1
|
Lu W, Huang X, Shen D, Wang K, Wang J, Diao Z, Qiu S. Potential compensatory mechanism for cognitive impairment in type 2 diabetes and prediabetes: altered structure-function coupling. Front Endocrinol (Lausanne) 2025; 16:1491377. [PMID: 40166679 PMCID: PMC11955491 DOI: 10.3389/fendo.2025.1491377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/03/2025] [Indexed: 04/02/2025] Open
Abstract
Background Structure-function (SC-FC) coupling may be more sensitive to detecting changes in the brain than any single modality. The aim of this study was to investigate the effects of SC-FC coupling changes on cognition and their interactions in patients with prediabetes and type 2 diabetes mellitus (T2DM). Methods A total of 493 participants (119 with normal glucose metabolism (NGM), 125 with prediabetes, and 249 with T2DM) were included in the study. Diffusion-weighted MRI and resting state functional MRI data were used to quantify SC-FC coupling. General linear model and linear regression analysis were used to evaluate the relationship between glucose metabolism, SC-FC coupling, and cognition. Mediation models were used to evaluate the mediating role of regional SC-FC coupling between diabetes-related measures and cognition. Results The regional coupling strength of SC-FC varied greatly in different brain regions, but was strongest in the ventral attention and somatmotor network areas. Compared with NGM patients, T2DM patients had higher SC-FC coupling in the default mode network but lower SC-FC coupling in the limbic network. In addition, fasting glucose and HbA1c were associated with weaker SC-FC coupling in the limbic network, fasting insulin with higher SC-FC coupling in the limbic network, and HbA1c with higher SC-FC coupling in the dorsal attention network. Furthermore, through mediated models we found that SC-FC coupling in the limbic network suppressed the association between diabetes-related measures and cognition. Conclusion T2DM and diabetes-related measures were associated with abnormal SC-FC coupling of the limbic network. The recombination of SC-FC coupling relationships in the limbic network may indicate a potential compensatory mechanism for cognitive decline that begins in prediabetes.
Collapse
Affiliation(s)
- Weiye Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Die Shen
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Kun Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahe Wang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ziyu Diao
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Liu D, Li N, Zhu Y, Chen Q, Feng J. Asymmetric U-shaped relationship between blood glucose and white matter lesions: results of a cross-sectional study. BMC Neurol 2025; 25:65. [PMID: 39953442 PMCID: PMC11827292 DOI: 10.1186/s12883-025-04077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND Elderly individuals are susceptible to the accrual of White Matter Lesions (WMLs), a subcategory of cerebral small-vessel disease. WMLs are strongly linked to an increased risk of strokes, intracerebral hemorrhages, and dementia. While the relationship between blood glucose levels and the development of WMLs has been investigated in previous studies, the findings remain inconsistent. Some evidence suggests that glucose dysregulation, including both hypo- and hyperglycemia, may contribute to WML formation through mechanisms such as endothelial dysfunction and chronic inflammation. However, other studies report no significant correlation. This inconsistency underscores the need for further investigation. METHODS In this investigation, the primary data were derived from a predictive mathematical model designed to estimate WMLs based on parameters obtained from routine medical examinations, with head MRI scans serving as the reference standard for WML diagnosis and quantification. We leveraged multivariable logistic regression analysis to scrutinize the relationship between blood glucose concentrations and WMLs. Additionally, we employed a restricted cubic spline regression model to investigate a potential non-linear relationship between these variables. RESULTS There were 1904 participants who underwent medical check-ups which included a head MRI. Generally, the relationship between blood glucose levels and white matter lesions followed an asymmetric U-shaped curve (P for non-linearity = 0.004). A consistent finding was that compared to the individuals in the 2nd and 3rd quartiles (95 to 107 mg/dl), the 1st quartile (OR, 1.71; 95% CI: 1.26-2.30) and 4th quartile (OR, 1.57; 95%CI: 1.12-2.20) had white matter lesions were significantly higher. CONCLUSION An asymmetric U-shaped relationship exists between blood glucose and WMLs, with the lowest risk occurring at 95-107 mg/dl. Management of blood glucose can help prevent the occurrence and development of WMLs. However, the study's cross-sectional design limits causal inference, and the reliance on pre-existing data constrained the availability of variables.
Collapse
Affiliation(s)
- Dayuan Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China
| | - Ning Li
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China
| | - Yubo Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China
| | - Qianhua Chen
- Hainan Medical University, No.3 Xueyuan Road, Longhua District, Haikou City, Hainan Province, 571199, China
| | - Jigao Feng
- Department of Neurosurgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Avenue, Longhua District, Haikou City, Hainan Province, 570311, China.
| |
Collapse
|
3
|
Enayati Z, Cacace AT. Vestibular and Balance Considerations in Type 2 Diabetes: A Tutorial on Pertinent Areas and Issues. Am J Audiol 2024; 33:1092-1103. [PMID: 39401206 DOI: 10.1044/2024_aja-24-00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024] Open
Abstract
PURPOSE The purpose of this study is to describe the effects of diabetes mellitus (DM) on vestibular and balance system functions in humans. Because Type 2 diabetes (T2D) represents the majority of individuals affected by this condition, this subgroup is the main focus of this tutorial. METHOD Evidence of dysfunction is based on epidemiological, anatomical, physiological, neuroimaging, and clinical findings. Preventative measures, therapeutic interventions, and other mitigating factors are also given consideration. RESULTS Experimental and clinical findings support the notion that T2D damages vestibular and balance systems to the extent that these effects are more prevalent in patients with higher blood glucose levels and longer duration of the disease. Evidence indicates that T2D increases the occurrence and re-occurrence rates of benign paroxysmal positional vertigo, particularly when it occurs in conjunction with hypertension, osteoarthritis, and otologic disorders like Ménière's disease. Type 2 diabetes also impairs vestibular compensation, which is exacerbated by disease duration. Investigational and clinical studies suggest that galvanic stimulation of the vestibular system can be effective in reducing blood glucose levels and improving rehabilitation outcomes. CONCLUSION Because DM is a chronic metabolic condition affecting cochlear, vestibular, and balance system functions, lowering blood glucose levels through diet, pharmacological interventions, and exercise can be effective in mitigating dysfunction.
Collapse
Affiliation(s)
- Zakaria Enayati
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| | - Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| |
Collapse
|
4
|
Sumbul‐Sekerci B, Velioglu HA, Sekerci A. Diabetes-related clinical and microstructural white matter changes in patients with Alzheimer's disease. Brain Behav 2024; 14:e3533. [PMID: 38715429 PMCID: PMC11077244 DOI: 10.1002/brb3.3533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
AIM Although there exists substantial epidemiological evidence indicating an elevated risk of dementia in individuals with diabetes, our understanding of the neuropathological underpinnings of the association between Type-2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) remains unclear. This study aims to unveil the microstructural brain changes associated with T2DM in AD and identify the clinical variables contributing to these changes. METHODS In this retrospective study involving 64 patients with AD, 31 individuals had concurrent T2DM. The study involved a comparative analysis of diffusion tensor imaging (DTI) images and clinical features between patients with and without T2DM. The FSL FMRIB software library was used for comprehensive preprocessing and tractography analysis of DTI data. After eddy current correction, the "bedpost" model was utilized to model diffusion parameters. Linear regression analysis with a stepwise method was used to predict the clinical variables that could lead to microstructural white matter changes. RESULTS We observed a significant impairment in the left superior longitudinal fasciculus (SLF) among patients with AD who also had T2DM. This impairment in patients with AD and T2DM was associated with an elevation in creatine levels. CONCLUSION The white matter microstructure in the left SLF appears to be sensitive to the impairment of kidney function associated with T2DM in patients with AD. The emergence of AD in association with T2DM may be driven by mechanisms distinct from the typical AD pathology. Compromised renal function in AD could potentially contribute to impaired white matter integrity.
