1
|
Milenkovic I, Blumenreich S, Hochfelder A, Azulay A, Biton IE, Zerbib M, Oren R, Tsoory M, Joseph T, Fleishman SJ, Futerman AH. Efficacy of an AAV vector encoding a thermostable form of glucocerebrosidase in alleviating symptoms in a Gaucher disease mouse model. Gene Ther 2024; 31:439-444. [PMID: 39147866 PMCID: PMC11399100 DOI: 10.1038/s41434-024-00476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024]
Abstract
Almost all attempts to date at gene therapy approaches for monogenetic disease have used the amino acid sequences of the natural protein. In the current study, we use a designed, thermostable form of glucocerebrosidase (GCase), the enzyme defective in Gaucher disease (GD), to attempt to alleviate neurological symptoms in a GD mouse that models type 3 disease, i.e. the chronic neuronopathic juvenile subtype. Upon injection of an AAVrh10 (adeno-associated virus, serotype rh10) vector containing the designed GCase (dGCase) into the left lateral ventricle of Gba-/-;Gbatg mice, a significant improvement in body weight and life-span was observed, compared to injection of the same mouse with the wild type enzyme (wtGCase). Moreover, a reduction in levels of glucosylceramide (GlcCer), and an increase in levels of GCase activity were seen in the right hemisphere of Gba-/-;Gbatg mice, concomitantly with a significant improvement in motor function, reduction of neuroinflammation and a reduction in mRNA levels of various genes shown previously to be elevated in the brain of mouse models of neurological forms of GD. Together, these data pave the way for the possible use of modified proteins in gene therapy for lysosomal storage diseases and other monogenetic disorders.
Collapse
Affiliation(s)
- Ivan Milenkovic
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ariel Hochfelder
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Aviya Azulay
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Inbal E Biton
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Mirie Zerbib
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Tammar Joseph
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| |
Collapse
|
2
|
Hou WC, Massey LA, Rhoades D, Wu Y, Ren W, Frank C, Overkleeft HS, Kelly JW. A PIKfyve modulator combined with an integrated stress response inhibitor to treat lysosomal storage diseases. Proc Natl Acad Sci U S A 2024; 121:e2320257121. [PMID: 39150784 PMCID: PMC11348278 DOI: 10.1073/pnas.2320257121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/19/2024] [Indexed: 08/18/2024] Open
Abstract
Lysosomal degradation pathways coordinate the clearance of superfluous and damaged cellular components. Compromised lysosomal degradation is a hallmark of many degenerative diseases, including lysosomal storage diseases (LSDs), which are caused by loss-of-function mutations within both alleles of a lysosomal hydrolase, leading to lysosomal substrate accumulation. Gaucher's disease, characterized by <15% of normal glucocerebrosidase function, is the most common LSD and is a prominent risk factor for developing Parkinson's disease. Here, we show that either of two structurally distinct small molecules that modulate PIKfyve activity, identified in a high-throughput cellular lipid droplet clearance screen, can improve glucocerebrosidase function in Gaucher patient-derived fibroblasts through an MiT/TFE transcription factor that promotes lysosomal gene translation. An integrated stress response (ISR) antagonist used in combination with a PIKfyve modulator further improves cellular glucocerebrosidase activity, likely because ISR signaling appears to also be slightly activated by treatment by either small molecule at the higher doses employed. This strategy of combining a PIKfyve modulator with an ISR inhibitor improves mutant lysosomal hydrolase function in cellular models of additional LSD.
Collapse
Affiliation(s)
- William C. Hou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Lynée A. Massey
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Derek Rhoades
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Yin Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92122
| | - Wen Ren
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Chiara Frank
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333 CC, The Netherlands
| | - Jeffrey W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| |
Collapse
|
3
|
Cebolla JJ, Giraldo P, Gómez J, Montoto C, Gervas-Arruga J. Machine Learning-Driven Biomarker Discovery for Skeletal Complications in Type 1 Gaucher Disease Patients. Int J Mol Sci 2024; 25:8586. [PMID: 39201273 PMCID: PMC11354847 DOI: 10.3390/ijms25168586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Type 1 Gaucher disease (GD1) is a rare, autosomal recessive disorder caused by glucocerebrosidase deficiency. Skeletal manifestations represent one of the most debilitating and potentially irreversible complications of GD1. Although imaging studies are the gold standard, early diagnostic/prognostic tools, such as molecular biomarkers, are needed for the rapid management of skeletal complications. This study aimed to identify potential protein biomarkers capable of predicting the early diagnosis of bone skeletal complications in GD1 patients using artificial intelligence. An in silico study was performed using the novel Therapeutic Performance Mapping System methodology to construct mathematical models of GD1-associated complications at the protein level. Pathophysiological characterization was performed before modeling, and a data science strategy was applied to the predicted protein activity for each protein in the models to identify classifiers. Statistical criteria were used to prioritize the most promising candidates, and 18 candidates were identified. Among them, PDGFB, IL1R2, PTH and CCL3 (MIP-1α) were highlighted due to their ease of measurement in blood. This study proposes a validated novel tool to discover new protein biomarkers to support clinician decision-making in an area where medical needs have not yet been met. However, confirming the results using in vitro and/or in vivo studies is necessary.
