1
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. Cell Rep 2024; 43:114503. [PMID: 39018245 PMCID: PMC11407288 DOI: 10.1016/j.celrep.2024.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA sequencing revealed that >80% of cells in thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kristen T Thomas
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ildar T Bayazitov
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kyle D Newman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nathaniel B Kurtz
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody A Ramirez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexandra J Trevisan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samuel T Peters
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew B Schild
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Ehweiner A, Duch C, Brembs B. Wings of Change: aPKC/FoxP-dependent plasticity in steering motor neurons underlies operant self-learning in Drosophila. F1000Res 2024; 13:116. [PMID: 38779314 PMCID: PMC11109550 DOI: 10.12688/f1000research.146347.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 05/25/2024] Open
Abstract
Background Motor learning is central to human existence, such as learning to speak or walk, sports moves, or rehabilitation after injury. Evidence suggests that all forms of motor learning share an evolutionarily conserved molecular plasticity pathway. Here, we present novel insights into the neural processes underlying operant self-learning, a form of motor learning in the fruit fly Drosophila. Methods We operantly trained wild type and transgenic Drosophila fruit flies, tethered at the torque meter, in a motor learning task that required them to initiate and maintain turning maneuvers around their vertical body axis (yaw torque). We combined this behavioral experiment with transgenic peptide expression, CRISPR/Cas9-mediated, spatio-temporally controlled gene knock-out and confocal microscopy. Results We find that expression of atypical protein kinase C (aPKC) in direct wing steering motoneurons co-expressing the transcription factor FoxP is necessary for this type of motor learning and that aPKC likely acts via non-canonical pathways. We also found that it takes more than a week for CRISPR/Cas9-mediated knockout of FoxP in adult animals to impair motor learning, suggesting that adult FoxP expression is required for operant self-learning. Conclusions Our experiments suggest that, for operant self-learning, a type of motor learning in Drosophila, co-expression of atypical protein kinase C (aPKC) and the transcription factor FoxP is necessary in direct wing steering motoneurons. Some of these neurons control the wing beat amplitude when generating optomotor responses, and we have discovered modulation of optomotor behavior after operant self-learning. We also discovered that aPKC likely acts via non-canonical pathways and that FoxP expression is also required in adult flies.
Collapse
Affiliation(s)
- Andreas Ehweiner
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| | - Carsten Duch
- Institute of Developmental Biology and Neurobiology (iDN), Johannes Gutenberg Universitat Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Björn Brembs
- Institut für Zoologie - Neurogenetik, Universität Regensburg, Regensburg, Bavaria, 93040, Germany
| |
Collapse
|
3
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578421. [PMID: 38352415 PMCID: PMC10862901 DOI: 10.1101/2024.02.01.578421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H. Patton
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Ildar T. Bayazitov
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kyle D. Newman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Nathaniel B. Kurtz
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Cody A. Ramirez
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Samuel T. Peters
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Andrew B. Schild
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| |
Collapse
|
4
|
Jain A, Nakahata Y, Watabe T, Rusina P, South K, Adachi K, Yan L, Simorowski N, Furukawa H, Yasuda R. Dendritic, delayed, and stochastic CaMKII activation underlies behavioral time scale plasticity in CA1 synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.549180. [PMID: 37577549 PMCID: PMC10418109 DOI: 10.1101/2023.08.01.549180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Behavioral time scale plasticity (BTSP), is a form of non-Hebbian plasticity induced by integrating pre- and postsynaptic components separated by behavioral time scale (seconds). BTSP in the hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms underlying this behavioral time scale (eligibility trace) and synapse specificity are unknown. CaMKII can be activated in a synapse-specific manner and remain active for a few seconds, making it a compelling candidate for the eligibility trace during BTSP. Here, we show that BTSP can be induced in a single dendritic spine using 2-photon glutamate uncaging paired with postsynaptic current injection temporally separated by behavioral time scale. Using an improved CaMKII sensor, we saw no detectable CaMKII activation during this BTSP induction. Instead, we observed a dendritic, delayed, and stochastic CaMKII activation (DDSC) associated with Ca 2+ influx and plateau 20-40 s after BTSP induction. DDSC requires both pre-and postsynaptic activity, suggesting that CaMKII can integrate these two signals. Also, optogenetically blocking CaMKII 30 s after the BTSP protocol inhibited synaptic potentiation, indicating that DDSC is an essential mechanism of BTSP. IP3-dependent intracellular Ca 2+ release facilitates both DDSC and BTSP. Thus, our study suggests that the non-synapse specific CaMKII activation provides an instructive signal with an extensive time window over tens of seconds during BTSP.
Collapse
|