Collapse
Affiliation(s)
- Betul Sumbul‐Sekerci
- Department of Clinical Pharmacy, Faculty of PharmacyBezmialem Vakıf UniversityIstanbulTurkey
| | - Halil Aziz Velioglu
- Center for Psychiatric NeuroscienceFeinstein Institutes for Medical ResearchManhassetNew YorkUSA
- Department of Neuroscience, Faculty of MedicineIstanbul Medipol UniversityIstanbulTurkey
| | - Abdusselam Sekerci
- Department of Internal Medicine, Faculty of MedicineBezmialem Vakif UniversityIstanbulTurkey
| |
Collapse
|
5
|
Zhao Q, Du X, Liu F, Zhang Y, Qin W, Zhang Q. ECHDC3 Variant Regulates the Right Hippocampal Microstructural Integrity and Verbal Memory in Type 2 Diabetes Mellitus. Neuroscience 2024; 538:30-39. [PMID: 38070593 DOI: 10.1016/j.neuroscience.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/25/2023]
Abstract
ECHDC3 is a risk gene for white matter (WM) hyperintensity and is associated with insulin resistance. This study aimed to investigate whether ECHDC3 variants selectively regulate brain WM microstructures and episodic memory in patients with type 2 diabetes mellitus (T2DM). We enrolled 106 patients with T2DM and 111 healthy controls. A voxel-wise general linear model was employed to explore the interaction effect between ECHDC3 rs11257311 polymorphism and T2DM diagnosis on fractional anisotropy (FA). A linear modulated mediation analysis was conducted to examine the potential of FA value to mediate the influence of T2DM on episodic memory in an ECHDC3-dependent manner. We observed a noteworthy interaction between genotype and diagnosis on FA in the right inferior temporal WM, right anterior limb of the internal capsule, right frontal WM, and the right hippocampus. Modulated mediation analysis revealed a significant ECHDC3 modulation on the T2DM → right hippocampal FA → short-term memory pathway, with only rs11257311 G risk homozygote demonstrating significant mediation effect. Together, our findings provide evidence of ECHDC3 modulating the effect of T2DM on right hippocampal microstructural impairment and short-term memory decline, which might be a neuro-mechanism for T2DM related episodic memory impairment.
Collapse
Affiliation(s)
- Qiyu Zhao
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Du
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yang Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wen Qin
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Quan Zhang
- Department of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
6
|
de Jong JJA, Jansen JFA, Vergoossen LWM, Schram MT, Stehouwer CDA, Wildberger JE, Linden DEJ, Backes WH. Effect of Magnetic Resonance Image Quality on Structural and Functional Brain Connectivity: The Maastricht Study. Brain Sci 2024; 14:62. [PMID: 38248277 PMCID: PMC10813868 DOI: 10.3390/brainsci14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
In population-based cohort studies, magnetic resonance imaging (MRI) is vital for examining brain structure and function. Advanced MRI techniques, such as diffusion-weighted MRI (dMRI) and resting-state functional MRI (rs-fMRI), provide insights into brain connectivity. However, biases in MRI data acquisition and processing can impact brain connectivity measures and their associations with demographic and clinical variables. This study, conducted with 5110 participants from The Maastricht Study, explored the relationship between brain connectivity and various image quality metrics (e.g., signal-to-noise ratio, head motion, and atlas-template mismatches) that were obtained from dMRI and rs-fMRI scans. Results revealed that in particular increased head motion (R2 up to 0.169, p < 0.001) and reduced signal-to-noise ratio (R2 up to 0.013, p < 0.001) negatively impacted structural and functional brain connectivity, respectively. These image quality metrics significantly affected associations of overall brain connectivity with age (up to -59%), sex (up to -25%), and body mass index (BMI) (up to +14%). Associations with diabetes status, educational level, history of cardiovascular disease, and white matter hyperintensities were generally less affected. This emphasizes the potential confounding effects of image quality in large population-based neuroimaging studies on brain connectivity and underscores the importance of accounting for it.
Collapse
Affiliation(s)
- Joost J. A. de Jong
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
- School for Mental Health and Neurosciences (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Jacobus F. A. Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
- School for Mental Health and Neurosciences (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Laura W. M. Vergoossen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
- School for Mental Health and Neurosciences (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Miranda T. Schram
- School for Mental Health and Neurosciences (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
- School for Cardiovascular Disease (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Heart and Vascular Centre, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Coen D. A. Stehouwer
- School for Mental Health and Neurosciences (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
- Department of Internal Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
- School for Cardiovascular Disease (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Heart and Vascular Centre, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
| | - Joachim E. Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
- School for Cardiovascular Disease (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - David E. J. Linden
- School for Mental Health and Neurosciences (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Walter H. Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, 6202 AZ Maastricht, The Netherlands
- School for Mental Health and Neurosciences (MHeNs), Maastricht University, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Chi H, Song M, Zhang J, Zhou J, Liu D. Relationship between acute glucose variability and cognitive decline in type 2 diabetes: A systematic review and meta-analysis. PLoS One 2023; 18:e0289782. [PMID: 37656693 PMCID: PMC10473499 DOI: 10.1371/journal.pone.0289782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/25/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Cognitive decline is one of the most widespread chronic complications of diabetes, which occurs in more than half of the patients with type 2 diabetes (T2DM). Emerging evidences have suggested that glucose variability (GV) is associated with the pathogenesis of diabetic complications. However, the influence of acute GV on cognitive dysfunction in T2DM is still controversial. The aim of the study was to evaluate the association between acute GV and cognitive defect in T2DM, and provide a most recent and comprehensive summary of the evidences in this research field. METHODS PubMed, Cochrane library, EMBASE, Web of science, Sinomed, China National Knowledge Infrastructure (CNKI), and Wanfang were searched for articles that reported on the association between acute GV and cognitive impairment in T2DM. RESULTS 9 eligible studies were included, with a total of 1263 patients with T2DM involved. Results showed that summary Fisher's z value was -0.23 [95%CI (-0.39, -0.06)], suggesting statistical significance (P = 0.006). Summary r value was -0.22 [95%CI (-0.37, -0.06)]. A lower cognitive performance was found in the subjects with greater glucose variation, which has statistical significance. Mean amplitude of glycemic excursions (MAGE) was associated with a higher risk of poor functional outcomes. Fisher's z value was -0.35 [95%CI (-0.43, -0.25)], indicating statistical significance (P = 0.011). Sensitivity analyses by omitting individual studies showed stability of the results. CONCLUSIONS Overall, higher acute GV is associated with an increased risk of cognitive impairment in patients with T2DM. Further studies should be required to determine whether targeted intervention of reducing acute GV could prevent cognitive decline.
Collapse
Affiliation(s)
- Haiyan Chi
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Endocrinology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Min Song
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Junyu Zhou
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Deshan Liu
- Department of Traditional Chinese Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
García-Casares N, González-González G, de la Cruz-Cosme C, Garzón-Maldonado FJ, de Rojas-Leal C, Ariza MJ, Narváez M, Barbancho MÁ, García-Arnés JA, Tinahones FJ. Effects of GLP-1 receptor agonists on neurological complications of diabetes. Rev Endocr Metab Disord 2023; 24:655-672. [PMID: 37231200 PMCID: PMC10404567 DOI: 10.1007/s11154-023-09807-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Emerging evidence suggests that treatment with glucagon-like peptide-1 receptor agonists (GLP-1 RAs) could be an interesting treatment strategy to reduce neurological complications such as stroke, cognitive impairment, and peripheral neuropathy. We performed a systematic review to examine the evidence concerning the effects of GLP-1 RAs on neurological complications of diabetes. The databases used were Pubmed, Scopus and Cochrane. We selected clinical trials which analysed the effect of GLP-1 RAs on stroke, cognitive impairment, and peripheral neuropathy. We found a total of 19 studies: 8 studies include stroke or major cardiovascular events, 7 involve cognitive impairment and 4 include peripheral neuropathy. Semaglutide subcutaneous and dulaglutide reduced stroke cases. Liraglutide, albiglutide, oral semaglutide and efpeglenatide, were not shown to reduce the number of strokes but did reduce major cardiovascular events. Exenatide, dulaglutide and liraglutide improved general cognition but no significant effect on diabetic peripheral neuropathy has been reported with GLP-1 RAs. GLP-1 RAs are promising drugs that seem to be useful in the reduction of some neurological complications of diabetes. However, more studies are needed.
