1
|
Garcia CC, Richards DK, Tuchman FR, Hallgren KA, Kranzler HR, Aubin HJ, O’Malley SS, Mann K, Aldridge A, Hoffman M, Anton RF, Witkiewitz K. Reductions in World Health Organization risk drinking level are associated with improvements in sleep problems among individuals with alcohol use disorder. Alcohol Alcohol 2024; 59:agae022. [PMID: 38606931 PMCID: PMC11010310 DOI: 10.1093/alcalc/agae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/19/2024] [Accepted: 03/17/2024] [Indexed: 04/13/2024] Open
Abstract
AIMS Among individuals with alcohol use disorder (AUD), sleep disturbances are pervasive and contribute to the etiology and maintenance of AUD. However, despite increased attention toward the relationship between alcohol use and sleep, limited empirical research has systematically examined whether reductions in drinking during treatment for AUD are associated with improvements in sleep problems. METHODS We used data from a multisite, randomized, controlled trial that compared 6 months of treatment with gabapentin enacarbil extended-release with placebo for adults with moderate-to-severe AUD (N = 346). The Timeline Follow-back was used to assess WHO risk drinking level reductions and the Pittsburgh Sleep Quality Index was used to assess sleep quality over the prior month at baseline and the end of treatment. RESULTS Sleep problem scores in the active medication and placebo groups improved equally. Fewer sleep problems were noted among individuals who achieved at least a 1-level reduction (B = -0.99, 95% confidence interval (CI) [-1.77, -0.20], P = .014) or at least a 2-level reduction (B = -0.80, 95% CI [-1.47, -0.14], P = .018) in WHO risk drinking levels at the end of treatment. Reductions in drinking, with abstainers excluded from the analysis, also predicted fewer sleep problems at the end of treatment (1-level: B = -1.01, 95% CI [-1.83, -0.20], P = .015; 2-level: B = -0.90, 95% CI [-1.59, -0.22], P = .010). CONCLUSIONS Drinking reductions, including those short of abstinence, are associated with improvements in sleep problems during treatment for AUD. Additional assessment of the causal relationships between harm-reduction approaches to AUD and improvements in sleep is warranted.
Collapse
Affiliation(s)
- Christian C Garcia
- Center on Alcohol, Substance use, And Addictions (CASAA), University of New Mexico, Albuquerque, NM, 87106, United States
| | - Dylan K Richards
- Center on Alcohol, Substance use, And Addictions (CASAA), University of New Mexico, Albuquerque, NM, 87106, United States
| | - Felicia R Tuchman
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, United States
| | - Kevin A Hallgren
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA, 98195, United States
| | - Henry R Kranzler
- Center for Studies of Addiction, Perelman School of Medicine, University of Pennsylvania and Mental Illness Research, Education and Clinical Center, Crescenz VAMC, Philadelphia, PA, 19104, United States
| | - Henri-Jean Aubin
- Université Paris-Saclay, Unive Paris-Sud, Université de Versailles Saint-Quentin-en-Yvelines, Center for Research in Epidemiology and Population Health, Institut national de la santé et de la recherche médicale, Villejuif, France
- APHP, Hôpitaux Universitaires Paris-Sud, Villejuif, 94800, France
| | - Stephanie S O’Malley
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, 06511, United States
| | - Karl Mann
- Zentralinstitut für Seelische Gesundheit (ZI), Mannheim, Baden-Württemberg, 68159, Germany
| | - Arnie Aldridge
- Behavioral Health Financing, Economics and Evaluation Department, Research Triangle Institute International (RTI), Research Triangle Park, NC, 27709, United States
| | - Michaela Hoffman
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, United States
| | - Raymond F Anton
- Department of Psychiatry & Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, United States
| | - Katie Witkiewitz
