, Princeton, New Jersey 08540, USA
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
43
|
Pardridge WM. The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Front Physiol 2020; 11:398. [PMID: 32457645 PMCID: PMC7221163 DOI: 10.3389/fphys.2020.00398] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
A versatile experimental model for the investigation of the blood-brain barrier (BBB), including the neuro-vascular unit, is the isolated brain microvessel preparation. Brain microvessels are primarily comprised of endothelial cells, but also include pericytes, pre-capillary arteriolar smooth muscle cells, astrocyte foot processes, and occasional nerve endings. These microvessels can be isolated from brain with a 3 h procedure, and the microvessels are free of brain parenchyma. Brain microvessels have been isolated from fresh animal brain, fresh human brain obtained at neurosurgery, as well as fresh or frozen autopsy human brain. Brain microvessels are the starting point for isolation of brain microvessel RNA, which then enables the production of BBB cDNA libraries and a genomics analysis of the brain microvasculature. Brain microvessels, combined with quantitative targeted absolute proteomics, allow for the quantitation of specific transporters or receptors expressed at the brain microvasculature. Brain microvessels, combined with specific antibodies and immune labeling of isolated capillaries, allow for the cellular location of proteins expressed within the neuro-vascular unit. Isolated brain microvessels can be used as an “in vitro” preparation of the BBB for the study of the kinetic parameters of BBB carrier-mediated transport (CMT) systems, or for the determination of dissociation constants of peptide binding to BBB receptor-mediated transport (RMT) systems expressed at either the animal or the human BBB. This review will discuss how the isolated brain microvessel model system has advanced our understanding of the organization and functional properties of the BBB, and highlight recent renewed interest in this 50 year old model of the BBB.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
44
|
Uchida Y, Yagi Y, Takao M, Tano M, Umetsu M, Hirano S, Usui T, Tachikawa M, Terasaki T. Comparison of Absolute Protein Abundances of Transporters and Receptors among Blood–Brain Barriers at Different Cerebral Regions and the Blood–Spinal Cord Barrier in Humans and Rats. Mol Pharm 2020; 17:2006-2020. [DOI: 10.1021/acs.molpharmaceut.0c00178] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yuta Yagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Takao
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki 372-0006, Japan
- Department of Neurology, Saitama International Medical Center, Saitama Medical University, Hidaka 350-0495, Japan
| | - Mitsutoshi Tano
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki 372-0006, Japan
| | - Mina Umetsu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hirano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takuya Usui
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
45
|
Couto N, Al-Majdoub ZM, Gibson S, Davies PJ, Achour B, Harwood MD, Carlson G, Barber J, Rostami-Hodjegan A, Warhurst G. Quantitative Proteomics of Clinically Relevant Drug-Metabolizing Enzymes and Drug Transporters and Their Intercorrelations in the Human Small Intestine. Drug Metab Dispos 2020; 48:245-254. [PMID: 31959703 PMCID: PMC7076527 DOI: 10.1124/dmd.119.089656] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/23/2019] [Indexed: 01/02/2023] Open
Abstract
The levels of drug-metabolizing enzymes (DMEs) and transporter proteins in the human intestine are pertinent to determine oral drug bioavailability. Despite the paucity of reports on such measurements, it is well recognized that these values are essential for translating in vitro data on drug metabolism and transport to predict drug disposition in gut wall. In the current study, clinically relevant DMEs [cytochrome P450 (P450) and uridine 5′-diphospho-glucuronosyltransferase (UGT)] and drug transporters were quantified in total mucosal protein preparations from the human jejunum (n = 4) and ileum (n = 12) using quantification concatemer–based targeted proteomics. In contrast to previous reports, UGT2B15 and organic anion-transporting polypeptide 1 (OATP1A2) were quantifiable in all our samples. Overall, no significant disparities in protein expression were observed between jejunum and ileum. Relative mRNA expression for drug transporters did not correlate with the abundance of their cognate protein, except for P-glycoprotein 1 (P-gp) and organic solute transporter subunit alpha (OST-α), highlighting the limitations of RNA as a surrogate for protein expression in dynamic tissues with high turnover. Intercorrelations were found within P450 [2C9-2C19 (P = 0.002, R2 = 0.63), 2C9–2J2 (P = 0.004, R2 = 0.40), 2D6-2J2 (P = 0.002, R2 = 0.50)] and UGT [1A1-2B7 (P = 0.02, R2 = 0.87)] family of enzymes. There were also correlations between P-gp and several other proteins [OST-α (P < 0.0001, R2 = 0.77), UGT1A6 (P = 0.009, R2 = 0.38), and CYP3A4 (P = 0.007, R2 = 0.30)]. Incorporating such correlations into building virtual populations is crucial for obtaining plausible characteristics of simulated individuals.