Collapse
Affiliation(s)
- Natalia García-Casares
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain.
- Centro de Investigaciones Médico-Sanitarias (C.I.M.ES), Málaga, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Centro de Investigaciones Médico Sanitarias (C.I.M.E.S), Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Universitario de Teatinos s/n., Málaga, 29010, España.
| | | | - Carlos de la Cruz-Cosme
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain
| | - Francisco J Garzón-Maldonado
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain
| | - Carmen de Rojas-Leal
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
| | - María J Ariza
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (C.I.M.ES), Málaga, Spain
| | - Manuel Narváez
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
| | - Miguel Ángel Barbancho
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain
- Centro de Investigaciones Médico-Sanitarias (C.I.M.ES), Málaga, Spain
| | | | - Francisco J Tinahones
- Facultad de Medicina, Departamento de Medicina, Universidad de Málaga, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga (I.B.I.M.A), Málaga, Spain.
- Hospital Universitario Virgen de la Victoria de Málaga, Málaga, Spain.
- Departamento de Medicina, Facultad de Medicina, Universidad de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Campus Universitario de Teatinos s/n., Málaga, 29010, España.
| |
Collapse
|
9
|
Roy B, Choi SE, Freeby MJ, Kumar R. Microstructural brain tissue changes contribute to cognitive and mood deficits in adults with type 2 diabetes mellitus. Sci Rep 2023; 13:9636. [PMID: 37316507 PMCID: PMC10267112 DOI: 10.1038/s41598-023-35522-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/16/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) patients show brain tissue changes in mood and cognitive regulatory sites, but the nature and extent of tissue injury and their associations with symptoms are unclear. Our aim was to examine brain tissue damage in T2DM over controls using mean diffusivity (MD) computed from diffusion tensor imaging (DTI), and assess correlations with mood and cognitive symptoms in T2DM. We collected DTI series (MRI), mood, and cognitive data, from 169 subjects (68 T2DM and 101 controls). Whole-brain MD-maps were calculated, normalized, smoothed, and compared between groups, as well as correlated with mood and cognition scores in T2DM subjects. Type 2 diabetes patients showed altered cognitive and mood functions over control subjects. Multiple brain sites in T2DM patients showed elevated MD values, indicating chronic tissue changes, including the cerebellum, insula, and frontal and prefrontal cortices, cingulate, and lingual gyrus. Associations between MD values and mood and cognition scores appeared in brain sites mediating these functions. Type 2 diabetes patients show predominantly chronic brain tissue changes in areas mediating mood and cognition functions, and tissue changes from those regions correlate with mood and cognitive symptoms suggesting that the microstructural brain changes may account for the observed functional deficits.
Collapse
Affiliation(s)
- Bhaswati Roy
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 56-141 CHS, 10833 Le Conte Ave, Los Angeles, CA, 90095-1763, USA
| | - Sarah E Choi
- UCLA School of Nursing, University of California Los Angeles, Los Angeles, CA, USA
| | - Matthew J Freeby
- Department of Medicine, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Rajesh Kumar
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, University of California Los Angeles, 56-141 CHS, 10833 Le Conte Ave, Los Angeles, CA, 90095-1763, USA.
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA.
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Xu Z, Zhao L, Yin L, Liu Y, Ren Y, Yang G, Wu J, Gu F, Sun X, Yang H, Peng T, Hu J, Wang X, Pang M, Dai Q, Zhang G. MRI-based machine learning model: A potential modality for predicting cognitive dysfunction in patients with type 2 diabetes mellitus. Front Bioeng Biotechnol 2022; 10:1082794. [PMID: 36483770 PMCID: PMC9725113 DOI: 10.3389/fbioe.2022.1082794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 07/27/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM) is a crucial risk factor for cognitive impairment. Accurate assessment of patients' cognitive function and early intervention is helpful to improve patient's quality of life. At present, neuropsychiatric screening tests is often used to perform this task in clinical practice. However, it may have poor repeatability. Moreover, several studies revealed that machine learning (ML) models can effectively assess cognitive impairment in Alzheimer's disease (AD) patients. We investigated whether we could develop an MRI-based ML model to evaluate the cognitive state of patients with T2DM. Objective: To propose MRI-based ML models and assess their performance to predict cognitive dysfunction in patients with type 2 diabetes mellitus (T2DM). Methods: Fluid Attenuated Inversion Recovery (FLAIR) of magnetic resonance images (MRI) were derived from 122 patients with T2DM. Cognitive function was assessed using the Chinese version of the Montréal Cognitive Assessment Scale-B (MoCA-B). Patients with T2DM were separated into the Dementia (DM) group (n = 40), MCI group (n = 52), and normal cognitive state (N) group (n = 30), according to the MoCA scores. Radiomics features were extracted from MR images with the Radcloud platform. The variance threshold, SelectKBest, and least absolute shrinkage and selection operator (LASSO) were used for the feature selection. Based on the selected features, the ML models were constructed with three classifiers, k-NearestNeighbor (KNN), Support Vector Machine (SVM), and Logistic Regression (LR), and the validation method was used to improve the effectiveness of the model. The area under the receiver operating characteristic curve (ROC) determined the appearance of the classification. The optimal classifier was determined by the principle of maximizing the Youden index. Results: 1,409 features were extracted and reduced to 13 features as the optimal discriminators to build the radiomics model. In the validation set, ROC curves revealed that the LR classifier had the best predictive performance, with an area under the curve (AUC) of 0.831 in DM, 0.883 in MIC, and 0.904 in the N group, compared with the SVM and KNN classifiers. Conclusion: MRI-based ML models have the potential to predict cognitive dysfunction in patients with T2DM. Compared with the SVM and KNN, the LR algorithm showed the best performance.
Collapse
Affiliation(s)
- Zhigao Xu
- Department of Radiology, Radiology-Based AI Innovation Workroom, The Third People’s Hospital of Datong, Datong, China
| | - Lili Zhao
- Department of Radiology, Radiology-Based AI Innovation Workroom, The Third People’s Hospital of Datong, Datong, China
| | - Lei Yin
- Graduate School, Changzhi Medical College, Changzhi, China
| | - Yan Liu
- Department of Endocrinology, The Third People’s Hospital of Datong, Datong, China
| | - Ying Ren
- Department of Materials Science and Engineering, Henan University of Technology, Zhengzhou, China
| | - Guoqiang Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, China
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinlong Wu
- Department of Radiology, Radiology-Based AI Innovation Workroom, The Third People’s Hospital of Datong, Datong, China
| | - Feng Gu
- Department of Radiology, Radiology-Based AI Innovation Workroom, The Third People’s Hospital of Datong, Datong, China
| | - Xuesong Sun
- Medical Department, The Third People’s Hospital of Datong, Datong, China
| | - Hui Yang
- Department of Radiology, Radiology-Based AI Innovation Workroom, The Third People’s Hospital of Datong, Datong, China
| | - Taisong Peng
- Department of Radiology, The Second People’s Hospital of Datong, Datong, China
| | - Jinfeng Hu
- Department of Radiology, The Second People’s Hospital of Datong, Datong, China
| | - Xiaogeng Wang
- Department of Radiology, Affiliated Hospital of Datong University, Datong, China
| | - Minghao Pang
- Department of Radiology, The People’s Hospital of Yunzhou District, Datong, China
| | - Qiong Dai
- Huiying Medical Technology (Beijing) Co. Ltd, Beijing, China
| | - Guojiang Zhang
- Department of Cardiovasology, Department of Science and Education, The Third People’s Hospital of Datong, Datong, China
| |
Collapse
|
11
|
Bashir J, Yarube IU. Occurrence of mild cognitive impairment with hyperinsulinaemia in Africans with advanced type 2 diabetes mellitus. IBRO Neurosci Rep 2022; 12:182-187. [PMID: 35746970 PMCID: PMC9210459 DOI: 10.1016/j.ibneur.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Abstract
There is paucity of information on the prevalence of mild cognitive impairment (MCI) among individuals with type 2 diabetes mellitus (T2DM) in sub-Saharan Africa, including Nigeria. In addition, the role of hyperinsulinaemia in the development of MCI needs further investigation. This study sought to assess cognition and hyperinsulinaemia, with the associated characteristics in patients with advanced T2DM. Cognition was assessed using Montreal cognitive assessment test (MoCA), while fasting plasma insulin was measured using an ELISA kit. Sixty one diabetic subjects and 32 non-diabetic controls, matched for age, gender and level of education were studied. The diabetics had MCI while the controls had normal cognitive function. About 88.5% of the diabetic subjects had MCI, in contrast with only 50% of the non-diabetic controls. The most significantly affected cognitive domains among the diabetics were executive function, naming, attention, abstraction and delayed recall. Among the diabetics, MCI correlated with age, weight and body mass index (BMI); and in addition, age and weight found to be significant predictors of MCI. Plasma insulin concentration among the diabetics (16.24 ± 13.5 µIU/ml) was more than twice that of the controls (7.59 ± 2.9 µIU/ml). Hyperinsulinaemia among the diabetics correlated with weight, BMI, blood pressure and fasting blood sugar (FBS). Glycated haemoglobin and FBS levels were higher among diabetics compared with the controls. In conclusion, Africans with advanced T2DM show multi-domain MCI with high prevalence, coexisting with hyperinsulinaemia. Majority of the patients have diabetic complications and poor glycaemic control. Hyperinsulinaemia may play a complementary role in the pathophysiology of MCI in T2DM. Patients with advanced T2DM manifest multi-domain MCI with up to 88% prevalence. There is hyperinsulinaemia coexisting with the MCI among patients with advanced 2DM. Majority of the patients have diabetic complications and poor glycaemic control.
