1
|
Kvitka D, Pauza DH. Anatomy of blood microcirculation in the pig epicardial ganglionated nerve plexus. Ann Anat 2024; 255:152285. [PMID: 38830557 DOI: 10.1016/j.aanat.2024.152285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
Embolization of coronary arteries and their terminal arterioles causes ischemia of all tissues distributed within a cardiac wall including the intrinsic cardiac ganglionated nerve plexus (ICGP). The disturbed blood supply to the ICGP causes chronic sympathetic activation with succeeding atrial and ventricular arrhythmias. This study analyses the anatomy of microcirculation of epicardial nerves and ganglia using the hearts of 11 domestic pigs. Our findings demonstrate that thicker epicardial nerves are normally supplied with blood via 12 epineural arterioles penetrating the endoneurium regularly along a nerve, and forming an endoneurial capillary network, which drains the blood into the myocardial blood flow. The mean diameter of intraneural capillaries was 7.2 ± 0.2 µm, while the diameters of arterioles were 25.8 ± 0.7 μm and involved 45 endothelial cells accompanied by circular smooth muscle cells. Usually, two or three arterioles with a mean diameter of 28.9 ± 1.7 μm supplied blood to any epicardial ganglion, in which arterioles proceeded into a network of capillaries with a mean diameter of 6.9 ± 0.3 μm. Both the epicardial nerves and the ganglia distributed near the porta venarum of the heart had tiny arterioles that anastomosed blood vessels from the right and the left coronary arteries. The density of blood vessels in the epicardial nerves was significantly lesser compared with the ganglia. Our electron microscopic observations provided evidence that blood vessels of the pig epicardial nerves and ganglia may be considered as either arterioles or capillaries that have quantitative and qualitative differences comparing to the corresponding blood vessels in humans and, therefore, a pig should not be considered as an animal model of the first choice for further heart functional studies seeking to improve the treatment of cardiac arrhythmias via trans-coronary cardiac neuroablation. STRUCTURED ABSTRACT: This study details the anatomy of microcirculation of epicardial nerves and ganglia, from which intracardiac nerves and bundles of nerve fibers extend into all layers of the atrial and ventricular walls in the most popular animal model of experimental cardiology and cardiac surgery - the domestic pig. Our findings provided evidence that blood vessels of the pig epicardial nerves and ganglia may be considered as either arterioles or capillaries that have quantitative and qualitative differences comparing to the corresponding blood vessels in humans and, therefore, a pig should not be considered as an animal model of the first choice for further heart functional studies seeking to improve the treatment of cardiac arrhythmias via trans-coronary cardiac neuroablation.
Collapse
Affiliation(s)
- Dmitrij Kvitka
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus Street 9, Kaunas LT 44307, Lithuania
| | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickeviciaus Street 9, Kaunas LT 44307, Lithuania.
| |
Collapse
|
2
|
Bizanti A, Zhang Y, Toledo Z, Bendowski KT, Harden SW, Mistareehi A, Chen J, Gozal D, Heal M, Christie R, Hunter PJ, Paton JFR, Cheng ZJ. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. J Physiol 2024; 602:49-71. [PMID: 38156943 PMCID: PMC10842556 DOI: 10.1113/jp284961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - David Gozal
- Joan C. Edwards School of medicine, Marshall University, Huntington, WV, USA
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department Physiology, Manaaki Manawa-the Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
3
|
Inokaitis H, Pauziene N, Pauza DH. The distribution of sinoatrial nodal cells and their innervation in the pig. Anat Rec (Hoboken) 2023; 306:2333-2344. [PMID: 35643929 DOI: 10.1002/ar.24998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/08/2022]
Abstract
The sinoatrial node (SAN) has been the object of interest of various studies. In experimental neurocardiology, the real challenge is the choice of the most appropriate animal model. Pig is routinely used animal due to its size and physiological features. Despite this, the anatomy and innervation of the pig SAN are not completely examined. This study analyses the distribution of SAN cells and their innervation in whole-mount preparations and the cross-sections of the pig right atrium. Our findings revealed the differences in the distribution of the SAN cells and their innervation pattern between pigs and other animals. The pig SAN myocytes were distributed around the root of the anterior vena cava. A meshwork of nerve fibers (NFs) in this area was four-fold denser compared to other right atrial areas and contained the adrenergic (positive for TH), cholinergic (positive for ChAT), nitrergic (positive for nNOS), and potentially sensory (positive for SP) NFs. The SAN area contained 98 ± 10 ganglia that involved 21 ± 2 neuronal somata per ganglion. The determined chemical phenotypes of ganglionic cells demonstrate their diversity in the pig SAN area as there were identified neuronal somata positive for ChAT, nNOS, TH, and simultaneously for ChAT/nNOS and ChAT/TH. Small intensively fluorescent cells were also abundant. The broad distribution of SAN cells, the chemical diversity, and the high density of neural components in the SAN area are comparable to the human one and, therefore, the pig may be considered as the appropriate animal model for experimental cardiology.
