1
|
Herstine JA, Chang PK, Chornyy S, Stevenson TJ, Sunshine AC, Nokhrina K, Rediger J, Wentz J, Vetter TA, Scholl E, Holaway C, Pyne NK, Bratasz A, Yeoh S, Flanigan KM, Bonkowsky JL, Bradbury AM. Evaluation of safety and early efficacy of AAV gene therapy in mouse models of vanishing white matter disease. Mol Ther 2024; 32:1701-1720. [PMID: 38549375 PMCID: PMC11184306 DOI: 10.1016/j.ymthe.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024] Open
Abstract
Leukoencephalopathy with vanishing white matter (VWM) is a progressive incurable white matter disease that most commonly occurs in childhood and presents with ataxia, spasticity, neurological degeneration, seizures, and premature death. A distinctive feature is episodes of rapid neurological deterioration provoked by stressors such as infection, seizures, or trauma. VWM is caused by autosomal recessive mutations in one of five genes that encode the eukaryotic initiation factor 2B complex, which is necessary for protein translation and regulation of the integrated stress response. The majority of mutations are in EIF2B5. Astrocytic dysfunction is central to pathophysiology, thereby constituting a potential therapeutic target. Herein we characterize two VWM murine models and investigate astrocyte-targeted adeno-associated virus serotype 9 (AAV9)-mediated EIF2B5 gene supplementation therapy as a therapeutic option for VWM. Our results demonstrate significant rescue in body weight, motor function, gait normalization, life extension, and finally, evidence that gene supplementation attenuates demyelination. Last, the greatest rescue results from a vector using a modified glial fibrillary acidic protein (GFAP) promoter-AAV9-gfaABC(1)D-EIF2B5-thereby supporting that astrocytic targeting is critical for disease correction. In conclusion, we demonstrate safety and early efficacy through treatment with a translatable astrocyte-targeted gene supplementation therapy for a disease that has no cure.
Collapse
Affiliation(s)
- Jessica A Herstine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA
| | - Pi-Kai Chang
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Sergiy Chornyy
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Tamara J Stevenson
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Alex C Sunshine
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Neurology, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ksenia Nokhrina
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Jessica Rediger
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Julia Wentz
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Tatyana A Vetter
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Erika Scholl
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA
| | - Caleb Holaway
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Nettie K Pyne
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Anna Bratasz
- Small Animal Imaging Core, The Ohio State University, Columbus, OH 43210, USA
| | - Stewart Yeoh
- Preclinical Imaging Core, The University of Utah, Salt Lake City, UT 84112, USA
| | - Kevin M Flanigan
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Department of Neurology, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua L Bonkowsky
- Department of Pediatrics, The University of Utah School of Medicine, Salt Lake City, UT 84113, USA; Center for Personalized Medicine, Primary Children's Hospital, Salt Lake City, UT 84113, USA.
| | - Allison M Bradbury
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA; Center for Clinical and Translational Science, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Gong Y, Eichler FS. Targeting astrocytes with in vivo gene addition: Can it rescue loss of brain myelin? Mol Ther 2024; 32:1602-1603. [PMID: 38776907 PMCID: PMC11184372 DOI: 10.1016/j.ymthe.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Yi Gong
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Florian S Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Oudejans E, Witkamp D, Hu-A-Ng GV, Hoogterp L, van Rooijen-van Leeuwen G, Kruijff I, Schonewille P, Lalaoui El Mouttalibi Z, Bartelink I, van der Knaap MS, Abbink TE. Pridopidine subtly ameliorates motor skills in a mouse model for vanishing white matter. Life Sci Alliance 2024; 7:e202302199. [PMID: 38171595 PMCID: PMC10765115 DOI: 10.26508/lsa.202302199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The leukodystrophy vanishing white matter (VWM) is characterized by chronic and episodic acute neurological deterioration. Curative treatment is presently unavailable. Pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B) cause VWM and deregulate the integrated stress response (ISR). Previous studies in VWM mouse models showed that several ISR-targeting compounds ameliorate clinical and neuropathological disease hallmarks. It is unclear which ISR components are suitable therapeutic targets. In this study, effects of 4-phenylbutyric acid, tauroursodeoxycholic acid, or pridopidine (PDPD), with ISR targets upstream or downstream of eIF2B, were assessed in VWM mice. In addition, it was found that the composite ataxia score represented motor decline of VWM mice more accurately than the previously used neuroscore. 4-phenylbutyric acid and tauroursodeoxycholic acid did not improve VWM disease hallmarks, whereas PDPD had subtle beneficial effects on motor skills. PDPD alone does not suffice as treatment in VWM mice but may be considered for combination therapy. Also, treatments aimed at ISR components upstream of eIF2B do not improve chronic neurological deterioration; effects on acute episodic decline remain to be investigated.