Collapse
Affiliation(s)
- Narciso Couto
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Stephanie Gibson
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Pamela J Davies
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Matthew D Harwood
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Gordon Carlson
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| | - Geoffrey Warhurst
- Centre for Applied Pharmacokinetic Research, University of Manchester, Manchester, United Kingdom (N.C., Z.M.A.-M., B.A., J.B., A.R.-H.); Gut Barrier Group, Inflammation and Repair, University of Manchester, Salford Royal NHS Trust, Salford, United Kingdom (S.G., P.J.D., G.C., G.W.); and Certara UK Limited (Simcyp Division), Sheffield, United Kingdom (M.D.H., A.R.-H.)
| |
Collapse
|
46
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
47
|
Quantitative mass spectrometry-based proteomics in the era of model-informed drug development: Applications in translational pharmacology and recommendations for best practice. Pharmacol Ther 2019; 203:107397. [DOI: 10.1016/j.pharmthera.2019.107397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/29/2019] [Indexed: 02/08/2023]
|
48
|
Jackson S, Meeks C, Vézina A, Robey RW, Tanner K, Gottesman MM. Model systems for studying the blood-brain barrier: Applications and challenges. Biomaterials 2019; 214:119217. [PMID: 31146177 DOI: 10.1016/j.biomaterials.2019.05.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) poses a serious impediment to the delivery of effective therapies to the central nervous system (CNS). Over time, various model systems have been crafted and used to evaluate the complexities of the BBB, which includes an impermeable physical barrier and a series of energy-dependent efflux pumps. Models of the BBB have mainly sought to assess changes in endothelial cell permeability, the role of ATP-dependent efflux transporters in drug disposition, and alterations in communication between BBB cells and the microenvironment. In the context of disease, various animal models have been utilized to examine real time BBB drug permeability, CNS dynamic changes, and overall treatment response. In this review, we outline the use of these in vitro and in vivo blood-brain barrier model systems to study normal physiology and diseased states. These current models each have their own advantages and disadvantages for studying the response of biologic processes to physiological and pathological conditions. Additional models are needed to mimic more closely the dynamic quality of the BBB, with the goal focused on potential clinical applications.
Collapse
Affiliation(s)
- Sadhana Jackson
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Caitlin Meeks
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Amélie Vézina
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Robert W Robey
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Kandice Tanner
- Tissue Morphodynamics Unit, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Michael M Gottesman
- Multidrug Resistance Section, Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| |
Collapse
|
49
|
Al-Majdoub ZM, Al Feteisi H, Achour B, Warwood S, Neuhoff S, Rostami-Hodjegan A, Barber J. Proteomic Quantification of Human Blood-Brain Barrier SLC and ABC Transporters in Healthy Individuals and Dementia Patients. Mol Pharm 2019; 16:1220-1233. [PMID: 30735053 DOI: 10.1021/acs.molpharmaceut.8b01189] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) maintains brain homeostasis by controlling traffic of molecules from the circulation into the brain. This function is predominantly dependent on proteins expressed at the BBB, especially transporters and tight junction proteins. Alterations to the level and function of BBB proteins can impact the susceptibility of the central nervous system to exposure to xenobiotics in the systemic circulation with potential consequent effects on brain function. In this study, expression profiles of drug transporters and solute carriers in the BBB were assessed in tissues from healthy individuals ( n = 12), Alzheimer's patients ( n = 5), and dementia with Lewy bodies patients ( n = 5), using targeted, accurate mass retention time (AMRT) and global proteomic methods. A total of 53 transporters were quantified, 19 for the first time in the BBB. A further 20 novel transporters were identified but not quantified. The global proteomic method identified another 3333 BBB proteins. Transporter abundances, taken together with the scaling factor, microvessel protein content per unit tissue (BMvPGB also measured here), can be used in quantitative systems pharmacology models predicting drug disposition in the brain and permitting dose adjustment (precision dosing) in special populations of patients, such as those with dementia. Even in this small study, we see differences in transporter profile between healthy and diseased brain tissue.
Collapse
Affiliation(s)
- Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Hajar Al Feteisi
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Brahim Achour
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility , University of Manchester , Manchester M13 9PT , U.K
| | - Sibylle Neuhoff
- Certara UK Limited , Simcyp Division , Level 2-Acero, 1 Concourse Way , Sheffield S1 2BJ , U.K
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K.,Certara UK Limited , Simcyp Division , Level 2-Acero, 1 Concourse Way , Sheffield S1 2BJ , U.K
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research (CAPKR) , University of Manchester , Manchester M13 9PT , U.K
| |
Collapse
|
50
|
Keep RF, Jones HC, Drewes LR. The year in review: progress in brain barriers and brain fluid research in 2018. Fluids Barriers CNS 2019; 16:4. [PMID: 30717760 PMCID: PMC6362595 DOI: 10.1186/s12987-019-0124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
This editorial focuses on the progress made in brain barrier and brain fluid research in 2018. It highlights some recent advances in knowledge and techniques, as well as prevalent themes and controversies. Areas covered include: modeling, the brain endothelium, the neurovascular unit, the blood–CSF barrier and CSF, drug delivery, fluid movement within the brain, the impact of disease states, and heterogeneity.
Collapse
Affiliation(s)
- Richard F Keep
- Department of Neurosurgery, University of Michigan, R5018 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA.
| | - Hazel C Jones
- Gagle Brook House, Chesterton, Bicester, OX26 1UF, UK
| | - Lester R Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School Duluth, Duluth, MN, 55812, USA
| |
Collapse
|