Collapse
Affiliation(s)
- Hermanas Inokaitis
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Neringa Pauziene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
4
|
Chin SH, Allen E, Brack KE, Ng GA. Autonomic neuro-cardiac profile of electrical, structural and neuronal remodeling in myocardial infarction-induced heart failure. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2023; 5:100044. [PMID: 37745157 PMCID: PMC10512199 DOI: 10.1016/j.jmccpl.2023.100044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023]
Abstract
Aims Heart failure is a clinical syndrome typified by abnormal autonomic tone, impaired ventricular function, and increased arrhythmic vulnerability. This study aims to examine electrophysiological, structural and neuronal remodeling following myocardial infarction in a rabbit heart failure model to establish its neuro-cardiac profile. Methods and results Weight-matched adult male New Zealand White rabbits (3.2 ± 0.1 kg, n = 25) were randomized to have coronary ligation surgeries (HF group, n = 13) or sham procedures (SHM group, n = 12). Transthoracic echocardiography was performed six weeks post-operatively. On week 8, dual-innervated Langendorff-perfused heart preparations were set up for terminal experiments. Seventeen hearts (HF group, n = 10) underwent ex-vivo cardiac MRI. Twenty-two hearts (HF group, n = 7) were examined histologically. Electrical remodeling and abnormal autonomic profile were evident in HF rabbits with exaggerated sympathetic and attenuated vagal effect on ventricular fibrillation threshold, ventricular refractoriness and restitution curves, in addition to increased spatial restitution dispersion. Histologically, there was significant neuronal enlargement at the heart hila and conus arteriosus in HF. Structural remodeling was characterized by quantifiable myocardial scarring, enlarged left ventricles, altered ventricular geometry and impaired contractility. Conclusion In an infarct-induced rabbit heart failure model, extensive structural, neuronal and electrophysiological remodeling in conjunction with abnormal autonomic profile provide substrates for ventricular arrhythmias.
Collapse
Affiliation(s)
- Shui Hao Chin
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Emily Allen
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - Kieran E. Brack
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
| | - G. André Ng
- Cardiology group, Department of Cardiovascular Sciences, University of Leicester, UK
- University Hospitals of Leicester NHS Trust, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, UK
| |
Collapse
|
5
|
Saburkina I, Pauziene N, Solomon OI, Rysevaite-Kyguoliene K, Pauza DH. Comparative gross anatomy of epicardiac ganglionated nerve plexi on the human and sheep cardiac ventricles. Anat Rec (Hoboken) 2023; 306:2302-2312. [PMID: 36181389 DOI: 10.1002/ar.25085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/24/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
This study aimed to examine the distribution and quantitative parameters of the epicardiac ventricular neural ganglionated plexus in the hearts of humans and sheep, highlighting the differences of this plexus in humans and large models. Five non-sectioned pressure distended whole hearts of the human newborns and 10 hearts of newborn German black-faced lambs were investigated applying a histochemical method for acetylcholinesterase to stain epicardiac neural structures with their subsequent stereomicroscopic examination. In humans, the ventricular nerves are spread by four epicardiac nerve subplexuses, that is, the left and right coronary as well as the left and middle dorsal. In sheep, the ventricular nerves are spread by five epicardiac nerve subplexuses, that is, the left and right coronary, the left and middle dorsal and the right ventral ones. The ventricular epicardium involved up to 129 ganglia in humans and up to 198-in sheep. The largest number of the ventricular ganglionic cells in humans were located on the ventral side, in front of the conus arteriosus, while on sheep ventricles, the most numerous neurons distributed on the dorsal wall of the left ventricle. This comparative study of the morphological patterns of the human and sheep ventricles demonstrates that the sheep heart is neuroanatomically distinct from the human one and this must be taking into consideration using the sheep model for the heart physiology experiments.