Collapse
Affiliation(s)
- Ellen Oudejans
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Diede Witkamp
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gino V Hu-A-Ng
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Leoni Hoogterp
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Gemma van Rooijen-van Leeuwen
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Iris Kruijff
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Pleun Schonewille
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Zeinab Lalaoui El Mouttalibi
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Imke Bartelink
- Department of Pharmacy and Clinical Pharmacology, Amsterdam UMC, Location VUmc, Amsterdam, Netherlands
| | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| | - Truus Em Abbink
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, Netherlands
| |
Collapse
|
4
|
van der Knaap MS, Bugiani M, Abbink TEM. Vanishing white matter. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:77-94. [PMID: 39322396 DOI: 10.1016/b978-0-323-99209-1.00015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
"Vanishing white matter" (VWM) is a leukodystrophy caused by autosomal recessive pathogenic variants in the genes encoding the subunits of eukaryotic initiation factor 2B (eIF2B). Disease onset and disease course are extremely variable. Onset varies from the antenatal period until senescence. The age of onset is predictive of disease severity. VWM is characterized by chronic neurologic deterioration and, additionally, episodes of rapid and major neurologic decline, provoked by stresses such as febrile infections and minor head trauma. The disease is dominated by degeneration of the white matter of the central nervous system due to dysfunction of oligodendrocytes and in particular astrocytes. Organs other than the brain are rarely affected, with the exception of the ovaries. The reason for the selective vulnerability of the white matter of the central nervous system and, less consistently, the ovaries is poorly understood. eIF2B is a central regulatory factor in the integrated stress response (ISR). Genetic variants decrease eIF2B activity and thereby cause constitutive activation of the ISR downstream of eIF2B. Strikingly, the ISR is specifically activated in astrocytes. Modulation of eIF2B activity and ISR activation in VWM mouse models impacts disease severity, revealing eIF2B-regulated pathways as potential druggable targets.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Center, and Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Marianna Bugiani
- Department of Pathology, Amsterdam Leukodystrophy Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Truus E M Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands; Amsterdam Neuroscience, Cellular & Molecular Mechanisms, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Hou Y, Yan W, Li G, Sang N. Transcriptome sequencing analysis reveals a potential role of lncRNA NONMMUT058932.2 and NONMMUT029203.2 in abnormal myelin development of male offspring following prenatal PM 2.5 exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165004. [PMID: 37348736 DOI: 10.1016/j.scitotenv.2023.165004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/27/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Numerous epidemiological studies have shown that PM2.5 exposure in early life can influence brain development and increase the risk of neurodevelopmental disorders in boys, but the underlying molecular mechanisms remain unclear. In the current study, pregnant C57BL/6 J mice were oropharyngeally administered with PM2.5 suspension (3mg/kg/2 days) until the birth of offspring. Based on mRNA expression profiles, two-way analysis of variance (two-way ANOVA) and weighted gene co-expression network analysis (WGCNA) were conducted to explore the most impacted neurodevelopmental processes in male offspring and the most significantly associated gene modules. Gene Ontology (GO) enrichment and Encyclopedia of Genes and Genomes (KEGG) pathway analyses suggested that prenatal PM2.5 exposure significantly altered several biological processes (such as substrate adhesion-dependent cell spreading, myelination, and ensheathment of neurons) and KEGG pathways (such as tight junction and axon guidance). We further found that PM2.5 exposure significantly changed the expression of myelination-related genes in male offspring during postnatal development and impaired myelin ultrastructure on PNDs 14 and 21, as demonstrated by the decreased thickness of myelin sheaths in the optic nerves, and mild loss of myelin in the corpus callosum. Importantly, lncRNA NONMMUT058932.2 and NONMMUT029203.2 played key roles in abnormal myelination by regulating the expression of several myelination-related genes (Fa2h, Mal, Sh3tc2, Trf and Tppp) through the binding to transcription factor Ctcf. Our work provides genomic evidence for prenatal PM2.5 exposure-induced neurodevelopmental disorders in male offspring.