- Center on Alcohol, Substance use, And Addictions (CASAA), University of New Mexico, Albuquerque, NM, 87106, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, 87131, United States
| |
Collapse
|
2
|
Sharma R, Chischolm A, Parikh M, Qureshi AI, Sahota P, Thakkar MM. Ischemic Stroke Disrupts Sleep Homeostasis in Middle-Aged Mice. Cells 2022; 11:2818. [PMID: 36139392 PMCID: PMC9497108 DOI: 10.3390/cells11182818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Sleep disturbances, including insomnia and excessive daytime sleepiness, are highly prevalent in patients with ischemic stroke (IS), which severely impacts recovery and rehabilitation efforts. However, how IS induces sleep disturbances is unclear. Three experiments were performed on middle-aged C57BL/6J mice, instrumented with sleep recording electrodes and/or subjected to 1 h of middle cerebral artery (MCAO; Stroke group) or sham (Sham group) occlusion to induce IS. After 48 h of reperfusion (a) experiment 1 verified sensorimotor deficit (using Garcia scale) and infarction (using TTC staining) in this mouse model; (b) experiment 2 examined the effects of IS on the quality (sleep latency and NREM delta power) and quantity (duration) of sleep; and (c) experiment 3 determined the effects of IS on sleep homeostasis using sleep deprivation (SD) and recovery sleep (RS) paradigm. Stroke mice display (a) a significant correlation between sensorimotor deficit and cerebral infarction; (b) insomnia-like symptoms (increased sleep latency, reduced NREM duration and delta power) during the light (inactive) period and daytime sleepiness-like symptoms during the dark (active) period mimicking sleep in IS patients; and (c) impairments in the markers of sleep pressure (during SD) and sleep dissipation (during RS). Our results suggest that IS disrupts sleep homeostasis to cause sleep disturbances.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, School of Medicine, University of Missouri, Columbia, MO 65201, USA
| | | | | | | | | | | |
Collapse
|
3
|
Sharma R, Parikh M, Mishra V, Zuniga A, Sahota P, Thakkar M. Sleep, sleep homeostasis and arousal disturbances in alcoholism. Brain Res Bull 2022; 182:30-43. [PMID: 35122900 DOI: 10.1016/j.brainresbull.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/12/2022] [Accepted: 01/29/2022] [Indexed: 12/11/2022]
Abstract
The effects of alcohol on human sleep were first described almost 70 years ago. Since then, accumulating evidences suggest that alcohol intake at bed time immediately induces sleep [reduces the time to fall asleep (sleep onset latency), and consolidates and enhances the quality (delta power) and the quantity of sleep]. Such potent sleep promoting activity makes alcohol as one of the most commonly used "over the counter" sleep aid. However, the somnogenic effects, after alcohol intake, slowly wane off and often followed by sleep disruptions during the rest of the night. Repeated use of alcohol leads to the development of rapid tolerance resulting into an alcohol abuse. Moreover, chronic and excessive alcohol intake leads to the development of alcohol use disorder (AUD). Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceed $18 billion. Thus, although alcohol associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, a conceptual framework and clinical research focused on understanding the relationship between alcohol and sleep is first described. In the next section, our new and exciting preclinical studies, to understand the cellular and molecular mechanism of how acute and chronic alcohol affects sleep, are described. In the end, based on observations from our recent findings and related literature, opportunities for the development of innovative strategies to prevent and treat AUD are proposed.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Abigail Zuniga
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia MO 65201, USA.