Collapse
Affiliation(s)
- Inga Saburkina
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Neringa Pauziene
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - On Itai Solomon
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Dainius H Pauza
- Institute of Anatomy, Faculty of Medicine, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
6
|
Abstract
The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.
Collapse
Affiliation(s)
- Sarajo K Mohanta
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Changjun Yin
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China (C.Y.)
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| | - Cristina Godinho-Silva
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal (C.G.-S., H.V.-F.)
| | | | - Qian J Xu
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Rui B Chang
- Department of Neuroscience, Department of Cellular and Molecular Physiology, Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT (Q.J.X., R.B.C.)
| | - Andreas J R Habenicht
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University (LMU), Munich, Germany (S.K.M., C.Y., C.W., A.J.R.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (S.K.M., C.W., A.J.R.H.)
| |
Collapse
|
7
|
Zhang Y, Bizanti A, Harden SW, Chen J, Bendowski K, Hoover DB, Gozal D, Shivkumar K, Heal M, Tappan S, Cheng ZJ. Topographical mapping of catecholaminergic axon innervation in the flat-mounts of the mouse atria: a quantitative analysis. Sci Rep 2023; 13:4850. [PMID: 37029119 PMCID: PMC10082215 DOI: 10.1038/s41598-023-27727-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/06/2023] [Indexed: 04/09/2023] Open
Abstract
The sympathetic nervous system is crucial for controlling multiple cardiac functions. However, a comprehensive, detailed neuroanatomical map of the sympathetic innervation of the heart is unavailable. Here, we used a combination of state-of-the-art techniques, including flat-mount tissue processing, immunohistochemistry for tyrosine hydroxylase (TH, a sympathetic marker), confocal microscopy and Neurolucida 360 software to trace, digitize, and quantitatively map the topographical distribution of the sympathetic postganglionic innervation in whole atria of C57Bl/6 J mice. We found that (1) 4-5 major extrinsic TH-IR nerve bundles entered the atria at the superior vena cava, right atrium (RA), left precaval vein and the root of the pulmonary veins (PVs) in the left atrium (LA). Although these bundles projected to different areas of the atria, their projection fields partially overlapped. (2) TH-IR axon and terminal density varied considerably between different sites of the atria with the greatest density of innervation near the sinoatrial node region (P < 0.05, n = 6). (3) TH-IR axons also innervated blood vessels and adipocytes. (4) Many principal neurons in intrinsic cardiac ganglia and small intensely fluorescent cells were also strongly TH-IR. Our work provides a comprehensive topographical map of the catecholaminergic efferent axon morphology, innervation, and distribution in the whole atria at single cell/axon/varicosity scale that may be used in future studies to create a cardiac sympathetic-brain atlas.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Kohlton Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - Kalyanam Shivkumar
- Department of Medicine, Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, University of California, Los Angeles, CA, 90095, USA
| | - Maci Heal
- MBF Bioscience, Williston, VT, 05495, USA
| | | | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, BMS Building 20, Room 230, 4110 Libra Drive, Orlando, FL, 32816, USA.