Collapse
Affiliation(s)
- Yanwen Hou
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Wei Yan
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
6
|
Stogsdill JA, Harwell CC, Goldman SA. Astrocytes as master modulators of neural networks: Synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci 2023; 1525:41-60. [PMID: 37219367 DOI: 10.1111/nyas.15004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Steven A Goldman
- Sana Biotechnology Inc., Cambridge, Massachusetts, USA
- Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA
- University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
7
|
de Almeida V, Seabra G, Reis-de-Oliveira G, Zuccoli GS, Rumin P, Fioramonte M, Smith BJ, Zuardi AW, Hallak JEC, Campos AC, Crippa JA, Martins-de-Souza D. Cannabinoids modulate proliferation, differentiation, and migration signaling pathways in oligodendrocytes. Eur Arch Psychiatry Clin Neurosci 2022; 272:1311-1323. [PMID: 35622101 DOI: 10.1007/s00406-022-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/02/2022] [Indexed: 11/03/2022]
Abstract
Cannabinoid signaling, mainly via CB1 and CB2 receptors, plays an essential role in oligodendrocyte health and functions. However, the specific molecular signals associated with the activation or blockade of CB1 and CB2 receptors in this glial cell have yet to be elucidated. Mass spectrometry-based shotgun proteomics and in silico biology tools were used to determine which signaling pathways and molecular mechanisms are triggered in a human oligodendrocytic cell line (MO3.13) by several pharmacological stimuli: the phytocannabinoid cannabidiol (CBD); CB1 and CB2 agonists ACEA, HU308, and WIN55, 212-2; CB1 and CB2 antagonists AM251 and AM630; and endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG). The modulation of cannabinoid signaling in MO3.13 was found to affect pathways linked to cell proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Additionally, we found that carbohydrate and lipid metabolism, as well as mitochondrial function, were modulated by these compounds. Comparing the proteome changes and upstream regulators among treatments, the highest overlap was between the CB1 and CB2 antagonists, followed by overlaps between AEA and 2-AG. Our study opens new windows of opportunities, suggesting that cannabinoid signaling in oligodendrocytes might be relevant in the context of demyelinating and neurodegenerative diseases. Proteomics data are available at ProteomeXchange (PXD031923).
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil.