Collapse
|
12
|
Lei H, Hu R, Luo G, Yang T, Shen H, Deng H, Chen C, Zhao H, Liu J. Altered Structural and Functional MRI Connectivity in Type 2 Diabetes Mellitus Related Cognitive Impairment: A Review. Front Hum Neurosci 2022; 15:755017. [PMID: 35069149 PMCID: PMC8770326 DOI: 10.3389/fnhum.2021.755017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with cognitive impairment in many domains. There are several pieces of evidence that changes in neuronal neuropathies and metabolism have been observed in T2DM. Structural and functional MRI shows that abnormal connections and synchronization occur in T2DM brain circuits and related networks. Neuroplasticity and energy metabolism appear to be principal effector systems, which may be related to amyloid beta (Aβ) deposition, although there is no unified explanation that includes the complex etiology of T2DM with cognitive impairment. Herein, we assume that cognitive impairment in diabetes may lead to abnormalities in neuroplasticity and energy metabolism in the brain, and those reflected to MRI structural connectivity and functional connectivity, respectively.
Collapse
|
13
|
Wang H, Deng J, Chen L, Ding K, Wang Y. Acute glucose fluctuation induces inflammation and neurons apoptosis in hippocampal tissues of diabetic rats. J Cell Biochem 2021; 122:1239-1247. [PMID: 31713299 DOI: 10.1002/jcb.29523] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 01/25/2023]
Abstract
It is well-recognized that glycemic disorders are leading causes of diabetic complications and acute fluctuation of blood glucose and reported more likely being related to oxidative stress, vasculopathy, and other diabetic complications than continuous hyperglycemia in patients with diabetic and animal models. To explore the hypothesis that acute glucose fluctuation (GF) aggravates inflammatory lesions and neuron apoptosis in the hippocampus of diabetic rats. Twenty female GK rats were randomly allocated into a glucose fluctuating group (GK-GF) and a continuous hyperglycemia group (GK-CHG) and 10 age-matched female Wistar rats served as controls. GF was induced in the GK-GF group by injection with glucose and insulin at different periods of time per day for 6 weeks. Body weight was determined weekly. At the end of the study, blood hemoglobin A1c (HbA1c) and serum lipids were measured. Serum and hippocampus interleukin 1β (IL-1β), IL-6, IL-8, and tumor necrosis factor-α (TNF-α) were measured by enzyme-linked immunosorbent assay and real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Hippocampus Bcl-2, Bax, Pten, fas, and myc were quantified by qRT-PCR and Western blot analysis and Mirror Water Maze (MWM) test was performed. We successfully established an animal model with daily GF and a control model with CHG using GK diabetic rats. The GF and CHG rats showed lower weight gain during the 6-week experimental period with no significant difference in the levels of serum lipids such as total triglyceride, total cholesterol, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol compared with the control rats at the end of the study. Meanwhile, the GF and CHG rats showed higher blood HbA1c levels than that of control rats. MWM trainings tests detected that glucose disorders in GF and CHG rats tend to present longer latencies, more cross times and longer path length compared with those of the control rats, indicating impaired the hippocampus-regulated behavioral function such as spatial orientating and memory. Importantly, it was found that GF promoted the expression of TNF-α and IL-1β in the hippocampus of the GF rats while continuous hyperglycemia in CHG rats had little effect on that. Furthermore, both GF and CHG diabetic rats had abnormal expression of apoptosis-associated genes in the hippocampus compared with control Wistar rats and neurons apoptosis in GF rats appears to be more severe than CHG rats. Overall, this study confirmed that GF is a more critical factor that would promote the neuron apoptosis and induce inflammation in the hippocampus than continuous hyperglycemia in diabetic animals, which shed new light on the importance of monitoring and administration of blood glucose in the prevention and therapy for diabetes.
Collapse
Affiliation(s)
- Hui Wang
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - JiuLing Deng
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Liang Chen
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Ke Ding
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
14
|
Im S, Lee J, Kim S. Preliminary Comparison of Subcortical Structures in Elderly Subclinical Depression: Structural Analysis with 3T MRI. Exp Neurobiol 2021; 30:183-202. [PMID: 33972469 PMCID: PMC8118753 DOI: 10.5607/en20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Depression in the elderly population has shown increased likelihood of neurological disorders due to structural changes in the subcortical area. However, further investigation into depression related subcortical changes is needed due to mismatches in structural analysis results between studies as well as scarcities in research regarding subcortical connectivity patterns of subclinical depression populations. This study aims to investigate structural differences in subcortical regions of aged participants with subclinical depression using 3Tesla MRI. In structural analysis, volumes of each subcortical region were measured to observe the volumetric difference and asymmetry between groups, but no significant difference was found. In addition, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) did not show any significant differences between groups. Structural analysis using probabilistic tractography indicated that the connection strength between left nucleus accumbens-right hippocampus, and right thalamus-right caudate was higher in the control group than the subclinical depression group. The differences in subcortical connection strength of subclinical depression groups, have shown to correlate with emotional and cognitive disorders, such as anxiety and memory impairment. We believe that the analysis of structural differences and cross-regional network measures in subcortical structures can help identify neurophysiological changes occurring in subclinical depression.
Collapse
Affiliation(s)
- SangJin Im
- Lee Gil Ya Cancer & Diabetes Institute, Gachon University, Incheon 21999, Korea
| | - Jeonghwan Lee
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Siekyeong Kim
- Department of Psychiatry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
15
|
Alotaibi A, Tench C, Stevenson R, Felmban G, Altokhis A, Aldhebaib A, Dineen RA, Constantinescu CS. Investigating Brain Microstructural Alterations in Type 1 and Type 2 Diabetes Using Diffusion Tensor Imaging: A Systematic Review. Brain Sci 2021; 11:brainsci11020140. [PMID: 33499073 PMCID: PMC7911883 DOI: 10.3390/brainsci11020140] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/13/2022] Open
Abstract
Type 1 and type 2 diabetes mellitus have an impact on the microstructural environment and cognitive functions of the brain due to its microvascular/macrovascular complications. Conventional Magnetic Resonance Imaging (MRI) techniques can allow detection of brain volume reduction in people with diabetes. However, conventional MRI is insufficiently sensitive to quantify microstructural changes. Diffusion Tensor Imaging (DTI) has been used as a sensitive MRI-based technique for quantifying and assessing brain microstructural abnormalities in patients with diabetes. This systematic review aims to summarise the original research literature using DTI to quantify microstructural alterations in diabetes and the relation of such changes to cognitive status and metabolic profile. A total of thirty-eight published studies that demonstrate the impact of diabetes mellitus on brain microstructure using DTI are included, and these demonstrate that both type 1 diabetes mellitus and type 2 diabetes mellitus may affect cognitive abilities due to the alterations in brain microstructures.