| |
Collapse
|
4
|
Sharma R, Parikh M, Mishra V, Soni A, Rubi S, Sahota P, Thakkar M. Antisense-induced downregulation of major circadian genes modulates the expression of histone deacetylase-2 (HDAC-2) and CREB-binding protein (CBP) in the medial shell region of nucleus accumbens of mice exposed to chronic excessive alcohol consumption. J Neurochem 2022; 161:8-19. [PMID: 34837399 DOI: 10.1111/jnc.15547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
Circadian genes in the medial accumbal shell (mNAcSh) region regulate binge alcohol consumption. Here, we investigated if antisense-induced knockdown of major circadian genes (Per1, Per2, and NPAS2) in the mNAcSh of mice exposed to intermittent access two-bottle choice (IA2BC) paradigm modulates the expression of histone deacetylase-2 (HDAC-2) and CREB-binding protein (CBP), key epigenetic modifiers associated with withdrawal-associated behaviors such as anxiety. Adult male C57BL/6J mice (N = 28), surgically implanted with bilateral guide cannulas above the mNAcSh, were chronically (4 weeks) exposed to alcohol (20% v/v) or saccharin (0.03%) via IA2BC paradigm. In the fourth week, a mixture of antisense (AS-ODNs; N = 14/group) or nonsense (NS-ODNs; N = 14/group) oligodeoxynucleotides against circadian genes were bilaterally infused into the mNAcSh. Subsequently, alcohol/saccharin consumption and preference were measured followed by euthanization of animals and verification of microinjection sites by visual inspection and the expression of HDAC-2 and CBP by using RT-PCR along with the verification of antisense-induced downregulation of circadian genes in the mNAcSh. As compared with NS-ODNs, AS-ODNs infusion significantly attenuated the alcohol-induced increase in HDAC-2 and reduction in CBP expression in the mNAcSh along with a significant reduction in alcohol consumption and preference. No significant effect was observed on either saccharin consumption or preference. Our results suggest that circadian genes in the mNAcSh may have a causal to play in mediating epigenetic changes observed after chronic alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Anshul Soni
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Sofia Rubi
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri-School of Medicine, Columbia, Missouri, USA
| |
Collapse
|
5
|
Sharma R, Parikh M, Mishra V, Sahota P, Thakkar M. Activation of dopamine D2 receptors in the medial shell region of the nucleus accumbens increases Per1 expression to enhance alcohol consumption. Addict Biol 2022; 27:e13133. [PMID: 35032086 DOI: 10.1111/adb.13133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 11/28/2022]
Abstract
Circadian genes, including Per1, in the medial shell region of nucleus accumbens (mNAcSh), regulate binge alcohol consumption. However, the upstream mechanism regulating circadian genes-induced alcohol consumption is not known. Since activation of dopamine D2 receptors (D2R) increases Per1 gene expression, we hypothesised that local infusion of quinpirole, a D2R agonist, by increasing Per1 gene expression in the mNAcSh, will increase binge alcohol consumption in mice. We performed two experiments on male C57BL/6J mice, instrumented with bilateral guide cannulas above the mNAcSh, and exposed to a 4-day drinking-in-dark (DID) paradigm. The first experiment determined the effects of bilateral infusion of quinpirole (100 ng/300 nl/site) or DMSO (Vehicle group) in the mNAcSh on Per1 gene expression and alcohol consumption. The second experiment determined the effect of antisense-induced downregulation of Per1 in the mNAcSh on the quinpirole-induced increase in alcohol consumption. Control experiments were performed by exposing the animals to sucrose (10% w/v). After the experiment, animals were euthanised, brains removed and processed for localisation of injection sites and analysis of Per1 gene expression in the mNAcSh. As compared with the DMSO, local bilateral infusion of quinpirole significantly increased the expression of Per1 in the mNAcSh along with an increase in the amount of alcohol consumed in mice exposed to DID paradigm. In addition, local antisense-induced downregulation of Per1 significantly attenuated the effects of intro-accumbal infusion of quinpirole on alcohol consumption. Our results suggest that Per1 in the mNAcSh mediates D2R activation-induced increase in alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
6
|
Stafford AM, Yamamoto BK, Phillips TJ. Combined and sequential effects of alcohol and methamphetamine in animal models. Neurosci Biobehav Rev 2021; 131:248-269. [PMID: 34543650 PMCID: PMC8642292 DOI: 10.1016/j.neubiorev.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 11/16/2022]
Abstract
Comorbid drug use, often alcohol with other drugs, poses significant health and societal concerns. Methamphetamine is among the illicit drugs most often co-used with alcohol. The current review examines the animal literature for impacts of comorbid alcohol and methamphetamine exposure. We found evidence for additive or synergistic effects of combined or sequential exposure on behavior and physiology. Dopaminergic, serotonergic, and glutamatergic systems are all impacted by combined exposure to alcohol and methamphetamine and cyclooxygenase-2 activity plays an important role in their combined neurotoxic effects. Adverse consequences of comorbid exposure include altered brain development with prenatal exposure, impaired learning and memory, motor deficits, gastrotoxicity, hepatotoxicity, and augmented intake under some conditions. Given high susceptibility to drug experimentation in adolescence, studies of co-exposure during the adolescent period and of how adolescent exposure to one drug impacts later use or sensitivity to the other drug should be a priority. Further, to gain traction on prevention and treatment, additional research to identify motivational and neurobiological drivers and consequences of comorbid use is needed.
