1
|
Ru Q, Li Y, Chen L, Wu Y, Min J, Wang F. Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects. Signal Transduct Target Ther 2024; 9:271. [PMID: 39396974 PMCID: PMC11486532 DOI: 10.1038/s41392-024-01969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Iron, an essential mineral in the body, is involved in numerous physiological processes, making the maintenance of iron homeostasis crucial for overall health. Both iron overload and deficiency can cause various disorders and human diseases. Ferroptosis, a form of cell death dependent on iron, is characterized by the extensive peroxidation of lipids. Unlike other kinds of classical unprogrammed cell death, ferroptosis is primarily linked to disruptions in iron metabolism, lipid peroxidation, and antioxidant system imbalance. Ferroptosis is regulated through transcription, translation, and post-translational modifications, which affect cellular sensitivity to ferroptosis. Over the past decade or so, numerous diseases have been linked to ferroptosis as part of their etiology, including cancers, metabolic disorders, autoimmune diseases, central nervous system diseases, cardiovascular diseases, and musculoskeletal diseases. Ferroptosis-related proteins have become attractive targets for many major human diseases that are currently incurable, and some ferroptosis regulators have shown therapeutic effects in clinical trials although further validation of their clinical potential is needed. Therefore, in-depth analysis of ferroptosis and its potential molecular mechanisms in human diseases may offer additional strategies for clinical prevention and treatment. In this review, we discuss the physiological significance of iron homeostasis in the body, the potential contribution of ferroptosis to the etiology and development of human diseases, along with the evidence supporting targeting ferroptosis as a therapeutic approach. Importantly, we evaluate recent potential therapeutic targets and promising interventions, providing guidance for future targeted treatment therapies against human diseases.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health, Department of Health and Physical Education, Jianghan University, Wuhan, China.
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
2
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
3
|
Wu N, Doeppner TR, Hermann DM, Gronewold J. Efficacy and safety of intravenous tenecteplase compared to alteplase before mechanical thrombectomy in acute ischemic stroke: a meta-analysis. J Neurol 2024; 271:3928-3941. [PMID: 38782799 PMCID: PMC11233346 DOI: 10.1007/s00415-024-12445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The benefits and risks of tenecteplase (TNK) versus alteplase (ALT) have recently been assessed in acute ischemic stroke (AIS) patients undergoing mechanical thrombectomy (MT) with diverse results. Due to its high fibrin specificity and lack of excitotoxicity, TNK may have a higher efficacy and safety profile. This study aimed to evaluate the benefits and risks of TNK compared to ALT in AIS patients prior to thrombectomy. METHODS We systematically searched four key databases, PubMed, Embase, Web of Science and Cochrane Library until January 27, 2024 for clinical studies evaluating the effects of TNK versus ALT in patients with large vessel occlusion undergoing MT. A random-effect meta-analysis was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Ten studies involving 3722 patients receiving TNK (1266 patients) or ALT (2456 patients) were included (age: 69.05 ± 14.95 years; 55.64% male). Compared to ALT-treated patients, TNK-treated patients demonstrated significantly higher rates of early recanalization (odds ratio 2.02, 95%-confidence interval 1.20-3.38, p = 0.008) without increased risk of symptomatic intracerebral hemorrhage (1.06, 0.64-1.76, p = 0.82) or intracerebral hemorrhage (1.21, 0.66-2.25, p = 0.54). TNK-treated patients showed similar rates of functional independence at 90 days (1.13, 0.87-1.46, p = 0.37) as ALT-treated patients, but lower rates of mortality within 90 days (0.65, 0.44-0.96, p = 0.03). CONCLUSION TNK is superior to ALT in achieving early recanalization and is associated with lower mortality within 90 days in AIS patients undergoing MT. Compared with ALT, TNK does not significantly alter functional independence at 90 days, symptomatic intracerebral hemorrhage or intracerebral hemorrhage.