| | - Gabriela Seabra
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Priscila Rumin
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Mariana Fioramonte
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil
| | - Antonio W Zuardi
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Jaime E C Hallak
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Alline C Campos
- National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil.,Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - José A Crippa
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute for Science and Technology, Translational Medicine, São Paulo, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, Campinas, SP, 255, 13083-862, Brazil. .,Instituto Nacional de Biomarcadores Em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico E Tecnológico, São Paulo, Brazil. .,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, Brazil. .,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
| |
Collapse
|
8
|
Witkamp D, Oudejans E, Hu‐A‐Ng GV, Hoogterp L, Krzywańska AM, Žnidaršič M, Marinus K, de Veij Mestdagh CF, Bartelink I, Bugiani M, van der Knaap MS, Abbink TEM. Guanabenz ameliorates disease in vanishing white matter mice in contrast to sephin1. Ann Clin Transl Neurol 2022; 9:1147-1162. [PMID: 35778832 PMCID: PMC9380178 DOI: 10.1002/acn3.51611] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE Vanishing white matter (VWM) is a leukodystrophy, characterized by stress-sensitive neurological deterioration and premature death. It is currently without curative treatment. It is caused by bi-allelic pathogenic variants in the genes encoding eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for the regulation of the integrated stress response (ISR), a physiological response to cellular stress. Preclinical studies on VWM mouse models revealed that deregulated ISR is key in the pathophysiology of VWM and an effective treatment target. Guanabenz, an α2-adrenergic agonist, attenuates the ISR and has beneficial effects on VWM neuropathology. The current study aimed at elucidating guanabenz's disease-modifying potential and mechanism of action in VWM mice. Sephin1, an ISR-modulating guanabenz analog without α2-adrenergic agonistic properties, was included to separate effects on the ISR from α2-adrenergic effects. METHODS Wild-type and VWM mice were subjected to placebo, guanabenz or sephin1 treatments. Effects on clinical signs, neuropathology, and ISR deregulation were determined. Guanabenz's and sephin1's ISR-modifying effects were tested in cultured cells that expressed or lacked the α2-adrenergic receptor. RESULTS Guanabenz improved clinical signs, neuropathological hallmarks, and ISR regulation in VWM mice, but sephin1 did not. Guanabenz's effects on the ISR in VWM mice were not replicated in cell cultures and the contribution of α2-adrenergic effects on the deregulated ISR could therefore not be assessed. INTERPRETATION Guanabenz proved itself as a viable treatment option for VWM. The exact mechanism through which guanabenz exerts its ameliorating impact on VWM requires further studies. Sephin1 is not simply a guanabenz replacement without α2-adrenergic effects.
Collapse
Affiliation(s)
- Diede Witkamp
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Ellen Oudejans
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Gino V. Hu‐A‐Ng
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Leoni Hoogterp
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Aleksandra M. Krzywańska
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Milo Žnidaršič
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Kevin Marinus
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Christina F. de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
- Present address:
Alzheimer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Imke Bartelink
- Department of Pharmacy and Clinical PharmacologyAmsterdam UMC, Location VUmcAmsterdamThe Netherlands
| | - Marianna Bugiani
- Department of PathologyAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| | - Truus E. M. Abbink
- Child Neurology, Emma Children's Hospital, Amsterdam Leukodystrophy CenterAmsterdam University Medical Centers, Vrije Universiteit and Amsterdam NeuroscienceAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU UniversityAmsterdamThe Netherlands
| |
Collapse
|
9
|
Kong F, Zheng H, Liu X, Lin S, Wang J, Guo Z. Association Between Late-Onset Leukoencephalopathy With Vanishing White Matter and Compound Heterozygous EIF2B5 Gene Mutations: A Case Report and Review of the Literature. Front Neurol 2022; 13:813032. [PMID: 35785335 PMCID: PMC9243765 DOI: 10.3389/fneur.2022.813032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Leukoencephalopathy with vanishing white matter (LVWM) is an autosomal recessive disease. Ovarioleukodystrophy is defined as LVWM in females showing signs or symptoms of gradual ovarian failure. We present a 38-year-old female with ovarioleukodystrophy who showed status epilepticus, gait instability, slurred speech, abdominal tendon hyperreflexia, and ovarian failure. Abnormal EEG, characteristic magnetic resonance, and unreported EIF2B5 compound heterozygous mutations [c.1016G>A (p.R339Q) and c.1157G>A (p.G386D)] were found. Furthermore, the present report summarizes 20 female patients with adult-onset ovarioleukodystrophy and EIF2B5 gene mutations. In conclusion, a new genetic locus for LVWM was discovered. Compared with previous cases, mutations at different EIF2B5 sites might have different clinical manifestations and obvious clinical heterogeneity.