Collapse
Affiliation(s)
- Alexandra M Stafford
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA.
| | - Bryan K Yamamoto
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Abuse Research Center and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA; Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
7
|
Sharma R, Mishra V, Parikh M, Soni A, Sahota P, Thakkar M. Antisense-induced knockdown of cAMP response element-binding protein downregulates Per1 gene expression in the shell region of nucleus accumbens resulting in reduced alcohol consumption in mice. Alcohol Clin Exp Res 2021; 45:1940-1949. [PMID: 34424532 PMCID: PMC8602740 DOI: 10.1111/acer.14687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION We recently showed that circadian genes expressed in the shell region of nucleus accumbens (NAcSh) play a key role in alcohol consumption, though, the molecular mechanism of those effects is unclear. Because CREB-binding protein (CBP) promotes Per1 gene expression, we hypothesized that alcohol consumption would increase CBP expression in the NAcSh and antisense-induced knockdown of CBP would reduce Per1 expression and result in a reduction in alcohol consumption. METHODS To test our hypothesis, we performed two experiments. The Drinking-in-the-dark (DID) paradigm was used to evaluate alcohol consumption in male C57BL/6J mice. In Experiment 1 we examined the effects of alcohol consumption on CBP gene expression in the NAcSh. Control animals were exposed to, sucrose [10% (w/v) taste and calorie] and water (consummatory behavior). In Experiment 2 examined the effects of CBP gene silencing on the expression of the Per1 gene in the NAcSh and alcohol consumption in mice exposed to alcohol using the DID paradigm. CBP gene silencing was achieved by local infusion of two doses of either CBP antisense oligodeoxynucleotides (AS-ODNs; Antisense group) or nonsense ODNs (NS-ODNs; Nonsense group) bilaterally microinjected into the NAcSh within 24 h before alcohol consumption on Day 4 of the DID paradigm. The microinfusion sites were verified by cresyl violet staining. RESULTS Compared to sucrose, alcohol consumption, under the DID paradigm, significantly increased the expression of CBP in the NAcSh. Compared to Controls, bilateral infusion of CBP AS-ODNs significantly reduced the expression of Per1 in the NAcSh and alcohol consumption without affecting the amount of sucrose consumed. CONCLUSIONS Our results suggest that CBP is an upstream regulator of Per1 expression in the NAcSh and may act via Per1 to modulate alcohol consumption.