Collapse
Affiliation(s)
| | - Pilar Giraldo
- FEETEG, 50006 Zaragoza, Spain;
- Hospital QuirónSalud Zaragoza, 50012 Zaragoza, Spain
| | | | | | | |
Collapse
|
4
|
Cheong A, Craciun F, Husson H, Gans J, Escobedo J, Chang YC, Guo L, Goncalves M, Kaplan N, Smith LA, Moreno S, Boulanger J, Liu S, Saleh J, Zhang M, Blazier AS, Qiu W, Macklin A, Iyyanki T, Chatelain C, Khader S, Natoli TA, Ibraghimov-Beskrovnaya O, Ofengeim D, Proto JD. Glucosylceramide synthase modulation ameliorates murine renal pathologies and promotes macrophage effector function in vitro. Commun Biol 2024; 7:932. [PMID: 39095617 PMCID: PMC11297156 DOI: 10.1038/s42003-024-06606-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
While significant advances have been made in understanding renal pathophysiology, less is known about the role of glycosphingolipid (GSL) metabolism in driving organ dysfunction. Here, we used a small molecule inhibitor of glucosylceramide synthase to modulate GSL levels in three mouse models of distinct renal pathologies: Alport syndrome (Col4a3 KO), polycystic kidney disease (Nek8jck), and steroid-resistant nephrotic syndrome (Nphs2 cKO). At the tissue level, we identified a core immune-enriched transcriptional signature that was shared across models and enriched in human polycystic kidney disease. Single nuclei analysis identified robust transcriptional changes across multiple kidney cell types, including epithelial and immune lineages. To further explore the role of GSL modulation in macrophage biology, we performed in vitro studies with homeostatic and inflammatory bone marrow-derived macrophages. Cumulatively, this study provides a comprehensive overview of renal dysfunction and the effect of GSL modulation on kidney-derived cells in the setting of renal dysfunction.
Collapse
Affiliation(s)
- Agnes Cheong
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA.
| | | | - Hervé Husson
- Genomics Medicine Unit, Sanofi, Waltham, MA, USA
| | - Joseph Gans
- Translational Sciences, Sanofi, Cambridge, MA, USA
| | | | | | - Lilu Guo
- Translational Sciences, Sanofi, Cambridge, MA, USA
| | | | - Nathan Kaplan
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Laurie A Smith
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Sarah Moreno
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Joseph Boulanger
- Research and Development Business Office, Sanofi, Cambridge, MA, USA
| | - Shiguang Liu
- Rare Diseases and Rare Blood Disorders Research, Sanofi, Cambridge, MA, USA
| | - Jacqueline Saleh
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Mindy Zhang
- Translational Sciences, Sanofi, Cambridge, MA, USA
| | - Anna S Blazier
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Weiliang Qiu
- Non-Clinical Efficacy & Safety, Sanofi, Cambridge, MA, USA
| | - Andrew Macklin
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Tejaswi Iyyanki
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | - Clément Chatelain
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | - Shameer Khader
- Precision Medicine and Computational Biology, Sanofi, Cambridge, MA, USA
| | - Thomas A Natoli
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | | | - Dimitry Ofengeim
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA
| | - Jonathan D Proto
- Rare and Neurologic Diseases Research, Sanofi, Cambridge, MA, USA.
| |
Collapse
|
5
|
Prencipe F, Barzan C, Savian C, Spalluto G, Carosati E, De Amici M, Mosconi G, Gianferrara T, Federico S, Da Ros T. Gaucher Disease: A Glance from a Medicinal Chemistry Perspective. ChemMedChem 2024; 19:e202300641. [PMID: 38329692 DOI: 10.1002/cmdc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Rare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT). ERT, consisting in replacing the defective enzyme by administering a recombinant enzyme, is effective in alleviating the visceral symptoms, hallmarks of the most common subtype of the disease whereas it has no effects when symptoms involve CNS, since the recombinant protein is unable to significantly cross the Blood Brain Barrier. The SRT strategy involves inhibiting glucosylceramide synthase (GCS), the enzyme responsible for the production of the associated storage molecule. The rational design of new inhibitors of GCS has been hampered by the lack of either the crystal structure of the enzyme or an in-silico model of the active site which could provide important information regarding the interactions of potential inhibitors with the target, but, despite this, interesting results have been obtained and are herein reviewed.