Collapse
Affiliation(s)
- Fanxin Kong
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- *Correspondence: Fanxin Kong
| | - Haotao Zheng
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Xuan Liu
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Songjun Lin
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianjun Wang
- Encephalopathy and Psychology Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Jianjun Wang
| | - Zhouke Guo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
- Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| |
Collapse
|
10
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
11
|
Trevisan L, Grazzini M, Cianflone A, Accogli A, Finocchi C, Capello E, Saitta L, Grandis M, Roccatagliata L, Mandich P. An eleven-year history of Vanishing White Matter Disease in an adult patient with no cognitive decline and EIF2B5 mutations. A case report. Neurocase 2021; 27:452-456. [PMID: 34751098 DOI: 10.1080/13554794.2021.1999984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vanishing White Matter Disease (VWMD) is a rare autosomal recessive leukoencephalopathy . The classical presentation is characterized by a severe cerebellar ataxia, spasticity, neurological deterioration with a chronic progressive course and episodes of acute neurological deterioration after stress conditions.We report a 52-year-old man with VWMD and atypical features who manifested two major events of transient aphasia eleven years apart with complete recovery in 48 hours. No cognitive decline was present. Brain MRI revealed typical aspects of VWMD including diffuse leukoencephalopathy with relative sparing of U-fibers. We identified the presence of c.592G>A (p.Glu198Lys) and c.1360 C>T (p.Pro454Ser) mutations in EIF2B5.
Collapse
Affiliation(s)
- Lucia Trevisan
- Dinogmi Department, University of Genoa, Genoa, Italy.,Medical Genetic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Annalia Cianflone
- Dinogmi Department, University of Genoa, Genoa, Italy.,Medical Genetic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Accogli
- Dinogmi Department, University of Genoa, Genoa, Italy.,Medical Genetic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cinzia Finocchi
- Neurological Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Laura Saitta
- Dept. Of Neuroradiology, Irccs Ospedale Policlinico San Martino, Genoa, Italy
| | - Marina Grandis
- Dinogmi Department, University of Genoa, Genoa, Italy.,Neurological Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Luca Roccatagliata
- Dept. Of Neuroradiology, Irccs Ospedale Policlinico San Martino, Genoa, Italy.,Dissal Department, University of Genoa, Genoa, Italy
| | - Paola Mandich
- Dinogmi Department, University of Genoa, Genoa, Italy.,Medical Genetic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
12
|
Comparative Proteome Research in a Zebrafish Model for Vanishing White Matter Disease. Int J Mol Sci 2021; 22:ijms22052707. [PMID: 33800130 PMCID: PMC7962458 DOI: 10.3390/ijms22052707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 01/30/2023] Open
Abstract
Vanishing white matter (VWM) disease is a genetic leukodystrophy leading to severe neurological disease and early death. VWM is caused by bi-allelic mutations in any of the five genes encoding the subunits of the eukaryotic translation factor 2B (EIF2B). Previous studies have attempted to investigate the molecular mechanism of VWN by constructing models for each subunit of EIF2B that causes VWM disease. The underlying molecular mechanisms of the way in which mutations in EIF2B3 result in VWM are largely unknown. Based on our recent results, we generated an eif2b3 knockout (eif2b3-/-) zebrafish model and performed quantitative proteomic analysis between the wild-type (WT) and eif2b3-/- zebrafish, and identified 25 differentially expressed proteins. Four proteins were significantly upregulated, and 21 proteins were significantly downregulated in eif2b3-/- zebrafish compared to WT. Lon protease and the neutral amino acid transporter SLC1A4 were significantly increased in eif2b3-/- zebrafish, and crystallin proteins were significantly decreased. The differential expression of proteins was confirmed by the evaluation of mRNA levels in eif2b3-/- zebrafish, using whole-mount in situ hybridization analysis. This study identified proteins which candidates as key regulators of the progression of VWN disease, using quantitative proteomic analysis in the first EIF2B3 animal model of VWN disease.