Collapse
Affiliation(s)
- Rishi Sharma
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Vaibhav Mishra
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Meet Parikh
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Anshul Soni
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Pradeep Sahota
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| | - Mahesh Thakkar
- Department of Neurology, Harry S. Truman Memorial Veterans Hospital, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
8
|
De Boni RB, Ribeiro-Alves M, Mota JC, Gomes M, Balanzá-Martínez V, Kapczinski F, Bastos FI. The cumulative effect of multiple dimensions of lifestyle on risky drinking during the Covid-19 pandemic. Prev Med 2021; 150:106718. [PMID: 34242667 PMCID: PMC8662552 DOI: 10.1016/j.ypmed.2021.106718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/11/2021] [Accepted: 07/03/2021] [Indexed: 02/07/2023]
Abstract
Lifestyle impacts morbidity and mortality worldwide. Herein, we evaluated the association of a multidimensional lifestyle measure and its domains (diet/nutrition, substance use, physical activity, social, stress management, sleep, environmental exposure) with risky drinking. Also, we analyzed the cumulative effect of unhealthy domains in the likelihood of presenting risky drinking. To reach these objectives, data from a web survey conducted in Brazil and Spain was analyzed. The main outcome was risky drinking assessed by the AUDIT-C. Lifestyle was measured using the Short Multidimensional Inventory Lifestyle Evaluation (SMILE). Fixed logistic models were used to evaluate associations between lifestyle and risky drinking. Between April and May 2020, 22,785 individuals answered the survey. The prevalence of risky drinking was 45.6% in Brazil and 30.8% in Spain. The SMILE score was lower (unhealthier lifestyle) among at-risk drinkers. Worse scores on Diet, Substance use, Stress management and Environment were associated with an increased likelihood of risky drinking. The higher the number of unhealthy domains, the higher the likelihood of presenting risky drinking: adjusted odds ratio (aOR) for risky drinking was 1.15 (IC95% 0.98-1.35) and 23.42 (IC95% 3.08-178.02) for those presenting worse lifestyle in 1 and 5 domains, respectively. Finally, interactions suggest that improvement in lifestyle domains would have a larger effect in Spain than in Brazil. Our results suggest that future interventions aiming at reducing Risky drinking may benefit from strategies targeting multiple domains of lifestyle.
Collapse
Affiliation(s)
- Raquel B De Boni
- Institute of Scientific and Technological Communication and Information in Health (ICICT), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil.
| | - Marcelo Ribeiro-Alves
- Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Jurema C Mota
- Institute of Scientific and Technological Communication and Information in Health (ICICT), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariana Gomes
- Universidade Federal do Estado do Rio de Janeiro, Escola de Medicina e Cirurgia (EMC - Unirio), Rio de Janeiro, Brazil
| | - Vicent Balanzá-Martínez
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia, CIBERSAM, Valencia, Spain
| | - Flavio Kapczinski
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, 100 West 5th Street, Hamilton, ON L8N 3K7, Canada; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Brazil; Department of Psychiatry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francisco I Bastos
- Institute of Scientific and Technological Communication and Information in Health (ICICT), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Sharma R, Puckett H, Kemerling M, Parikh M, Sahota P, Thakkar M. Antisense-Induced Downregulation of Clock Genes in the Shell Region of the Nucleus Accumbens Reduces Binge Drinking in Mice. Alcohol Clin Exp Res 2021; 45:530-542. [PMID: 33606281 PMCID: PMC8535763 DOI: 10.1111/acer.14549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Abstract
INTRODUCTIONS Binge drinking is a deadly pattern of alcohol consumption. Evidence suggests that genetic variation in clock genes is strongly associated with alcohol misuse; however, the neuroanatomical basis for such a relationship is unknown. The shell region of the nucleus accumbens (NAcSh) is well known to play a role in binge drinking. Hence, we examined whether clock genes in the NAcSh regulate binge drinking. METHODS To address this question, 2 experiments were performed on male C57BL/6J mice. In the first experiment, mice exposed to alcohol or sucrose under the 4-day drinking-in-the-dark (DID) paradigm were euthanized at 2 different time points on day 4 [7 hours after light (pre-binge drinking) or dark (post-binge drinking) onset]. The brains were processed for RT-PCR to examine the expression of circadian clock genes (Clock, Per1, and Per2) in the NAcSh and suprachiasmatic nucleus (SCN). In the second experiment, mice were exposed to alcohol, sucrose, or water as described above. On day 4, 1 hour prior to the onset of alcohol exposure, mice were bilaterally infused with either a mixture of circadian clock gene antisense oligodeoxynucleotides (AS-ODNs; antisense group) or nonsense/random ODNs (R-ODNs; control group) through surgically implanted cannulas above the NAcSh. Alcohol/sucrose/water consumption was measured for 4 hours. Blood alcohol concentration was measured to confirm binge drinking. Microinfusion sites were histologically verified using cresyl violet staining. RESULTS As compared to sucrose, mice euthanized post-binge drinking (not pre-binge drinking) on day 4 displayed a greater expression of circadian genes in the NAcSh but not in the SCN. Knockdown of clock genes in the NAcSh caused a significantly lower volume of alcohol to be consumed on day 4 than in the control treatment. No differences were found in sucrose or water consumption. CONCLUSIONS Our results suggest that clock genes in the NAcSh play a crucial role in binge drinking.