Collapse
Affiliation(s)
- Abdulmajeed Alotaibi
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- School of Applied Medical Sciences, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
- Correspondence: ; Tel.: +44-115-823-1443; Fax: +44-115-9709738
| | - Christopher Tench
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
| | - Rebecca Stevenson
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
| | - Ghadah Felmban
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- School of Applied Medical Sciences, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Amjad Altokhis
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- School of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Ali Aldhebaib
- School of Applied Medical Sciences, King Saud bin Abdul-Aziz University for Health Sciences, Riyadh 14611, Saudi Arabia;
| | - Rob A. Dineen
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
- NIHR Nottingham Biomedical Research Centre, Nottingham NG1 5DU, UK
| | - Cris S. Constantinescu
- Division of Clinical Neuroscience, Nottingham University Hospitals NHS Trust, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (C.T.); (R.S.); (G.F.); (A.A.); (R.A.D.); (C.S.C.)
| |
Collapse
|
16
|
Sun J, Xu B, Zhang X, He Z, Liu Z, Liu R, Nan G. The Mechanisms of Type 2 Diabetes-Related White Matter Intensities: A Review. Front Public Health 2020; 8:498056. [PMID: 33282807 PMCID: PMC7705244 DOI: 10.3389/fpubh.2020.498056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The continually increasing number of patients with type 2 diabetes is a worldwide health problem, and the incidence of microvascular complications is closely related to type 2 diabetes. Structural brain abnormalities are considered an important pathway through which type 2 diabetes causes brain diseases. In fact, there is considerable evidence that type 2 diabetes is associated with an increased risk of structural brain abnormalities such as lacunar infarcts (LIs), white matter hyperintensities (WMHs), and brain atrophy. WMHs are a common cerebral small-vessel disease in elderly adults, and it is characterized histologically by demyelination, loss of oligodendrocytes, and vacuolization as a result of small-vessel ischemia in the white matter. An increasing number of studies have found that diabetes is closely related to WMHs. However, the exact mechanism by which type 2 diabetes causes WMHs is not fully understood. This article reviews the mechanisms of type 2 diabetes-related WMHs to better understand the disease and provide help for better clinical treatment.
Collapse
Affiliation(s)
- Jing Sun
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baofeng Xu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhidong He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ziwei Liu
- Department of Endocrinology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Liu
- Department of VIP Unit, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Li Y, Liang Y, Tan X, Chen Y, Yang J, Zeng H, Qin C, Feng Y, Ma X, Qiu S. Altered Functional Hubs and Connectivity in Type 2 Diabetes Mellitus Without Mild Cognitive Impairment. Front Neurol 2020; 11:1016. [PMID: 33071928 PMCID: PMC7533640 DOI: 10.3389/fneur.2020.01016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM)-related cognitive decline is associated with neuroimaging changes. However, only a few studies have focused on early functional alteration in T2DM prior to mild cognitive impairment (MCI). This study aimed to investigate the early changes of global connectivity patterns in T2DM by using a resting-state functional magnetic resonance imaging (rs-fMRI) technique. Methods: Thirty-four T2DM subjects and 38 age-, sex-, and education-matched healthy controls (HCs) underwent rs-fMRI in a 3T MRI scanner. Degree centrality (DC) was used to identify the functional hubs of the whole brain in T2DM without MCI. Then the functional connectivity (FC) between hubs and the rest of the brain was assessed by using the hub-based approach. Results: Compared with HCs, T2DM subjects showed increased DC in the right cerebellum lobules III-V. Hub-based FC analysis found that the right cerebellum lobules III-V of T2DM subjects had increased FC with the right cerebellum crus II and lobule VI, the right temporal inferior/middle gyrus, and the right hippocampus. Conclusions: Increased DC in the right cerebellum regions III-V, as well as increased FC within cerebellar regions and ipsilateral cerebrocerebellar regions, may indicate an important pathophysiological mechanism for compensation in T2DM without MCI.
Collapse
Affiliation(s)
- Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinquan Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
18
|
Yu ZW, Liu R, Li X, Wang Y, Fu YH, Li HY, Yuan Y, Gao XY. Potential roles of Glucagon-like peptide-1 and its analogues in cognitive impairment associated with type 2 diabetes mellitus. Mech Ageing Dev 2020; 190:111294. [DOI: 10.1016/j.mad.2020.111294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022]
|
19
|
Structural brain changes in Ser129-phosphorylated alpha-synuclein rats based on voxel-based morphometry. Behav Brain Res 2020; 393:112786. [PMID: 32592738 DOI: 10.1016/j.bbr.2020.112786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/07/2020] [Accepted: 06/21/2020] [Indexed: 11/22/2022]
Abstract
Parkinson's disease has become one of the most common neurodegenerative diseases. Pathological changes typically manifest following dopaminergic neuron loss in the substantia nigra and abnormal alpha-synuclein (α-syn) aggregation in the neurons. α-Syn is the major component of Lewy bodies. However, research pertaining to the spread of abnormal α-syn aggregations, which results in specific damage to the brain structure and function, is lacking. In the present study, full-length human α-syn fibrils were injected into the medial forebrain bundle of rats, with an experimental endpoint of 6 months. Histological analysis was conducted to observe the pathological progress of abnormal endogenous α-syn aggregation and nerve fiber quality. Changes in gray and white matter integrity were quantitatively analyzed using voxel-based morphometry (VBM). Behavioral changes were observed over the 6-month period. Histological analysis showed reduced dopamine transporter levels in the striatum of the experimental rats; widespread abnormal endogenous α-syn accumulation; and damaged, sparse, and disordered nerve fibers in the experimental group. VBM showed that at 6 months after surgery, bilateral anterior limbic, bilateral inferior limbic, right hippocampal, and right cortical volumes had reduced, whereas thalamic volume had increased in the experimental group compared with that in the control group. Damage to the limbic and thalamic fiber structure may occur in the earlier stages of Parkinson's disease.
Collapse
|
20
|
Cardiometabolic determinants of early and advanced brain alterations: Insights from conventional and novel MRI techniques. Neurosci Biobehav Rev 2020; 115:308-320. [DOI: 10.1016/j.neubiorev.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 04/02/2020] [Indexed: 12/11/2022]
|
21
|
Vergoossen LW, Schram MT, de Jong JJ, Stehouwer CD, Schaper NC, Henry RM, van der Kallen CJ, Dagnelie PC, van Boxtel MP, Eussen SJ, Backes WH, Jansen JF. White Matter Connectivity Abnormalities in Prediabetes and Type 2 Diabetes: The Maastricht Study. Diabetes Care 2020; 43:201-208. [PMID: 31601638 DOI: 10.2337/dc19-0762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/18/2019] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Prediabetes and type 2 diabetes are associated with structural brain abnormalities, often observed in cognitive disorders. Besides visible lesions, (pre)diabetes might also be associated with alterations of the intrinsic organization of the white matter. In this population-based cohort study, the association of prediabetes and type 2 diabetes with white matter network organization was assessed. RESEARCH DESIGN AND METHODS In the Maastricht Study, a type 2 diabetes-enriched population-based cohort study (1,361 subjects with normal glucose metabolism, 348 with prediabetes, and 510 with type 2 diabetes assessed by oral glucose tolerance test; 52% men; aged 59 ± 8 years), 3 Tesla structural and diffusion MRI was performed. Whole-brain white matter tractography was used to assess the number of connections (node degree) between 94 brain regions and the topology (graph measures). Multivariable linear regression analyses were used to investigate the associations of glucose metabolism status with network measures. Associations were adjusted for age, sex, education, and cardiovascular risk factors. RESULTS Prediabetes and type 2 diabetes were associated with lower node degree after full adjustment (standardized [st]βPrediabetes = -0.055 [95% CI -0.172, 0.062], stβType2diabetes = -0.256 [-0.379, -0.133], P trend < 0.001). Prediabetes was associated with lower local efficiency (stβ = -0.084 [95% CI -0.159, -0.008], P = 0.033) and lower clustering coefficient (stβ = -0.097 [95% CI -0.189, -0.005], P = 0.049), whereas type 2 diabetes was not. Type 2 diabetes was associated with higher communicability (stβ = 0.148 [95% CI 0.042, 0.253], P = 0.008). CONCLUSIONS These findings indicate that prediabetes and type 2 diabetes are associated with fewer white matter connections and weaker organization of white matter networks. Type 2 diabetes was associated with higher communicability, which was not yet observed in prediabetes and may reflect the use of alternative white matter connections.