Collapse
|
13
|
Lee YR, Kim SH, Ben-Mahmoud A, Kim OH, Choi TI, Lee KH, Ku B, Eum J, Kee Y, Lee S, Cha J, Won D, Lee ST, Choi JR, Lee JS, Kim HD, Kim HG, Bonkowsky JL, Kang HC, Kim CH. Eif2b3 mutants recapitulate phenotypes of vanishing white matter disease and validate novel disease alleles in zebrafish. Hum Mol Genet 2021; 30:331-342. [PMID: 33517449 DOI: 10.1093/hmg/ddab033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/02/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Leukodystrophy with vanishing white matter (VWM), also called Childhood Ataxia with Central Nervous System Hypomyelination, is caused by mutations in the subunits of the eukaryotic translation initiation factor, EIF2B1, EIF2B2, EIF2B3, EIF2B4 or EIF2B5. However, little is known regarding the underlying pathogenetic mechanisms, and there is no curative treatment for VWM. In this study, we established the first EIF2B3 animal model for VWM disease in vertebrates by CRISPR mutagenesis of the highly conserved zebrafish ortholog eif2b3. Using CRISPR, we generated two mutant alleles in zebrafish eif2b3, 10- and 16-bp deletions, respectively. The eif2b3 mutants showed defects in myelin development and glial cell differentiation, and increased expression of genes in the induced stress response pathway. Interestingly, we also found ectopic angiogenesis and increased VEGF expression. Ectopic angiogenesis in the eif2b3 mutants was reduced by the administration of VEGF receptor inhibitor SU5416. Using the eif2b3 mutant zebrafish model together with in silico protein modeling analysis, we demonstrated the pathogenicity of 18 reported mutations in EIF2B3, as well as of a novel variant identified in a 19-month-old female patient: c.503 T > C (p.Leu168Pro). In summary, our zebrafish mutant model of eif2b3 provides novel insights into VWM pathogenesis and offers rapid functional analysis of human EIF2B3 gene variants.
Collapse
Affiliation(s)
- Yu-Ri Lee
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Se Hee Kim
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Afif Ben-Mahmoud
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Bonsu Ku
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Juneyong Eum
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Korea
| | - Yun Kee
- Division of Biomedical Convergence, Kangwon National University, Chuncheon, Korea
| | - Sangkyu Lee
- College of Pharmacy, Kyungpook National University, Daegu, Korea
| | - Jihoon Cha
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - DongJu Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Joon Soo Lee
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Heung Dong Kim
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Hyung-Goo Kim
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Joshua L Bonkowsky
- Department of Pediatrics, University of Utah School of Medicine and Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT, USA
| | - Hoon-Chul Kang
- Department of Pediatrics, Division of Pediatric Neurology, Pediatric Epilepsy Clinic, Epilepsy Research Institute, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| |
Collapse
|
14
|
Wisse LE, Visser D, Ter Braak TJ, Bakkali A, Struys EA, Morrison CD, van der Knaap MS, Abbink TEM. Isocaloric low protein diet in a mouse model for vanishing white matter does not impact ISR deregulation in brain, but reveals ISR deregulation in liver. Nutr Neurosci 2020; 25:1219-1230. [PMID: 33236691 DOI: 10.1080/1028415x.2020.1846356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objective: Vanishing white matter (VWM) is a genetic brain white matter disorder caused by mutations in eIF2B. eIF2B is central in the integrated stress response (ISR), during which its activity is inhibited by various cellular stresses. VWM is a chronic progressive disease with episodes of rapid neurological deterioration provoked by stresses. VWM patients and VWM mouse models show ISR deregulation in brain, correlating with chronic disease development. ISR inhibition ameliorates the chronic disease in VWM mice. The subacute deteriorations have not been modeled yet. We hypothesized that ISR activation could worsen disease progression in mice and model the episodic neurological deterioration.Method: We chose to activate the ISR by subjecting wild-type (wt) and VWM mice to an isocaloric low protein diet. This model would allow us to investigate the contribution of ISR activation in subacute decline in VWM.Results: We found that the low protein diet did not significantly affect amino acid levels nor ISR levels in wt and VWM mouse brain. Our study serendipitously led to the discovery of increased levels of glycine, asparagine and Fgf21 mRNA in VWM mouse brain irrespective of the dietary protein content. Strikingly, the ISR was not activated by the low protein diet in the liver of VWM in contrast to wt mice, due to a modest ISR deregulation in this organ.Discussion: A model for subacute neurological deterioration in VWM was not established. Possibly, ISR deregulation in VWM results in reduced ISR responsiveness.