Collapse
Affiliation(s)
- Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Barzan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Molecular Genetics Institute, CNR Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Savian
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Emanuele Carosati
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milano Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Giorgio Mosconi
- Fidia Farmaceutici Via Ponte della Fabbrica 3/A, 35021, Abano Terme, Italy
| | - Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
6
|
Shaimardanova AA, Chulpanova DS, Solovyeva VV, Issa SS, Mullagulova AI, Titova AA, Mukhamedshina YO, Timofeeva AV, Aimaletdinov AM, Nigmetzyanov IR, Rizvanov AA. Increasing β-hexosaminidase A activity using genetically modified mesenchymal stem cells. Neural Regen Res 2024; 19:212-219. [PMID: 37488869 PMCID: PMC10479847 DOI: 10.4103/1673-5374.375328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 07/26/2023] Open
Abstract
GM2 gangliosidoses are a group of autosomal-recessive lysosomal storage disorders. These diseases result from a deficiency of lysosomal enzyme β-hexosaminidase A (HexA), which is responsible for GM2 ganglioside degradation. HexA deficiency causes the accumulation of GM2-gangliosides mainly in the nervous system cells, leading to severe progressive neurodegeneration and neuroinflammation. To date, there is no treatment for these diseases. Cell-mediated gene therapy is considered a promising treatment for GM2 gangliosidoses. This study aimed to evaluate the ability of genetically modified mesenchymal stem cells (MSCs-HEXA-HEXB) to restore HexA deficiency in Tay-Sachs disease patient cells, as well as to analyze the functionality and biodistribution of MSCs in vivo. The effectiveness of HexA deficiency cross-correction was shown in mutant MSCs upon interaction with MSCs-HEXA-HEXB. The results also showed that the MSCs-HEXA-HEXB express the functionally active HexA enzyme, detectable in vivo, and intravenous injection of the cells does not cause an immune response in animals. These data suggest that genetically modified mesenchymal stem cells have the potentials to treat GM2 gangliosidoses.
Collapse
Affiliation(s)
| | - Daria S. Chulpanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriya V. Solovyeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shaza S. Issa
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Aysilu I. Mullagulova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Angelina A. Titova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Yana O. Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Anna V. Timofeeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Islam R. Nigmetzyanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
7
|
Blumenreich S, Ben-Yashar DP, Shalit T, Kupervaser M, Milenkovic I, Joseph T, Futerman AH. Proteomics analysis of the brain from a Gaucher disease mouse identifies pathological pathways including a possible role for transglutaminase 1. J Neurochem 2024; 168:52-65. [PMID: 38071490 DOI: 10.1111/jnc.16024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Gaucher disease (GD) is a lysosomal storage disorder (LSD) caused by the defective activity of acid β-glucosidase (GCase) which results from mutations in GBA1. Neurological forms of GD (nGD) can be generated in mice by intra-peritoneal injection of conduritol B-epoxide (CBE) which irreversibly inhibits GCase. Using this approach, a number of pathological pathways have been identified in mouse brain by RNAseq. However, unlike transcriptomics, proteomics gives direct information about protein expression which is more likely to provide insight into which cellular pathways are impacted in disease. We now perform non-targeted, mass spectrometry-based quantitative proteomics on brains from mice injected with 50 mg/kg body weight CBE for 13 days. Of the 5038 detected proteins, 472 were differentially expressed between control and CBE-injected mice of which 104 were selected for further analysis based on higher stringency criteria. We also compared these proteins with differentially expressed genes (DEGs) identified by RNAseq. Some lysosomal proteins were up-regulated as was interferon signaling, whereas levels of ion channel related proteins and some proteins associated with neurotransmitter signaling were reduced, as was cholesterol metabolism. One protein, transglutaminase 1 (TGM1), which is elevated in a number of neurodegenerative diseases, was absent from the control group but was found at high levels in CBE-injected mice, and located in the extracellular matrix (ECM) in layer V of the cortex and intracellularly in Purkinje cells in the cerebellum. Together, the proteomics data confirm previous RNAseq data and add additional mechanistic understanding about cellular pathways that may play a role in nGD pathology.