Collapse
Affiliation(s)
- Laura W Vergoossen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Miranda T Schram
- School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,Heart and Vascular Centre, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Joost J de Jong
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Coen D Stehouwer
- School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Nicolaas C Schaper
- School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,School for Public Health and Primary Care (CAPHRI), Maastricht University, Maastricht, the Netherlands
| | - Ronald M Henry
- School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands.,Heart and Vascular Centre, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Carla J van der Kallen
- School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Pieter C Dagnelie
- School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Martin P van Boxtel
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Simone J Eussen
- School for Cardiovascular Disease (CARIM), Maastricht University, Maastricht, the Netherlands.,Department of Epidemiology, Maastricht University, Maastricht, the Netherlands
| | - Walter H Backes
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands.,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands
| | - Jacobus F Jansen
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+ (MUMC+), Maastricht, the Netherlands .,School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
22
|
Sanjari Moghaddam H, Ghazi Sherbaf F, Aarabi MH. Brain microstructural abnormalities in type 2 diabetes mellitus: A systematic review of diffusion tensor imaging studies. Front Neuroendocrinol 2019; 55:100782. [PMID: 31401292 DOI: 10.1016/j.yfrne.2019.100782] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/27/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with deficits in the structure and function of the brain. Diffusion tensor imaging (DTI) is a highly sensitive method for characterizing cerebral tissue microstructure. Using PRISMA guidelines, we identified 29 studies which have demonstrated widespread brain microstructural impairment and topological network disorganization in patients with T2DM. Most consistently reported structures with microstructural abnormalities were frontal, temporal, and parietal lobes in the lobar cluster; corpus callosum, cingulum, uncinate fasciculus, corona radiata, and internal and external capsules in the white matter cluster; thalamus in the subcortical cluster; and cerebellum. Microstructural abnormalities were correlated with pathological derangements in the endocrine profile as well as deficits in cognitive performance in the domains of memory, information-processing speed, executive function, and attention. Altogether, the findings suggest that the detrimental effects of T2DM on cognitive functions might be due to microstructural disruptions in the central neural structures.
Collapse
Affiliation(s)
| | - Farzaneh Ghazi Sherbaf
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran
| | - Mohammad Hadi Aarabi
- Neuroradiology Division, Tehran University of Medical Sciences, School of Medicine, Tehran, Iran.
| |
Collapse
|
23
|
Black S, Kraemer K, Shah A, Simpson G, Scogin F, Smith A. Diabetes, Depression, and Cognition: a Recursive Cycle of Cognitive Dysfunction and Glycemic Dysregulation. Curr Diab Rep 2018; 18:118. [PMID: 30267224 DOI: 10.1007/s11892-018-1079-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The study aims to examine the effects of diabetes and depression on executive functioning (EF) and to review the effects of EF deficits on diabetes management. RECENT FINDINGS Both type 2 diabetes and depression influence EF, and in turn, EF has an impact on diabetes management. Individuals with both comorbidities (i.e., diabetes and depression) experience greater deficits in EF than individuals with just one of the morbidities (i.e., depression or diabetes). The disruption in EF results in poor diabetes management and poor emotion regulation which ultimately increases the probability of a recursive cycle of depression and hyperglycemia. This recursive cycle can ultimately lead to diabetes-related complications.
Collapse
Affiliation(s)
- Sheila Black
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA.
| | - Kyle Kraemer
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA
| | - Avani Shah
- School of Social Work, University of Alabama, Box 870314, Tuscaloosa, AL, 35401, USA
| | - Gaynell Simpson
- School of Social Work, University of Alabama, Box 870314, Tuscaloosa, AL, 35401, USA
| | - Forrest Scogin
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA
| | - Annie Smith
- Department of Psychology, University of Alabama, Box 870348, Tuscaloosa, AL, 35487, USA
| |
Collapse
|
24
|
Wu M, Fatukasi O, Yang S, Alger J, Barker PB, Hetherington H, Kim T, Levine A, Martin E, Munro CA, Parrish T, Ragin A, Sacktor N, Seaberg E, Becker JT. HIV disease and diabetes interact to affect brain white matter hyperintensities and cognition. AIDS 2018; 32:1803-1810. [PMID: 29794829 PMCID: PMC6082131 DOI: 10.1097/qad.0000000000001891] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Since the onset of combination antiretroviral therapy use, the incidence of HIV-associated dementia and of HIV encephalitis has fallen dramatically. The present study investigates the extent of white matter hyperintensities (WMHs) among individuals with HIV disease, and factors that predict their presence and their impact on psychomotor speed. METHODS A total of 322 men participating in the Multicenter AIDS Cohort Study (185 HIV-infected, age: 57.5 ± 6.0) underwent MRI scans of the brain. T1-weighted magnetization-prepared rapid gradient-echo (MP-RAGE) and T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images were obtained and processed using an automated method for identifying and measuring WMHs. WMH burden was expressed as the log10 transformed percentage of total white matter. RESULTS There were no significant associations between WMHs and HIV disease. However, the extent of WMHs was predicted by age more than 60 (β = 0.17), non-white race (β = 0.14), glomerular filtration rate (β = -0.11), and the presence of diabetes (β = 0.12). There were no interactions between HIV status and age (β = -0.03) or between age and diabetes (β = 0.07). However, the interaction between HIV infection and diabetes was significant (β = 0.26). The extent of WMHs was significantly associated with performance on measures of psychomotor speed (β = 0.15). CONCLUSION In today's therapeutic environment, in HIV-infected and HIV seronegative individuals, those factors which affect the cerebrovasculature are the best predictors of WMHs. Diabetes has a specific impact among HIV-infected, but not uninfected, men, suggesting the need for more aggressive treatment even in the prediabetes state, especially as WMHs affect cognitive functions.
Collapse
Affiliation(s)
- Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Omalara Fatukasi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shaolin Yang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Jeffery Alger
- Department of Radiology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Peter B Barker
- Departments of Radiology, The Johns Hopkins University, Baltimore, Maryland
| | - Hoby Hetherington
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tae Kim
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew Levine
- Department of Neurology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, California
| | - Eileen Martin
- Department of Psychiatry, Rush University Medical School, Chicago, Illinois
| | - Cynthia A Munro
- Department of Neurology, The Johns Hopkins University, Baltimore, Maryland
| | - Todd Parrish
- Department of Radiology, Northwestern University, Evanston, Illinois
| | - Ann Ragin
- Department of Radiology, Northwestern University, Evanston, Illinois
| | - Ned Sacktor
- Department of Neurology, The Johns Hopkins University, Baltimore, Maryland
| | - Eric Seaberg
- Department of Epidemiology, The Johns Hopkins University, Baltimore, Maryland
| | - James T Becker
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
25
|
Early effects of a high-caloric diet and physical exercise on brain volumetry and behavior: a combined MRI and histology study in mice. Brain Imaging Behav 2018; 11:1385-1396. [PMID: 27734300 PMCID: PMC5653704 DOI: 10.1007/s11682-016-9638-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Excessive intake of high-caloric diets as well as subsequent development of obesity and diabetes mellitus may exert a wide range of unfavorable effects on the central nervous system (CNS) in the long-term. The potentially harmful effects of such diets were suggested to be mitigated by physical exercise. Here, we conducted a study investigating early effects of a cafeteria-diet on gray and white brain matter volume by means of voxel-based morphometry (VBM) and region-of-interest (ROI) analysis. Half of the mice performed voluntary wheel running to study if regular physical exercise prevents unfavorable effects of a cafeteria-diet. In addition, histological analyses for myelination and neurogenesis were performed. As expected, wheel running resulted in a significant increase of gray matter volume in the CA1-3 areas, the dentate gyrus and stratum granulosum of the hippocampus in the VBM analysis, while a positive effect of the cafeteria-diet was shown for the whole hippocampal CA1-3 area only in the ROI analysis, indicating a regional volume effect. It was earlier found that hippocampal neurogenesis may be related to volume increases after exercise. Interestingly, while running resulted in a significant increase in neurogenesis assessed by doublecortin (DCX)-labeling, this was not true for cafeteria diet. This indicates different underlying mechanisms for gray matter increase. Moreover, animals receiving cafeteria diet only showed mild deficits in long-term memory assessed by the puzzle-box paradigm, while executive functioning and short term memory were not affected. Our data therefore highlight that high caloric diet impacts on the brain and behavior. Physical exercise seems not to interact with these mechanisms.