Collapse
Affiliation(s)
- Lisanne E Wisse
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Denise Visser
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Timo J Ter Braak
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Abdellatif Bakkali
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | | | - Marjo S van der Knaap
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Truus E M Abbink
- Child Neurology, Emma Children's Hospital, Amsterdam University Medical Centers, Vrije Universiteit and Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Marie-Claire C, Lejeune FX, Mundwiller E, Ulveling D, Moszer I, Bellivier F, Etain B. A DNA methylation signature discriminates between excellent and non-response to lithium in patients with bipolar disorder type 1. Sci Rep 2020; 10:12239. [PMID: 32699220 PMCID: PMC7376060 DOI: 10.1038/s41598-020-69073-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/03/2020] [Indexed: 12/15/2022] Open
Abstract
Lithium (Li) is the cornerstone maintenance treatment for bipolar disorders (BD), but response rates are highly variable. To date, no clinical or biological marker is available to reliably define eligibility criteria for a maintenance treatment with Li. We examined whether the prophylactic response to Li (assessed retrospectively) is associated with distinct blood DNA methylation profiles. Bisulfite-treated total blood DNA samples from individuals with BD type 1 (15 excellent-responders (LiERs) versus 11 non-responders (LiNRs)) were used for targeted enrichment of CpG rich genomic regions followed by high-resolution next-generation sequencing to identify differentially methylated regions (DMRs). After controlling for potential confounders we identified 111 DMRs that significantly differ between LiERs and LiNRs with a significant enrichment in neuronal cell components. Logistic regression and receiver operating curves identified a combination of 7 DMRs with a good discriminatory power for response to Li (Area Under the Curve 0.806). Annotated genes associated with these DMRs include Eukaryotic Translation Initiation Factor 2B Subunit Epsilon (EIF2B5), Von Willebrand Factor A Domain Containing 5B2 (VWA5B2), Ral GTPase Activating Protein Catalytic Alpha Subunit 1 (RALGAPA1). Although preliminary and deserving replication, these results suggest that biomarkers of response to Li may be identified through peripheral epigenetic measures.
Collapse
Affiliation(s)
- C Marie-Claire
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.
| | - F X Lejeune
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - E Mundwiller
- IGenSeq, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - D Ulveling
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - I Moszer
- Bioinformatics and Biostatistics Core Facility iCONICS, Inserm U 1127, CNRS UMR 7225, Sorbonne Université UMR S 1127, Institut du Cerveau Et de La Moelle Épinière, Paris, France
| | - F Bellivier
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pole de Psychiatrie Et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université de Paris, Paris, France
| | - B Etain
- Optimisation thérapeutique en Neurospsychopharmacologie, INSERM U1144, Université de Paris, Paris, France.,AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Pole de Psychiatrie Et de Médecine Addictologique, Paris, France.,Fondation FondaMental, Créteil, France.,Faculté de Médecine, Université de Paris, Paris, France
| |
Collapse
|
16
|
Yoshioka N, Kabata Y, Kuriyama M, Bizen N, Zhou L, Tran DM, Yano M, Yoshiki A, Ushiki T, Sproule TJ, Abe R, Takebayashi H. Diverse dystonin gene mutations cause distinct patterns of Dst isoform deficiency and phenotypic heterogeneity in Dystonia musculorum mice. Dis Model Mech 2020; 13:dmm041608. [PMID: 32482619 PMCID: PMC7325434 DOI: 10.1242/dmm.041608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 03/11/2020] [Indexed: 02/02/2023] Open
Abstract
Loss-of-function mutations in dystonin (DST) can cause hereditary sensory and autonomic neuropathy type 6 (HSAN-VI) or epidermolysis bullosa simplex (EBS). Recently, DST-related diseases were recognized to be more complex than previously thought because a patient exhibited both neurological and skin manifestations, whereas others display only one or the other. A single DST locus produces at least three major DST isoforms: DST-a (neuronal isoform), DST-b (muscular isoform) and DST-e (epithelial isoform). Dystonia musculorum (dt) mice, which have mutations in Dst, were originally identified as spontaneous mutants displaying neurological phenotypes. To reveal the mechanisms underlying the phenotypic heterogeneity of