Collapse
Affiliation(s)
- Shani Blumenreich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Tali Shalit
- The Mantoux Bioinformatics Institute and the Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Ivan Milenkovic
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Tammar Joseph
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Sato S, Matsumoto SI, Kosugi Y. Quantitation and characterization of glucosylsphingosine in cerebrospinal fluid (CSF), plasma, and brain of monkey model with Gaucher disease. Drug Metab Pharmacokinet 2023; 53:100530. [PMID: 37924723 DOI: 10.1016/j.dmpk.2023.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 11/06/2023]
Abstract
Treatment with conduritol-β-epoxide (CBE) in preclinical species is expected to be a powerful approach to generate animal models of Gaucher disease (GD) and Parkinson's disease associated with heterozygous mutations in Glucocerebrosidase (GBA-PD). However, it is not fully elucidated how quantitatively the change in glucosylsphingosine (GlcSph) levels in cerebrospinal fluid (CSF) correlates with that in the brain, which is expected to be clinically informative. Herein, we aimed to investigate the correlation with successfully quantified GlcSph in monkey CSF by developing highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods. The GlcSph in normal monkey CSF was 0.635 ± 0.177 pg/mL at baseline and increased by CBE treatment at 3 mg/kg daily for five days up to a moderate level, comparable to that in GD patients. The balance between GlcSph and galactosylsphingosine (GalSph) in the CSF matched that in the brain rather than plasma. In addition, GlcSph in the CSF was increased, accompanied by that in the brain at a dose of 3 mg/kg daily. These results indicate that GlcSph in the CSF is worth evaluating for concentration changes in the brain. Thus, this model can be useful for evaluating GBA-related diseases such as GD and GBA-PD.
Collapse
Affiliation(s)
- Sho Sato
- Drug Metabolism & Pharmacokinetics Research Laboratories, Preclinical & Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Shin-Ichi Matsumoto
- Drug Metabolism & Pharmacokinetics Research Laboratories, Preclinical & Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Yohei Kosugi
- Drug Metabolism & Pharmacokinetics Research Laboratories, Preclinical & Translational Sciences, Research, Takeda Pharmaceutical Company Limited, Shonan Health Innovation Park, 26-1, Muraoka-Higashi 2-Chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
9
|
Menozzi E, Toffoli M, Schapira AHV. Targeting the GBA1 pathway to slow Parkinson disease: Insights into clinical aspects, pathogenic mechanisms and new therapeutic avenues. Pharmacol Ther 2023; 246:108419. [PMID: 37080432 DOI: 10.1016/j.pharmthera.2023.108419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
The GBA1 gene encodes the lysosomal enzyme glucocerebrosidase (GCase), which is involved in sphingolipid metabolism. Biallelic variants in GBA1 cause Gaucher disease (GD), a lysosomal storage disorder characterised by loss of GCase activity and aberrant intracellular accumulation of GCase substrates. Carriers of GBA1 variants have an increased risk of developing Parkinson disease (PD), with odds ratio ranging from 2.2 to 30 according to variant severity. GBA1 variants which do not cause GD in homozygosis can also increase PD risk. Patients with PD carrying GBA1 variants show a more rapidly progressive phenotype compared to non-carriers, emphasising the need for disease modifying treatments targeting the GBA1 pathway. Several mechanisms secondary to GCase dysfunction are potentially responsible for the pathological changes leading to PD. Misfolded GCase proteins induce endoplasmic reticulum stress and subsequent unfolded protein response and impair the autophagy-lysosomal pathway. This results in α-synuclein accumulation and spread, and promotes neurodegenerative changes. Preclinical evidence also shows that products of GCase activity can promote accumulation of α-synuclein, however there is no convincing evidence of substrate accumulation in GBA1-PD brains. Altered lipid homeostasis secondary to loss of GCase activity could also contribute to PD pathology. Treatments that target the GBA1 pathway could reverse these pathological processes and halt/slow the progression of PD. These range from augmentation of GCase activity via GBA1 gene therapy, restoration of normal intracellular GCase trafficking via molecular chaperones, and substrate reduction therapy. This review discusses the pathways associated with GBA1-PD and related novel GBA1-targeted interventions for PD treatment.