Collapse
|
26
|
Sun Q, Chen GQ, Wang XB, Yu Y, Hu YC, Yan LF, Zhang X, Yang Y, Zhang J, Liu B, Wang CC, Ma Y, Wang W, Han Y, Cui GB. Alterations of White Matter Integrity and Hippocampal Functional Connectivity in Type 2 Diabetes Without Mild Cognitive Impairment. Front Neuroanat 2018; 12:21. [PMID: 29615873 PMCID: PMC5869188 DOI: 10.3389/fnana.2018.00021] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
Aims: To investigate the white matter (WM) integrity and hippocampal functional connectivity (FC) in type 2 diabetes mellitus (T2DM) patients without mild cognitive impairment (MCI) by using diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI), respectively. Methods: Twelve T2DM patients without MCI and 24 age, sex and education matched healthy controls (HC) were recruited. DTI and rs-fMRI data were subsequently acquired on a 3.0T MR scanner. Tract-based spatial statistics (TBSS) combining region of interests (ROIs) analysis was used to investigate the alterations of DTI metrics (fractional anisotropy (FA), mean diffusivity (MD), λ1 and λ23) and FC measurement was performed to calculate hippocampal FC with other brain regions. Cognitive function was evaluated by using Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). Brain volumes were also evaluated among these participants. Results: There were no difference of MMSE and MoCA scores between two groups. Neither whole brain nor regional brain volume decrease was revealed in T2DM patients without MCI. DTI analysis revealed extensive WM disruptions, especially in the body of corpus callosum (CC). Significant decreases of hippocampal FC with certain brain structures were revealed, especially with the bilateral frontal cortex. Furthermore, the decreased FA in left posterior thalamic radiation (PTR) and increased MD in the splenium of CC were closely related with the decreased hippocampal FC to caudate nucleus and frontal cortex. Conclusions: T2DM patients without MCI showed extensive WM disruptions and abnormal hippocampal FC. Moreover, the WM disruptions and abnormal hippocampal FC were closely associated. HighlightsT2DM patients without MCI demonstrated no obvious brain volume decrease. Extensive white matter disruptions, especially within the body of corpus callosum, were revealed with DTI analysis among the T2DM patients. Despite no MCI in T2DM patients, decreased functional connectivity between hippocampal region and some critical brain regions were detected. The alterations in hippocampal functional connectivity were closely associated with those of the white matter structures in T2DM patients.
This trial was registered to ClinicalTrials.gov (NCT02420470, https://www.clinicaltrials.gov/).
Collapse
Affiliation(s)
- Qian Sun
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Guan-Qun Chen
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Xi-Bin Wang
- Department of Medical Image Diagnosis, Hanzhong Central Hospital, Hanzhong, China
| | - Ying Yu
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yu-Chuan Hu
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Xin Zhang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Bin Liu
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Cong-Cong Wang
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Yi Ma
- Student Brigade, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| | - Ying Han
- Department of Neurology, XuanWu Hospital, Capital Medical University, Beijing, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging, Key Lab of Shaanxi Province, Tangdu Hospital, The Military Medical University of PLA Airforce (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
27
|
Dietary influences on cognition. Physiol Behav 2018; 192:118-126. [PMID: 29501837 DOI: 10.1016/j.physbeh.2018.02.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
Obesity is a world-wide crisis with profound healthcare and socio-economic implications and it is now clear that the central nervous system (CNS) is a target for the complications of metabolic disorders like obesity. In addition to decreases in physical activity and sedentary lifestyles, diet is proposed to be an important contributor to the etiology and progression of obesity. Unfortunately, there are gaps in our knowledge base related to how dietary choices impact the structural and functional integrity of the CNS. For example, while chronic consumption of hypercaloric diets (increased sugars and fat) contribute to increases in body weight and adiposity characteristic of metabolic disorders, the mechanistic basis for neurocognitive deficits in obesity remains to be determined. In addition, studies indicate that acute consumption of hypercaloric diets impairs performance in a wide variety of cognitive domains, even in normal non-obese control subjects. These results from the clinical and basic science literature indicate that diet can have rapid, as well as long lasting effects on cognitive function. This review summarizes our symposium at the 2017 Society for the Study of Ingestive Behavior (SSIB) meeting that discussed these effects of diet on cognition. Collectively, this review highlights the need for integrated and comprehensive approaches to more fully determine how diet impacts behavior and cognition under physiological conditions and in metabolic disorders like type 2 diabetes mellitus (T2DM) and obesity.
Collapse
|
28
|
Stomby A, Otten J, Ryberg M, Nyberg L, Olsson T, Boraxbekk CJ. A Paleolithic Diet with and without Combined Aerobic and Resistance Exercise Increases Functional Brain Responses and Hippocampal Volume in Subjects with Type 2 Diabetes. Front Aging Neurosci 2017; 9:391. [PMID: 29255413 PMCID: PMC5722796 DOI: 10.3389/fnagi.2017.00391] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 11/13/2017] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes is associated with impaired episodic memory functions and increased risk of different dementing disorders. Diet and exercise may potentially reverse these impairments. In this study, sedentary individuals with type 2 diabetes treated by lifestyle ± metformin were randomized to a Paleolithic diet (PD, n = 12) with and without high intensity exercise (PDEX, n = 12) for 12 weeks. Episodic memory function, associated functional brain responses and hippocampal gray matter volume was measured by magnetic resonance imaging. A matched, but not randomized, non-interventional group was included as a reference (n = 6). The PD included a high intake of unsaturated fatty acids and protein, and excluded the intake of dairy products, grains, refined sugar and salt. The exercise intervention consisted of 180 min of supervised aerobic and resistance exercise per week. Both interventions induced a significant weight loss, improved insulin sensitivity and increased peak oxygen uptake without any significant group differences. Furthermore, both interventions were associated with increased functional brain responses within the right anterior hippocampus, right inferior occipital gyrus and increased volume of the right posterior hippocampus. There were no changes in memory performance. We conclude that life-style modification may improve neuronal plasticity in brain areas linked to cognitive function in type 2 diabetes. Putative long-term effects on cognitive functions including decreased risk of dementing disorders await further studies. Clinical trials registration number: Clinicaltrials. gov NCT01513798.