DST-related diseases, we investigated two mutant strains with different mutations: a spontaneous Dst mutant (Dstdt-23Rbrc mice) and a gene-trap mutant (DstGt mice). The Dstdt-23Rbrc allele possesses a nonsense mutation in an exon shared by all Dst isoforms. The DstGt allele is predicted to inactivate Dst-a and Dst-b isoforms but not Dst-e There was a decrease in the levels of Dst-a mRNA in the neural tissue of both Dstdt-23Rbrc and DstGt homozygotes. Loss of sensory and autonomic nerve ends in the skin was observed in both Dstdt-23Rbrc and DstGt mice at postnatal stages. In contrast, Dst-e mRNA expression was reduced in the skin of Dstdt-23Rbrc mice but not in DstGt mice. Expression levels of Dst proteins in neural and cutaneous tissues correlated with Dst mRNAs. Because Dst-e encodes a structural protein in hemidesmosomes (HDs), we performed transmission electron microscopy. Lack of inner plaques and loss of keratin filament invasions underneath the HDs were observed in the basal keratinocytes of Dstdt-23Rbrc mice but not in those of DstGt mice; thus, the distinct phenotype of the skin of Dstdt-23Rbrc mice could be because of failure of Dst-e expression. These results indicate that distinct mutations within the Dst locus can cause different loss-of-function patterns among Dst isoforms, which accounts for the heterogeneous neural and skin phenotypes in dt mice and DST-related diseases.
Collapse
Affiliation(s)
- Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Transdiciplinary Research Programs, Niigata University, Niigata 950-2181, Japan
| | - Yudai Kabata
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Momona Kuriyama
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Norihisa Bizen
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Li Zhou
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| | - Dang M Tran
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Masato Yano
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | | | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | | | - Riichiro Abe
- Division of Dermatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
- Center for Coordination of Research Facilities, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
17
|
Trimouille A, Marguet F, Sauvestre F, Lasseaux E, Pelluard F, Martin-Négrier ML, Plaisant C, Rooryck C, Lacombe D, Arveiler B, Boespflug-Tanguy O, Naudion S, Laquerrière A. Foetal onset of EIF2B related disorder in two siblings: cerebellar hypoplasia with absent Bergmann glia and severe hypomyelination. Acta Neuropathol Commun 2020; 8:48. [PMID: 32293553 PMCID: PMC7161274 DOI: 10.1186/s40478-020-00929-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
Bi-allelic pathogenic variants in genes of the EIF2B family are responsible for Childhood Ataxia with Central nervous system Hypomyelination/Vanishing White Matter disease, a progressive neurodegenerative disorder of the central white matter. Only seven molecularly proven cases with antenatal onset have been reported so far. We report for the first time the neuropathological findings obtained from two foetuses harbouring deleterious variants in the EIF2B5 gene who presented in utero growth retardation and microcephaly with simplified gyral pattern that led to a medical termination of the pregnancy at 27 and 32 weeks of gestation. Neuropathological examination confirmed microcephaly with delayed gyration, periventricular pseudo-cysts and severe cerebellar hypoplasia. Histologically, the cerebellar cortex was immature, the dentate nuclei were fragmented and myelin stains revealed almost no myelination of the infratentorial structures. Bergmann glia was virtually absent associated to a drastic decreased number of mature astrocytes in the cerebellar white matter, multiple nestin-positive immature astrocytes as well as increased numbers of PDGRFα-positive oligodendrocyte precursors. Whole exome sequencing performed in the two foetuses and their parents allowed the identification of two EIF2B5 compound heterozygous variants in the two foetuses: c.468C > G p.Ile156Met and c.1165G > A p.Val389Met, the parents being heterozygous carriers. These variants are absent in the genome Aggregation Database (gnomAD r2.0.2). Contrary to the variant Ile156Met already described in a patient with CACH syndrome, the variant p.Val389Met is novel and predicted to be deleterious using several softwares. Neuropathological findings further expand the phenotypic spectrum of the disease that very likely occurs during early gestation and may manifest from the second half of pregnancy by a severe impairment of cerebral and cerebellar development.
Collapse
|