Collapse
Affiliation(s)
- Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, United States of America.
| |
Collapse
|
10
|
Sandhoff R, Sandhoff K. Neuronal Ganglioside and Glycosphingolipid (GSL) Metabolism and Disease : Cascades of Secondary Metabolic Errors Can Generate Complex Pathologies (in LSDs). ADVANCES IN NEUROBIOLOGY 2023; 29:333-390. [PMID: 36255681 DOI: 10.1007/978-3-031-12390-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glycosphingolipids (GSLs) are a diverse group of membrane components occurring mainly on the surfaces of mammalian cells. They and their metabolites have a role in intercellular communication, serving as versatile biochemical signals (Kaltner et al, Biochem J 476(18):2623-2655, 2019) and in many cellular pathways. Anionic GSLs, the sialic acid containing gangliosides (GGs), are essential constituents of neuronal cell surfaces, whereas anionic sulfatides are key components of myelin and myelin forming oligodendrocytes. The stepwise biosynthetic pathways of GSLs occur at and lead along the membranes of organellar surfaces of the secretory pathway. After formation of the hydrophobic ceramide membrane anchor of GSLs at the ER, membrane-spanning glycosyltransferases (GTs) of the Golgi and Trans-Golgi network generate cell type-specific GSL patterns for cellular surfaces. GSLs of the cellular plasma membrane can reach intra-lysosomal, i.e. luminal, vesicles (ILVs) by endocytic pathways for degradation. Soluble glycoproteins, the glycosidases, lipid binding and transfer proteins and acid ceramidase are needed for the lysosomal catabolism of GSLs at ILV-membrane surfaces. Inherited mutations triggering a functional loss of glycosylated lysosomal hydrolases and lipid binding proteins involved in GSL degradation cause a primary lysosomal accumulation of their non-degradable GSL substrates in lysosomal storage diseases (LSDs). Lipid binding proteins, the SAPs, and the various lipids of the ILV-membranes regulate GSL catabolism, but also primary storage compounds such as sphingomyelin (SM), cholesterol (Chol.), or chondroitin sulfate can effectively inhibit catabolic lysosomal pathways of GSLs. This causes cascades of metabolic errors, accumulating secondary lysosomal GSL- and GG- storage that can trigger a complex pathology (Breiden and Sandhoff, Int J Mol Sci 21(7):2566, 2020).
Collapse
Affiliation(s)
- Roger Sandhoff
- Lipid Pathobiochemistry Group, German Cancer Research Center, Heidelberg, Germany
| | - Konrad Sandhoff
- LIMES, c/o Kekule-Institute for Organic Chemistry and Biochemistry, University of Bonn, Bonn, Germany.
| |
Collapse
|
11
|
Dodge JC, Tamsett TJ, Treleaven CM, Taksir TV, Piepenhagen P, Sardi SP, Cheng SH, Shihabuddin LS. Glucosylceramide synthase inhibition reduces ganglioside GM3 accumulation, alleviates amyloid neuropathology, and stabilizes remote contextual memory in a mouse model of Alzheimer’s disease. Alzheimers Res Ther 2022; 14:19. [PMID: 35105352 PMCID: PMC8805417 DOI: 10.1186/s13195-022-00966-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022]
Abstract
Background Gangliosides are highly enriched in the brain and are critical for its normal development and function. However, in some rare neurometabolic diseases, a deficiency in lysosomal ganglioside hydrolysis is pathogenic and leads to early-onset neurodegeneration, neuroinflammation, demyelination, and dementia. Increasing evidence also suggests that more subtle ganglioside accumulation contributes to the pathogenesis of more common neurological disorders including Alzheimer’s disease (AD). Notably, ganglioside GM3 levels are elevated in the brains of AD patients and in several mouse models of AD, and plasma GM3 levels positively correlate with disease severity in AD patients. Methods Tg2576 AD model mice were fed chow formulated with a small molecule inhibitor of glucosylceramide synthase (GCSi) to determine whether reducing glycosphingolipid synthesis affected aberrant GM3 accumulation, amyloid burden, and disease manifestations in cognitive impairment. GM3 was measured with LC-MS, amyloid burden with ELISA and amyloid red staining, and memory was assessed using the contextual fear chamber test. Results GCSi mitigated soluble Aβ42 accumulation in the brains of AD model mice when treatment was started prophylactically. Remarkably, GCSi treatment also reduced soluble Aβ42 levels and amyloid plaque burden in aged (i.e., 70 weeks old) AD mice with preexisting neuropathology. Our analysis of contextual memory in Tg2576 mice showed that impairments in remote (cortical-dependent) memory consolidation preceded deficits in short-term (hippocampal-dependent) contextual memory, which was consistent with soluble Aβ42 accumulation occurring more rapidly in the cortex of AD mice compared to the hippocampus. Notably, GCSi treatment significantly stabilized remote memory consolidation in AD mice—especially in mice with enhanced cognitive training. This finding was consistent with GCSi treatment lowering aberrant GM3 accumulation in the cortex of AD mice. Conclusions Collectively, our results indicate that glycosphingolipids regulated by GCS are important modulators of Aβ neuropathology and that glycosphingolipid homeostasis plays a critical role in the consolidation of remote memories. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00966-0.