Collapse
Affiliation(s)
- Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Hunter Puckett
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Micaela Kemerling
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Meet Parikh
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital and Department of Neurology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Mollayeva T, Sharma B, Vernich L, Mantis S, Lewko J, Gibson B, Liss G, Kontos P, Grigorovich A, Colantonio A. Sleep before and after work-related concussion: Sex differences in effects and functional outcomes. Work 2020; 67:927-938. [PMID: 33325439 DOI: 10.3233/wor-203343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Recent studies have started disentangling components of disturbed sleep as part of the post-concussive syndrome, but little is known about the workers with an injury' perspectives on post-injury sleep changes or what causes these changes. OBJECTIVES To determine the effects of work-related concussion/mild traumatic brain injury (wr-mTBI) on perceptions of refreshing sleep in workers with an injury and to identify the relevant factors responsible for sleep changes. METHODS We studied post-concussive changes in sleep in 66 adults (50% male workers, 42% aged 30-50 years, median post-injury days: 155) who had sustained wr-mTBI and experienced functional limitations long after the injury. We collected sociodemographic, occupational and health status data and identified variables related to post-concussive changes in refreshing sleep. RESULTS Forty-seven workers with wr-mTBI (79% of male workers, 64% of female workers) perceived their sleep as being refreshing before injury and unrefreshing afterwards (χ2 = 67.70 for change, χ2 = 27.6 for female and χ2 = 41.1 for male workers, p < 0.0001). Post-concussive losses in refreshing sleep were associated with socio demographic, occupational, and health status data variables. Sex stratification revealed differences between male and female workers. CONCLUSIONS Workers with wr-mTBI experience clinically meaningful changes in refreshing sleep that are associated with modifiable variables. The observed differences in functional outcomes between male and female workers warrant further study.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Canada.,KITE Toronto Rehabilitation Institute University Health Network, Toronto Rehabilitation Institute University Health Network, Toronto, Canada.,Acquired Brain Injury Research Lab, University of Toronto, Toronto, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Bhanu Sharma
- KITE Toronto Rehabilitation Institute University Health Network, Toronto Rehabilitation Institute University Health Network, Toronto, Canada
| | - Lee Vernich
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Steve Mantis
- Ontario Network of Injured Workers Groups, Research Action Committee, Toronto, Canada
| | - John Lewko
- School of Rural and Northern Health, Laurentian University, Sudbury, Canada
| | - Brian Gibson
- Division of Clinical Public Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Gary Liss
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Pia Kontos
- KITE Toronto Rehabilitation Institute University Health Network, Toronto Rehabilitation Institute University Health Network, Toronto, Canada.,Division of Social and Behavioural Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Alisa Grigorovich
- KITE Toronto Rehabilitation Institute University Health Network, Toronto Rehabilitation Institute University Health Network, Toronto, Canada.,Division of Social and Behavioural Health Sciences, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Canada.,KITE Toronto Rehabilitation Institute University Health Network, Toronto Rehabilitation Institute University Health Network, Toronto, Canada.,Acquired Brain Injury Research Lab, University of Toronto, Toronto, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada.,Department of Occupational Science & Occupational Therapy, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
11
|