Collapse
Affiliation(s)
- Andreas Stomby
- Department for Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden.,Jönköping County Hospital, Region Jönköping County, Jönköping, Sweden
| | - Julia Otten
- Department for Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Mats Ryberg
- Department for Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Department of Integrative Medical Biology, Physiology, Umeå University, Umeå, Sweden.,Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Tommy Olsson
- Department for Public Health and Clinical Medicine, Medicine, Umeå University, Umeå, Sweden
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.,Center for Demographic and Aging Research, Umeå University, Umeå, Sweden.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
29
|
Macpherson H, Formica M, Harris E, Daly RM. Brain functional alterations in Type 2 Diabetes - A systematic review of fMRI studies. Front Neuroendocrinol 2017; 47:34-46. [PMID: 28687473 DOI: 10.1016/j.yfrne.2017.07.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 02/07/2023]
Abstract
Type 2 Diabetes (T2DM) is emerging as a major global health issue. T2DM can adversely affect cognition and increase dementia risk. This systematic review aimed to examine the functional brain changes that may underlie cognitive dysfunction in adults with T2DM. Studies were restricted to those which used functional magnetic resonance imaging (fMRI). Nineteen independent studies were identified, mostly comprised of middle aged or older adults. Resting-state studies demonstrated that compared to controls, connectivity of the Default Mode Network (DMN) was reduced and the majority of task-based studies identified reduced activation in T2DM patients in regions relevant to task performance. Abnormalities of low frequency spontaneous brain activity were observed, particularly in visual regions. As most studies demonstrated that alterations in fMRI were related to poorer neuropsychological task performance, these results indicate that functional brain abnormalities in T2DM have consequences for cognition.
Collapse
Affiliation(s)
- Helen Macpherson
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia.
| | - Melissa Formica
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Elizabeth Harris
- Centre for Human Psychopharmacology, Swinburne University, Hawthorn, VIC, Australia
| | - Robin M Daly
- Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
30
|
Moran C, Beare R, Phan T, Starkstein S, Bruce D, Romina M, Srikanth V. Neuroimaging and its Relevance to Understanding Pathways Linking Diabetes and Cognitive Dysfunction. J Alzheimers Dis 2017; 59:405-419. [DOI: 10.3233/jad-161166] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chris Moran
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Aged Care Services, Caulfield Hospital, Alfred Health, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Richard Beare
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Thanh Phan
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| | - Sergio Starkstein
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - David Bruce
- Fremantle Hospital, WA, Australia
- University of Western Australia, WA, Australia
| | - Mizrahi Romina
- Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Velandai Srikanth
- Department of Medicine, Peninsula Health, Peninsula Clinical School, Monash University, Melbourne, VIC, Australia
- Stroke and Ageing Research Group, Vascular Brain Ageing Division, Department of Medicine, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Neurosciences, Monash Medical Centre, Monash Health, Melbourne, VIC, Australia
| |
Collapse
|
31
|
Proteomic approach to detect changes in hippocampal protein levels in an animal model of type 2 diabetes. Neurochem Int 2017; 108:246-253. [PMID: 28434974 DOI: 10.1016/j.neuint.2017.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
In our previous study, we demonstrated that type 2 diabetes affects blood-brain barrier integrity and ultrastructural morphology in Zucker diabetic fatty (ZDF) rats at 40 weeks of age. In the present study, we investigated the possible candidates for diabetes-related proteins in the hippocampus of ZDF rats and their control littermates (Zucker lean control, ZLC), by using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF). Approximately 2756 protein spots were detected by 2D-DIGE, and an increase or decrease of more than 1.4-fold was observed for 13 proteins in the hippocampal homogenates of ZDF rats relative to those of ZLC rats. Among these proteins, we found four proteins whose levels were significantly lower in the hippocampi of ZDF rats than in those of ZLC rats: glial fibrillary acidic protein (GFAP), apolipoprotein A-I preprotein (apoAI-P), myelin basic protein (MBP), and rCG39881, isoform CRA_a. Among these proteins, apoAI-P protein levels were decreased most prominently in ZDF rats than in ZLC rats, based on Western blot analysis. In addition, immunohistochemical and Western blot studies demonstrated that MBP, not GFAP, immunoreactivity and protein levels were significantly decreased in the hippocampus of ZDF rats compared to ZLC rats. In addition, ultrastructural analysis showed that ZDF rats showed myelin degeneration and disarrangement in the hippocampal tissue. These results suggest that chronic type 2 diabetes affects hippocampal function via reduction of MBP and apoAI-P levels as well as disarrangement of myelin.
Collapse
|
32
|
van Bussel FCG, Backes WH, Hofman PAM, van Oostenbrugge RJ, van Boxtel MPJ, Verhey FRJ, Steinbusch HWM, Schram MT, Stehouwer CDA, Wildberger JE, Jansen JFA. Cerebral Pathology and Cognition in Diabetes: The Merits of Multiparametric Neuroimaging. Front Neurosci 2017; 11:188. [PMID: 28424581 PMCID: PMC5380729 DOI: 10.3389/fnins.2017.00188] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/21/2017] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus is associated with accelerated cognitive decline and various cerebral abnormalities visible on MRI. The exact pathophysiological mechanisms underlying cognitive decline in diabetes still remain to be elucidated. In addition to conventional images, MRI offers a versatile set of novel contrasts, including blood perfusion, neuronal function, white matter microstructure, and metabolic function. These more-advanced multiparametric MRI contrasts and the pertaining parameters are able to reveal abnormalities in type 2 diabetes, which may be related to cognitive decline. To further elucidate the nature of the link between diabetes, cognitive decline, and brain abnormalities, and changes over time thereof, biomarkers are needed which can be provided by advanced MRI techniques. This review summarizes to what extent MRI, especially advanced multiparametric techniques, can elucidate the underlying neuronal substrate that reflects the cognitive decline in type 2 diabetes.
Collapse
Affiliation(s)
- Frank C G van Bussel
- Department of Radiology, Maastricht University Medical CenterMaastricht, Netherlands.,School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands
| | - Walter H Backes
- Department of Radiology, Maastricht University Medical CenterMaastricht, Netherlands.,School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands
| | - Paul A M Hofman
- Department of Radiology, Maastricht University Medical CenterMaastricht, Netherlands.,School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands
| | - Robert J van Oostenbrugge
- School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands.,Department of Neurology, Maastricht University Medical CenterMaastricht, Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastricht, Netherlands
| | - Martin P J van Boxtel
- School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands.,Department of Psychiatry and Neuropsychology, Maastricht University Medical CenterMaastricht, Netherlands
| | - Frans R J Verhey
- School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands.,Department of Psychiatry and Neuropsychology, Maastricht University Medical CenterMaastricht, Netherlands
| | - Harry W M Steinbusch
- School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands.,Department of Psychiatry and Neuropsychology, Maastricht University Medical CenterMaastricht, Netherlands
| | - Miranda T Schram
- Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastricht, Netherlands.,Department of Internal Medicine, Maastricht University Medical CenterMaastricht, Netherlands
| | - Coen D A Stehouwer
- Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastricht, Netherlands.,Department of Internal Medicine, Maastricht University Medical CenterMaastricht, Netherlands
| | - Joachim E Wildberger
- Department of Radiology, Maastricht University Medical CenterMaastricht, Netherlands.,Cardiovascular Research Institute Maastricht, Maastricht University Medical CenterMaastricht, Netherlands
| | - Jacobus F A Jansen
- Department of Radiology, Maastricht University Medical CenterMaastricht, Netherlands.,School for Mental Health and Neuroscience, Maastricht University Medical CenterMaastricht, Netherlands
| |
Collapse
|
33
|
Small DM. Dopamine Adaptations as a Common Pathway for Neurocognitive Impairment in Diabetes and Obesity: A Neuropsychological Perspective. Front Neurosci 2017; 11:134. [PMID: 28400713 PMCID: PMC5368264 DOI: 10.3389/fnins.2017.00134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/06/2017] [Indexed: 01/06/2023] Open
Abstract
Evidence accumulates linking obesity and diabetes with cognitive dysfunction. At present the mechanism(s) underlying these associations and the relative contribution of diet, adiposity, and metabolic dysfunction are unknown. In this perspective key gaps in knowledge are outlined and an initial sketch of a neuropsychological profile is developed that points toward a critical role for dopamine (DA) adaptations in neurocognitive impairment secondary to diabetes and obesity. The precise mechanisms by which diet, metabolic dysfunction, and adiposity influence the DA system to impact cognition remains unclear and is an important direction for future research.
Collapse
Affiliation(s)
- Dana M Small
- The John B Pierce LaboratoryNew Haven, CT, USA; Department of Psychiatry, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|