Collapse
|
12
|
Abstract
Experiments in genetically altered mice reveal that microglia play an important role in the neurological damage associated with neuro-nopathic Gaucher disease.
Collapse
Affiliation(s)
- Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
13
|
Boddupalli CS, Nair S, Belinsky G, Gans J, Teeple E, Nguyen TH, Mehta S, Guo L, Kramer ML, Ruan J, Wang H, Davison M, Kumar D, Vidyadhara DJ, Zhang B, Klinger K, Mistry PK. Neuroinflammation in neuronopathic Gaucher disease: Role of microglia and NK cells, biomarkers, and response to substrate reduction therapy. eLife 2022; 11:e79830. [PMID: 35972072 PMCID: PMC9381039 DOI: 10.7554/elife.79830] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 12/17/2022] Open
Abstract
Background Neuronopathic Gaucher disease (nGD) is a rare neurodegenerative disorder caused by biallelic mutations in GBA and buildup of glycosphingolipids in lysosomes. Neuronal injury and cell death are prominent pathological features; however, the role of GBA in individual cell types and involvement of microglia, blood-derived macrophages, and immune infiltrates in nGD pathophysiology remains enigmatic. Methods Here, using single-cell resolution of mouse nGD brains, lipidomics, and newly generated biomarkers, we found induction of neuroinflammation pathways involving microglia, NK cells, astrocytes, and neurons. Results Targeted rescue of Gba in microglia and neurons, respectively, in Gba-deficient, nGD mice reversed the buildup of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph), concomitant with amelioration of neuroinflammation, reduced serum neurofilament light chain (Nf-L), and improved survival. Serum GlcSph concentration was correlated with serum Nf-L and ApoE in nGD mouse models as well as in GD patients. Gba rescue in microglia/macrophage compartment prolonged survival, which was further enhanced upon treatment with brain-permeant inhibitor of glucosylceramide synthase, effects mediated via improved glycosphingolipid homeostasis, and reversal of neuroinflammation involving activation of microglia, brain macrophages, and NK cells. Conclusions Together, our study delineates individual cellular effects of Gba deficiency in nGD brains, highlighting the central role of neuroinflammation driven by microglia activation. Brain-permeant small-molecule inhibitor of glucosylceramide synthase reduced the accumulation of bioactive glycosphingolipids, concomitant with amelioration of neuroinflammation involving microglia, NK cells, astrocytes, and neurons. Our findings advance nGD disease biology whilst identifying compelling biomarkers of nGD to improve patient management, enrich clinical trials, and illuminate therapeutic targets. Funding Research grant from Sanofi; other support includes R01NS110354, Yale Liver Center P30DK034989, pilot project grant.