Collapse
Affiliation(s)
- Nihong Wu
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany
| | | | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany.
| | - Janine Gronewold
- Department of Neurology, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany.
| |
Collapse
|
4
|
Tian X, Li X, Pan M, Yang LZ, Li Y, Fang W. Progress of Ferroptosis in Ischemic Stroke and Therapeutic Targets. Cell Mol Neurobiol 2024; 44:25. [PMID: 38393376 PMCID: PMC10891262 DOI: 10.1007/s10571-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 02/25/2024]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death (PCD) and ischemic stroke (IS) has been confirmed to be closely related to ferroptosis. The mechanisms of ferroptosis were summarized into three interrelated aspects: iron metabolism, lipid peroxide metabolism, as well as glutathione and amino acid metabolism. What's more, the causal relationship between ferroptosis and IS has been elucidated by several processes. The disruption of the blood-brain barrier, the release of excitatory amino acids, and the inflammatory response after ischemic stroke all lead to the disorder of iron metabolism and the antioxidant system. Based on these statements, we reviewed the reported effects of compounds and drugs treating IS by modulating key molecules in ferroptosis. Through detailed analysis of the roles of these key molecules, we have also more clearly demonstrated the essential effect of ferroptosis in the occurrence of IS so as to provide new targets and ideas for the therapeutic targets of IS.
Collapse
Affiliation(s)
- Xinjuan Tian
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Xiang Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Mengtian Pan
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Lele Zixin Yang
- The Pennsylvania State University, State College, PA, 16801, USA
| | - Yunman Li
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| | - Weirong Fang
- School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Mailbox 207, Tongjiaxiang 24, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
5
|
Hu X, Bao Y, Li M, Zhang W, Chen C. The role of ferroptosis and its mechanism in ischemic stroke. Exp Neurol 2024; 372:114630. [PMID: 38056585 DOI: 10.1016/j.expneurol.2023.114630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Ischemic stroke is an acute cerebrovascular disease with a high morbidity, mortality, and disability rate. Persistent ischemia of brain tissue can cause irreversible damage to neurons, leading to neurological dysfunction and seriously affecting patients' quality of life. However, current clinical therapies are limited and have not achieved satisfactory outcome, due to the incomplete understanding of the mechanism of neuronal damage during ischemic stroke. Recent studies have found that ferroptosis is implicated in the pathophysiology of ischemic stroke. Ferroptosis is an iron-dependent regulated cell death driven by lipid peroxidation. Under normal physiological conditions, GSH/GPX4, FSP1/CoQ10, GCH/BH4 and other anti-ferroptosis pathways can function effectively to suppress the occurrence of ferroptosis. After ischemic stroke, two typical ferroptosis characteristics, lipid peroxidation and iron accumulation, are observed, accompanied by changes in the expression of ferroptosis related genes such as GPX4, ACSL4, and SLC7A11, suggesting that ferroptosis plays a key role in ischemic stroke, which provides a new idea for the clinical treatment of ischemic stroke. This article reviewed the pathological mechanisms of ferroptosis in the occurrence and development of ischemic stroke, as well as the related progress of ferroptosis targeted therapy.
Collapse
Affiliation(s)
- Xiaodan Hu
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yutong Bao
- School of Clinical Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Man Li
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Weiguang Zhang
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chunhua Chen
- Department of Human Anatomy, Histology and embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
6
|
Lipoxygenase Metabolism: Critical Pathways in Microglia-mediated Neuroinflammation and Neurodevelopmental Disorders. Neurochem Res 2022; 47:3213-3220. [DOI: 10.1007/s11064-022-03645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
7
|
Zhang L, Zhou H, Wang S, Guan Y, Zhang C, Fang D. Changes in microglia during drug treatment of stroke. IBRAIN 2022; 8:227-240. [PMID: 37786889 PMCID: PMC10528798 DOI: 10.1002/ibra.12037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/07/2022] [Accepted: 04/20/2022] [Indexed: 10/04/2023]
Abstract
Microglia are the main immune cells in the brain and the first defense barrier of the nervous system. Microglia play a complex role in the process of stroke. A growing number of studies focus on the mechanism of action of drugs functions and how to regulate microglia. Therefore, we talk about the pathophysiological mechanisms of stroke and elaborate on the microglia signaling pathways of drug action in stroke models and how these drugs play a role in stroke treatment in this review. Understanding how drugs modulate proinflammatory and anti-inflammatory responses of microglia may be critical to implementing therapeutic strategies using immune interventions in stroke.
Collapse
Affiliation(s)
- Ling‐Jing Zhang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Hong‐Su Zhou
- Department of AnesthesiaGraduate School of Zunyi Medical UniversityZunyiGuizhouChina
| | - Shi‐Ya Wang
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Huan Guan
- Department of AnesthesiaZunyi Medical UniversityZunyiGuizhouChina
| | - Chao Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Rong Fang
- Department of Family PlanningAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|