| |
Collapse
|
8
|
Sahoglu SG, Kazci YE, Karadogan B, Aydin MS, Nebol A, Turhan MU, Ozturk G, Cagavi E. High-resolution mapping of sensory fibers at the healthy and post-myocardial infarct whole transgenic hearts. J Neurosci Res 2023; 101:338-353. [PMID: 36517461 DOI: 10.1002/jnr.25150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/15/2022] [Accepted: 11/19/2022] [Indexed: 12/23/2022]
Abstract
The sensory nervous system is critical to maintain cardiac function. As opposed to efferent innervation, less is known about cardiac afferents. For this, we mapped the VGLUT2-expressing cardiac afferent fibers of spinal and vagal origin by using the VGLUT2::tdTomato double transgenic mouse as an approach to visualize the whole hearts both at the dorsal and ventral sides. For comparison, we colabeled mixed-sex transgenic hearts with either TUJ1 protein for global cardiac innervation or tyrosine hydroxylase for the sympathetic network at the healthy state or following ischemic injury. Interestingly, the nerve density for global and VGLUT2-expressing afferents was found significantly higher on the dorsal side compared to the ventral side. From the global nerve innervation detected by TUJ1 immunoreactivity, VGLUT2 afferent innervation was detected to be 15-25% of the total network. The detailed characterization of both the atria and the ventricles revealed a remarkable diversity of spinal afferent nerve ending morphologies of flower sprays, intramuscular endings, and end-net branches that innervate distinct anatomical parts of the heart. Using this integrative approach in a chronic myocardial infarct model, we showed a significant increase in hyperinnervation in the form of axonal sprouts for cardiac afferents at the infarct border zone, as well as denervation at distal sites of the ischemic area. The functional and physiological consequences of the abnormal sensory innervation remodeling post-ischemic injury should be further evaluated in future studies regarding their potential contribution to cardiac dysfunction.
Collapse
Affiliation(s)
- Sevilay Goktas Sahoglu
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Yusuf Enes Kazci
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Neuroscience Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Behnaz Karadogan
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Serif Aydin
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Aylin Nebol
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Ugurcan Turhan
- Department of Cardiovascular Surgery, Cerrahpasa School of Medicine, Istanbul University, Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, İstanbul, Turkey
| | - Esra Cagavi
- Regenerative and Restorative Medical Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Department of Medical Biology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Medical Biology and Genetics Program, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
9
|
Intrinsic cardiac neurons of the adult pigs: chemical types, abundance, parameters and distribution within ganglionated plexus. Ann Anat 2022; 243:151935. [DOI: 10.1016/j.aanat.2022.151935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
|
10
|
Stoyek MR, Hortells L, Quinn TA. From Mice to Mainframes: Experimental Models for Investigation of the Intracardiac Nervous System. J Cardiovasc Dev Dis 2021; 8:149. [PMID: 34821702 PMCID: PMC8620975 DOI: 10.3390/jcdd8110149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 01/17/2023] Open
Abstract
The intracardiac nervous system (IcNS), sometimes referred to as the "little brain" of the heart, is involved in modulating many aspects of cardiac physiology. In recent years our fundamental understanding of autonomic control of the heart has drastically improved, and the IcNS is increasingly being viewed as a therapeutic target in cardiovascular disease. However, investigations of the physiology and specific roles of intracardiac neurons within the neural circuitry mediating cardiac control has been hampered by an incomplete knowledge of the anatomical organisation of the IcNS. A more thorough understanding of the IcNS is hoped to promote the development of new, highly targeted therapies to modulate IcNS activity in cardiovascular disease. In this paper, we first provide an overview of IcNS anatomy and function derived from experiments in mammals. We then provide descriptions of alternate experimental models for investigation of the IcNS, focusing on a non-mammalian model (zebrafish), neuron-cardiomyocyte co-cultures, and computational models to demonstrate how the similarity of the relevant processes in each model can help to further our understanding of the IcNS in health and disease.