Collapse
Affiliation(s)
| | - Shiny Nair
- Department of Internal Medicine, Yale School of MedicineNew HavenUnited States
| | - Glenn Belinsky
- Department of Internal Medicine, Yale School of MedicineNew HavenUnited States
| | - Joseph Gans
- Translational Sciences, SanofiFraminghamUnited States
| | - Erin Teeple
- Translational Sciences, SanofiFraminghamUnited States
| | | | - Sameet Mehta
- Yale Center for Genome Analysis, Yale School of MedicineNew HavenUnited States
| | - Lilu Guo
- Translational Sciences, SanofiFraminghamUnited States
| | | | - Jiapeng Ruan
- Department of Internal Medicine, Yale School of MedicineNew HavenUnited States
| | - Honggge Wang
- Translational Sciences, SanofiFraminghamUnited States
| | | | - Dinesh Kumar
- Translational Sciences, SanofiFraminghamUnited States
| | - DJ Vidyadhara
- Department of Neuroscience, Yale School of MedicineNew HavenUnited States
| | - Bailin Zhang
- Translational Sciences, SanofiFraminghamUnited States
| | | | - Pramod K Mistry
- Department of Internal Medicine, Yale School of MedicineNew HavenUnited States
- Department of Molecular & Cellular Physiology, Yale School of MedicineNew HavenUnited States
| |
Collapse
|
14
|
Glucocerebrosidase-associated Parkinson disease: Pathogenic mechanisms and potential drug treatments. Neurobiol Dis 2022; 166:105663. [DOI: 10.1016/j.nbd.2022.105663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/30/2022] [Accepted: 02/15/2022] [Indexed: 02/07/2023] Open
|
15
|
Consequences of excessive glucosylsphingosine in glucocerebrosidase-deficient zebrafish. J Lipid Res 2022; 63:100199. [PMID: 35315333 PMCID: PMC9058576 DOI: 10.1016/j.jlr.2022.100199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/26/2022] [Accepted: 03/08/2022] [Indexed: 12/01/2022] Open
Abstract
In Gaucher disease (GD), the deficiency of glucocerebrosidase causes lysosomal accumulation of glucosylceramide (GlcCer), which is partly converted by acid ceramidase to glucosylsphingosine (GlcSph) in the lysosome. Chronically elevated blood and tissue GlcSph is thought to contribute to symptoms in GD patients as well as to increased risk for Parkinson’s disease. On the other hand, formation of GlcSph may be beneficial since the water soluble sphingoid base is excreted via urine and bile. To study the role of excessive GlcSph formation during glucocerebrosidase deficiency, we studied zebrafish that have two orthologs of acid ceramidase, Asah1a and Asah1b. Only the latter is involved in the formation of GlcSph in glucocerebrosidase-deficient zebrafish as revealed by knockouts of Asah1a or Asah1b with glucocerebrosidase deficiency (either pharmacologically induced or genetic). Comparison of zebrafish with excessive GlcSph (gba1-/- fish) and without GlcSph (gba1-/-:asah1b-/- fish) allowed us to study the consequences of chronic high levels of GlcSph. Prevention of excessive GlcSph in gba1-/-:asah1b-/- fish did not restrict storage cells, GlcCer accumulation, or neuroinflammation. However, GD fish lacking excessive GlcSph show an ameliorated course of disease reflected by significantly increased lifespan, delayed locomotor abnormality, and delayed development of an abnormal curved back posture. The loss of tyrosine hydroxylase 1 (th1) mRNA, a marker of dopaminergic neurons, is slowed down in brain of GD fish lacking excessive GlcSph. In conclusion, in the zebrafish GD model, excess GlcSph has little impact on (neuro)inflammation or the presence of GlcCer-laden macrophages but rather seems harmful to th1-positive dopaminergic neurons.
Collapse
|
16
|
Peng Y, Liou B, Lin Y, Fannin V, Zhang W, Feldman RA, Setchell KDR, Grabowski GA, Sun Y. Substrate Reduction Therapy Reverses Mitochondrial, mTOR, and Autophagy Alterations in a Cell Model of Gaucher Disease. Cells 2021; 10:2286. [PMID: 34571934 PMCID: PMC8466461 DOI: 10.3390/cells10092286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Substrate reduction therapy (SRT) in clinic adequately manages the visceral manifestations in Gaucher disease (GD) but has no direct effect on brain disease. To understand the molecular basis of SRT in GD treatment, we evaluated the efficacy and underlying mechanism of SRT in an immortalized neuronal cell line derived from a Gba knockout (Gba-/-) mouse model. Gba-/- neurons accumulated substrates, glucosylceramide, and glucosylsphingosine. Reduced cell proliferation was associated with altered lysosomes and autophagy, decreased mitochondrial function, and activation of the mTORC1 pathway. Treatment of the Gba-/- neurons with venglustat analogue GZ452, a central nervous system-accessible SRT, normalized glucosylceramide levels in these neurons and their isolated mitochondria. Enlarged lysosomes were reduced in the treated Gba-/- neurons, accompanied by decreased autophagic vacuoles. GZ452 treatment improved mitochondrial membrane potential and oxygen consumption rate. Furthermore, GZ452 diminished hyperactivity of selected proteins in the mTORC1 pathway and improved cell proliferation of Gba-/- neurons. These findings reinforce the detrimental effects of substrate accumulation on mitochondria, autophagy, and mTOR in neurons. A novel rescuing mechanism of SRT was revealed on the function of mitochondrial and autophagy-lysosomal pathways in GD. These results point to mitochondria and the mTORC1 complex as potential therapeutic targets for treatment of GD.