Chronic alcohol exposure reduces acetylated histones in the sleep-wake regulatory brain regions to cause insomnia during withdrawal. Neuropharmacology 2020; 180:108332. [PMID: 32961200 DOI: 10.1016/j.neuropharm.2020.108332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Alcohol use disorder (AUD) develops after chronic and heavy use of alcohol. Insomnia, a hallmark of AUD, plays a crucial role in the development of AUD. However, the causal mechanisms are unknown. Since chronic alcohol reduces acetylated histones and disrupts the epigenome, we hypothesized that chronic alcohol exposure will reduce acetylated histones in wake-promoting regions of the brain to cause insomnia during alcohol withdrawal. METHODS Adult male C57BL/6J mice, surgically instrumented for electrophysiological monitoring of sleep-wakefulness, were exposed to chronic alcohol (6.8%) consumption using Lieber-DeCarli liquid diet. Three experiments were performed. First, the effect of chronic alcohol consumption was examined on sleep-wakefulness during 7 days of withdrawal. Second, the expression of acetylated histones, H3 lysine 14 (AcH3K14), was examined in two major sleep-wake regulatory brain regions: basal forebrain (BF) and lateral hypothalamus (LH) of the brain by using western blotting. Next, blockade of histone deacetylase, via systemic administration of TSA was examined on alcohol-induced changes in sleep-wakefulness. RESULTS Alcoholic mice displayed a significant reduction in the quality and quantity of NREM sleep coupled with a significant increase in wakefulness that lasted for several days during alcohol withdrawal. In addition, alcoholic mice displayed a significant reduction in the expression of AcH3K14 in both BF and LH. Systemic administration of TSA significantly attenuated insomnia and improved the quality and quantity of sleep during alcohol withdrawal. CONCLUSIONS Based on our results, we suggest that a causal relationship exists between reduced histone acetylation and insomnia during alcohol withdrawal.
Collapse
|
12
|
Hong SI, Bullert A, Baker M, Choi DS. Astrocytic equilibrative nucleoside transporter type 1 upregulations in the dorsomedial and dorsolateral striatum distinctly coordinate goal-directed and habitual ethanol-seeking behaviours in mice. Eur J Neurosci 2020; 52:3110-3123. [PMID: 32306482 DOI: 10.1111/ejn.14752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/30/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022]
Abstract
Two distinct dorsal striatum regions, dorsomedial striatum (DMS) and dorsolateral striatum (DLS), are attributed to conditioned goal-directed and habitual reward-seeking behaviours, respectively. Previously, our study shows that the ethanol-sensitive adenosine transporter, equilibrative nucleoside transporter 1 (ENT1), regulates ethanol-drinking behaviours. Although ENT1 is expressed in both neurons and astrocytes, astrocytic ENT1 is thought to regulate adenosine levels in response to ethanol. However, the role of DMS and DLS astrocytic ENT1 in goal-directed and habitual ethanol-seeking is not well known. Here, we identified whether the upregulation of astrocytic ENT1 in the DMS and DLS differentially regulates operant seeking behaviours towards the 10% sucrose (10S); 10% ethanol and 10% sucrose (10E10S); and 10% ethanol (10E) in mice. Using 4 days of random interval (RI), mice exhibited habitual seeking for 10S, but goal-directed seeking towards 10E10S. Using the same mice conditioned with 10E10S, we examined 10E-seeking behaviour on a fixed ratio (FR) for 6 days and RI for 8 days. On the other hand, during FR and the first 4 days of RI schedules, mice showed goal-directed seeking for 10E, whereas mice exhibited habitual seeking for 10E during the last 4 days of RI schedule. Interestingly, DMS astrocytic ENT1 upregulation promotes shift from habitual to goal-directed reward-seeking behaviours. By contrast, DLS astrocytic ENT1 upregulation showed no effects on behavioural shift. Taken together, our findings demonstrate that DMS astrocytic ENT1 contributes to reward-seeking behaviours.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Amanda Bullert
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Matthew Baker
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Neuroscience Program, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
13
|
Haspel JA, Anafi R, Brown MK, Cermakian N, Depner C, Desplats P, Gelman AE, Haack M, Jelic S, Kim BS, Laposky AD, Lee YC, Mongodin E, Prather AA, Prendergast BJ, Reardon C, Shaw AC, Sengupta S, Szentirmai É, Thakkar M, Walker WE, Solt LA. Perfect timing: circadian rhythms, sleep, and immunity - an NIH workshop summary. JCI Insight 2020; 5:131487. [PMID: 31941836 PMCID: PMC7030790 DOI: 10.1172/jci.insight.131487] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses - ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation -are mediated in a time of day-dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, "Sleep Insufficiency, Circadian Misalignment, and the Immune Response," to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.