Collapse
Affiliation(s)
- Matthew R. Stoyek
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
| | - Luis Hortells
- Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg–Bad Krozingen, 79110 Freiburg, Germany;
- Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
| | - T. Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS 15000, Canada;
- School of Biomedical Engineering, Dalhousie University, Halifax, NS 15000, Canada
| |
Collapse
|
11
|
Leung C, Robbins S, Moss A, Heal M, Osanlouy M, Christie R, Farahani N, Monteith C, Chen J, Hunter P, Tappan S, Vadigepalli R, Cheng Z(J, Schwaber JS. 3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system. iScience 2021; 24:102795. [PMID: 34355144 PMCID: PMC8324857 DOI: 10.1016/j.isci.2021.102795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
We developed and analyzed a single cell scale anatomical map of the rat intrinsic cardiac nervous system (ICNS) across four male and three female hearts. We find the ICNS has a reliable structural organizational plan across individuals that provide the foundation for further analyses of the ICNS in cardiac function and disease. The distribution of the ICNS was evaluated by 3D visualization and data-driven clustering. The pattern, distribution, and clustering of ICNS neurons across all male and female rat hearts is highly conserved, demonstrating a coherent organizational plan where distinct clusters of neurons are consistently localized. Female hearts had fewer neurons, lower packing density, and slightly reduced distribution, but with identical localization. We registered the anatomical data from each heart to a geometric scaffold, normalizing their 3D coordinates for standardization of common anatomical planes and providing a path where multiple experimental results and data types can be integrated and compared.
Collapse
Affiliation(s)
- Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Shaina Robbins
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alison Moss
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Mahyar Osanlouy
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | | | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Peter Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | | | - Rajanikanth Vadigepalli
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zixi (Jack) Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - James S. Schwaber
- Daniel Baugh Institute of Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Choi S, Baudot M, Vivas O, Moreno CM. Slowing down as we age: aging of the cardiac pacemaker's neural control. GeroScience 2021; 44:1-17. [PMID: 34292477 PMCID: PMC8811107 DOI: 10.1007/s11357-021-00420-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/07/2021] [Indexed: 12/19/2022] Open
Abstract
The cardiac pacemaker ignites and coordinates the contraction of the whole heart, uninterruptedly, throughout our entire life. Pacemaker rate is constantly tuned by the autonomous nervous system to maintain body homeostasis. Sympathetic and parasympathetic terminals act over the pacemaker cells as the accelerator and the brake pedals, increasing or reducing the firing rate of pacemaker cells to match physiological demands. Despite the remarkable reliability of this tissue, the pacemaker is not exempt from the detrimental effects of aging. Mammals experience a natural and continuous decrease in the pacemaker rate throughout the entire lifespan. Why the pacemaker rhythm slows with age is poorly understood. Neural control of the pacemaker is remodeled from birth to adulthood, with strong evidence of age-related dysfunction that leads to a downshift of the pacemaker. Such evidence includes remodeling of pacemaker tissue architecture, alterations in the innervation, changes in the sympathetic acceleration and the parasympathetic deceleration, and alterations in the responsiveness of pacemaker cells to adrenergic and cholinergic modulation. In this review, we revisit the main evidence on the neural control of the pacemaker at the tissue and cellular level and the effects of aging on shaping this neural control.
Collapse
Affiliation(s)
- Sabrina Choi
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Matthias Baudot
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Oscar Vivas
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Claudia M Moreno
- Department of Physiology & Biophysics, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
13
|
Aksu T, Gopinathannair R, Gupta D, Pauza DH. Intrinsic cardiac autonomic nervous system: What do clinical electrophysiologists need to know about the "heart brain"? J Cardiovasc Electrophysiol 2021; 32:1737-1747. [PMID: 33928710 DOI: 10.1111/jce.15058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Abstract
It is increasingly recognized that the autonomic nervous system (ANS) is a major contributor in many cardiac arrhythmias. Cardiac ANS can be divided into extrinsic and intrinsic parts according to the course of nerve fibers and localization of ganglia and neuron bodies. Although the role of the extrinsic part has historically gained more attention, the intrinsic cardiac ANS may affect cardiac function independently as well as influence the effects of the extrinsic nerves. Catheter-based modulation of the intrinsic cardiac ANS is emerging as a novel therapy for the management of patients with brady and tachyarrhythmias resulting from hyperactive vagal activation. However, the distribution of intrinsic cardiac nerve plexus in the human heart and the functional properties of intrinsic cardiac neural elements remain insufficiently understood. The present review aims to bring the clinical and anatomical elements of the immune effector cell-associated neurotoxicity together, by reviewing neuroanatomical terminologies and physiological functions, to guide the clinical electrophysiologist in the catheter lab and to serve as a reference for further research.