Collapse
Affiliation(s)
- Yanyan Peng
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Yi Lin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Venette Fannin
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Wujuan Zhang
- Department of Pathology, Clinical Mass Spectrometry Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (W.Z.); (K.D.R.S.)
| | - Ricardo A. Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Kenneth D. R. Setchell
- Department of Pathology, Clinical Mass Spectrometry Laboratory, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (W.Z.); (K.D.R.S.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Gregory A. Grabowski
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (Y.P.); (B.L.); (Y.L.); (V.F.); (G.A.G.)
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
17
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
18
|
Schuchman EH, Ledesma MD, Simonaro CM. New paradigms for the treatment of lysosomal storage diseases: targeting the endocannabinoid system as a therapeutic strategy. Orphanet J Rare Dis 2021; 16:151. [PMID: 33766102 PMCID: PMC7992818 DOI: 10.1186/s13023-021-01779-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
Over the past three decades the lysosomal storage diseases have served as model for rare disease treatment development. While these efforts have led to considerable success, important challenges remain. For example, no treatments are currently approved for nearly two thirds of all lysosomal diseases, and there is limited impact of the existing drugs on the central nervous system. In addition, the costs of these therapies are extremely high, in part due to the fact that drug development has focused on a "single hit" approach - i.e., one drug for one disease. To overcome these obstacles researchers have begun to focus on defining common disease mechanisms in the lysosomal diseases, particularly in the central nervous system, with the hope of identifying drugs that might be used in several lysosomal diseases rather than an individual disease. With this concept in mind, herein we review a new potential treatment approach for the lysosomal storage diseases that focuses on modulation of the endocannabinoid system. We provide a short introduction to lysosomal storage diseases and the endocannabinoid system, followed by a brief review of data supporting this concept.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine At Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY, 10029, USA.
| | - Maria D Ledesma
- Centro Biologia Molecular Severo Ochoa, 28049, Madrid, Spain
| | - Calogera M Simonaro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine At Mount Sinai, 1425 Madison Avenue, Room 14-20A, New York, NY, 10029, USA
| |
Collapse
|
19
|
Vardi A, Pri-Or A, Wigoda N, Grishchuk Y, Futerman AH. Proteomics analysis of a human brain sample from a mucolipidosis type IV patient reveals pathophysiological pathways. Orphanet J Rare Dis 2021; 16:39. [PMID: 33478506 PMCID: PMC7818904 DOI: 10.1186/s13023-021-01679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/29/2022] Open
Abstract
Background Mucolipidosis type IV (MLIV), an ultra-rare neurodevelopmental and neurodegenerative disorder, is caused by mutations in the MCOLN1 gene, which encodes the late endosomal/lysosomal transient receptor potential channel TRPML1 (mucolipin 1). The precise pathophysiogical pathways that cause neurological disease in MLIV are poorly understood. Recently, the first post-mortem brain sample became available from a single MLIV patient, and in the current study we performed mass spectrometry (MS)-based proteomics on this tissue with a view to delineating pathological pathways, and to compare with previously-published data on MLIV, including studies using the Mcoln1−/− mouse. Results A number of pathways were altered in two brain regions from the MLIV patient, including those related to the lysosome, lipid metabolism, myelination, cellular trafficking and autophagy, mTOR and calmodulin, the complement system and interferon signaling. Of these, levels of some proteins not known previously to be associated with MLIV were altered, including APOD, PLIN4, ATG and proteins related to interferon signaling. Moreover, when proteins detected by proteomics in the human brain were compared with their orthologs detected in the Mcoln1−/− mouse by RNAseq, the results were remarkably similar. Finally, analysis of proteins in human and mouse CSF suggest that calbindin 1 and calbindin 2 might be useful as biomarkers to help chart the course of disease development. Conclusions Despite the sample size limitations, our findings are consistent with the relatively general changes in lysosomal function previously reported in MLIV, and shed light on new pathways of disease pathophysiology, which is required in order to understand the course of disease development and to determine the efficacy of therapies when they become available for this devastating disease.
Collapse
Affiliation(s)
- Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Amir Pri-Or
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noa Wigoda
- The Life Sciences Core Facilities, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Yulia Grishchuk
- Center for Genomic Medicine and Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, 02114, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|