Collapse
Affiliation(s)
- Jeffrey A. Haspel
- Division of Pulmonary, Critical Care and Sleep Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ron Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marishka K. Brown
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Christopher Depner
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Paula Desplats
- Department of Neurosciences and
- Department of Pathology, UCSD, La Jolla, California, USA
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Monika Haack
- Human Sleep and Inflammatory Systems Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sanja Jelic
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University School of Medicine, New York, New York, USA
| | - Brian S. Kim
- Center for the Study of Itch
- Department of Medicine
- Department of Anesthesiology
- Department of Pathology, and
- Department of Immunology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Aaron D. Laposky
- National Center on Sleep Disorders Research, Division of Lung Diseases, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Yvonne C. Lee
- Division of Rheumatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Emmanuel Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aric A. Prather
- Department of Psychiatry, UCSF, San Francisco, California, USA
| | - Brian J. Prendergast
- Department of Psychology and Committee on Neurobiology, University of Chicago, Chicago, Illinois, USA
| | - Colin Reardon
- Department, of Anatomy, Physiology, and Cell Biology, UCD School of Veterinary Medicine, Davis, California, USA
| | - Albert C. Shaw
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Éva Szentirmai
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, Washington, USA
| | - Mahesh Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri, USA
- Department of Neurology, University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Wendy E. Walker
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Health Sciences Center, Texas Tech University, El Paso, Texas, USA
| | - Laura A. Solt
- Department of Immunology and Microbiology, Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
14
|
Schweitzer B, Schulz JB. Open Science Badges in the Journal of Neurochemistry. J Neurochem 2018; 147:132-136. [PMID: 30069885 DOI: 10.1111/jnc.14536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/07/2023]
Abstract
The Open Science Framework (OSF) has the mission to increase openness, integrity, and reproducibility in research. The Journal of Neurochemistry became a signatory of their Transparency and Openness guidelines in 2016, which provides eight modular standards (Citation standards, Data Transparency, Analytic Methods/Code Transparency, Research Materials Transparency, Design and Analysis Transparency, Study Pre-registration, Analysis Plan Transparency, Replication) with increasing levels of stringency. Furthermore, OSF recommends and offers a collection of practices intended to make scientific processes and results more transparent and available in a standardized way for reuse to people outside the research team. It includes making research materials, data, and laboratory procedures freely accessible online to anyone. This editorial announces the decision of the Journal of Neurochemistry to introduce Open Science Badges, maintained by the Open Science Badges Committee and by the Center for Open Science (COS). The Open Science Badges, visual icons placed on publications, certify that an open practice was followed and signal to readers that an author has shared the corresponding research evidence, thus, allowing an independent researcher to understand how to reproduce the procedure.
Collapse
Affiliation(s)
- Barbara Schweitzer
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital RWTH Aachen, Aachen, Germany.,Jülich Aachen Research Alliance (JARA), JARA-Institute Molecular Neuroscience and Neuroimaging, FZ Jülich and RWTH Aachen University, Aachen, Germany
| |
Collapse
|