Collapse
Affiliation(s)
- Tolga Aksu
- Department of Cardiology, Yeditepe University Hospital, Istanbul, Turkey
| | - Rakesh Gopinathannair
- Departments of Electrophysiology, Kansas City Heart Rhythm Institute and Research Foundation, Kansas City, Missouri, USA
| | - Dhiraj Gupta
- Department of Electrophysiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Dainius H Pauza
- Department of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
14
|
Jimenes DR, Teixeira Junior NR, Pereira AV, Berti JA, Barbosa CP, Sant'Ana DDMG. Human apoCIII transgenic mice with epicardial adipose tissue inflammation and PRESERVATION of the cardiac plexus. Exp Gerontol 2021; 148:111261. [PMID: 33647361 DOI: 10.1016/j.exger.2021.111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 12/16/2020] [Accepted: 01/24/2021] [Indexed: 10/22/2022]
Abstract
Hypertriglyceridemia is a result of the increase in the serum levels of lipoproteins, which are responsible for the transport of triglycerides and can be caused by genetic and/or metabolic factors. Animal models which either express or lack genes related to changes in the lipoproteins profile are useful to understand lipid metabolism. Apolipoprotein CIII (apoCIII) is an important modulator of hepatic production and peripheral removal of triglycerides. Mice that overexpress the apoCIII gene become hypertriglyceridemic, showing high concentrations of free fatty acids in the blood. Since hypertriglyceridemia is related to atherosclerosis, and the latter refers to cardiac alterations, this study aimed at evaluating the morphological, morphometric and quantitative profiles of the cardiac plexus, as well as the morphometric and histopathological aspects of the epicardial adipose tissue in human apoCIII transgenic mice. Therefore, 8-12-month-old male C57BL/6 mice that overexpressed human apoCIII (CIII) and their respective controls were used. Our results showed that overexpression of human apoCIII did not modify morphological or quantitative parameters of cardiac plexus neurons; however, age increased both, the area and the number of such cells. Furthermore, there was a direct correlation of this dyslipidemia to the thickening of periganglionar type 1 collagens. On the other hand, this overexpression caused epicardial adipose tissue inflammation and an increase in the area of the adipocytes, thus, favoring the recruitment of inflammatory cells in this tissue. In conclusion, this overexpression is harmful since it is related to an increase in cardiac adiposity, as well as to a predisposition to an inflammatory environment in the epicardial fat and to the incidence of cardiovascular diseases.
Collapse
Affiliation(s)
- Diogo Rodrigues Jimenes
- Program of Graduate Studies in Bioscience and Physiopathology - State University of Maringá (PBF-UEM), Brazil.
| | | | | | | | | | - Débora de Mello Gonçales Sant'Ana
- Program of Graduate Studies in Bioscience and Physiopathology - State University of Maringá (PBF-UEM), Brazil; Department of Physiological Sciences (DFS-UEM), Brazil
| |
Collapse
|
15
|
Achanta S, Gorky J, Leung C, Moss A, Robbins S, Eisenman L, Chen J, Tappan S, Heal M, Farahani N, Huffman T, England S, Cheng ZJ, Vadigepalli R, Schwaber JS. A Comprehensive Integrated Anatomical and Molecular Atlas of Rat Intrinsic Cardiac Nervous System. iScience 2020; 23:101140. [PMID: 32460006 PMCID: PMC7327996 DOI: 10.1016/j.isci.2020.101140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 12/21/2022] Open
Abstract
We have developed and integrated several technologies including whole-organ imaging and software development to support an initial precise 3D neuroanatomical mapping and molecular phenotyping of the intracardiac nervous system (ICN). While qualitative and gross anatomical descriptions of the anatomy of the ICN have each been pursued, we here bring forth a comprehensive atlas of the entire rat ICN at single-cell resolution. Our work precisely integrates anatomical and molecular data in the 3D digitally reconstructed whole heart with resolution at the micron scale. We now display the full extent and the position of neuronal clusters on the base and posterior left atrium of the rat heart, and the distribution of molecular phenotypes that are defined along the base-to-apex axis, which had not been previously described. The development of these approaches needed for this work has produced method pipelines that provide the means for mapping other organs. Comprehensive single-neuron-scale mapping of the intrinsic cardiac nervous system Whole-organ high-throughput imaging and reconstruction at a cellular resolution 3D anatomical framework for spatially tracked single-neuron molecular phenotypes Integrated histology, neuron mapping, and molecular profiles for 3D organ reconstruction
Collapse
Affiliation(s)
- Sirisha Achanta
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jonathan Gorky
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Clara Leung
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Alison Moss
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shaina Robbins
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Leonard Eisenman
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | | | | | | | | | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA.
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| | - James S Schwaber
- Daniel Baugh Institute for Functional Genomics/Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118509. [DOI: 10.1016/j.bbamcr.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
|
17
|
Allen E, Coote JH, Grubb BD, Batten TFC, Pauza DH, Ng GA, Brack KE. Electrophysiological effects of nicotinic and electrical stimulation of intrinsic cardiac ganglia in the absence of extrinsic autonomic nerves in the rabbit heart. Heart Rhythm 2018; 15:1698-1707. [PMID: 29800749 PMCID: PMC6207532 DOI: 10.1016/j.hrthm.2018.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 11/18/2022]
Abstract
Background The intrinsic cardiac nervous system is a rich network of cardiac nerves that converge to form distinct ganglia and extend across the heart and is capable of influencing cardiac function. Objective The goals of this study were to provide a complete picture of the neurotransmitter/neuromodulator profile of the rabbit intrinsic cardiac nervous system and to determine the influence of spatially divergent ganglia on cardiac electrophysiology. Methods Nicotinic or electrical stimulation was applied at discrete sites of the intrinsic cardiac nerve plexus in the Langendorff-perfused rabbit heart. Functional effects on sinus rate and atrioventricular conduction were measured. Immunohistochemistry for choline acetyltransferase (ChAT), tyrosine hydroxylase, and/or neuronal nitric oxide synthase (nNOS) was performed using whole mount preparations. Results Stimulation within all ganglia produced either bradycardia, tachycardia, or a biphasic brady-tachycardia. Electrical stimulation of the right atrial and right neuronal cluster regions produced the largest chronotropic responses. Significant prolongation of atrioventricular conduction was predominant at the pulmonary vein-caudal vein region. Neurons immunoreactive (IR) only for ChAT, tyrosine hydroxylase, or nNOS were consistently located within the limits of the hilum and at the roots of the right cranial and right pulmonary veins. ChAT-IR neurons were most abundant (1946 ± 668 neurons). Neurons IR only for nNOS were distributed within ganglia. Conclusion Stimulation of intrinsic ganglia, shown to be of phenotypic complexity but predominantly of cholinergic nature, indicates that clusters of neurons are capable of independent selective effects on cardiac electrophysiology, therefore providing a potential therapeutic target for the prevention and treatment of cardiac disease.
Collapse
Affiliation(s)
- Emily Allen
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom
| | - John H Coote
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Blair D Grubb
- Institute of Life and Human Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Dainius H Pauza
- Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - G André Ng
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom.
| | - Kieran E Brack
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom; NIHR Leicester BRC, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
18
|
Pauziene N, Rysevaite-Kyguoliene K, Alaburda P, Pauza AG, Skukauskaite M, Masaityte A, Laucaityte G, Saburkina I, Inokaitis H, Plisiene J, Pauza DH. Neuroanatomy of the Pig Cardiac Ventricles. A Stereomicroscopic, Confocal and Electron Microscope Study. Anat Rec (Hoboken) 2017; 300:1756-1780. [DOI: 10.1002/ar.23619] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Neringa Pauziene
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | | | - Paulius Alaburda
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Audrys G. Pauza
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Monika Skukauskaite
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Aiste Masaityte
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Goda Laucaityte
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Inga Saburkina
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Hermanas Inokaitis
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Jurgita Plisiene
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| | - Dainius H. Pauza
- Institute of Anatomy; Faculty of Medicine, Lithuanian University of Health Sciences; Kaunas Lithuania
| |
Collapse
|
19
|
Wake E, Brack K. Characterization of the intrinsic cardiac nervous system. Auton Neurosci 2016; 199:3-16. [DOI: 10.1016/j.autneu.2016.08.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/29/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022]
|
20
|
Innervation of sinoatrial nodal cells in the rabbit. Ann Anat 2016; 205:113-21. [DOI: 10.1016/j.aanat.2016.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 11/23/2022]
|
21
|
Pauziene N, Alaburda P, Rysevaite-Kyguoliene K, Pauza AG, Inokaitis H, Masaityte A, Rudokaite G, Saburkina I, Plisiene J, Pauza DH. Innervation of the rabbit cardiac ventricles. J Anat 2015; 228:26-46. [PMID: 26510903 DOI: 10.1111/joa.12400] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 11/28/2022] Open
Abstract
The rabbit is widely used in experimental cardiac physiology, but the neuroanatomy of the rabbit heart remains insufficiently examined. This study aimed to ascertain the architecture of the intrinsic nerve plexus in the walls and septum of rabbit cardiac ventricles. In 51 rabbit hearts, a combined approach involving: (i) histochemical acetylcholinesterase staining of intrinsic neural structures in total cardiac ventricles; (ii) immunofluorescent labelling of intrinsic nerves, nerve fibres (NFs) and neuronal somata (NS); and (iii) transmission electron microscopy of intrinsic ventricular nerves and NFs was used. Mediastinal nerves access the ventral and lateral surfaces of both ventricles at a restricted site between the root of the ascending aorta and the pulmonary trunk. The dorsal surface of both ventricles is supplied by several epicardial nerves extending from the left dorsal ganglionated nerve subplexus on the dorsal left atrium. Ventral accessing nerves are thicker and more numerous than dorsal nerves. Intrinsic ventricular NS are rare on the conus arteriosus and the root of the pulmonary trunk. The number of ventricular NS ranged from 11 to 220 per heart. Four chemical phenotypes of NS within ventricular ganglia were identified, i.e. ganglionic cells positive for choline acetyltransferase (ChAT), neuronal nitric oxide synthase (nNOS), and biphenotypic, i.e. positive for both ChAT/nNOS and for ChAT/tyrosine hydroxylase. Clusters of small intensely fluorescent cells are distributed within or close to ganglia on the root of the pulmonary trunk, but not on the conus arteriosus. The largest and most numerous intrinsic nerves proceed within the epicardium. Scarce nerves were found near myocardial blood vessels, but the myocardium contained only a scarce meshwork of NFs. In the endocardium, large numbers of thin nerves and NFs proceed along the bundle of His and both its branches up to the apex of the ventricles. The endocardial meshwork of fine NFs was approximately eight times denser than the myocardial meshwork. Adrenergic NFs predominate considerably in all layers of the ventricular walls and septum, whereas NFs of other neurochemical phenotypes were in the minority and their amount differed between the epicardium, myocardium and endocardium. The densities of NFs positive for nNOS and ChAT were similar in the epicardium and endocardium, but NFs positive for nNOS in the myocardium were eight times more abundant than NFs positive for ChAT. Potentially sensory NFs positive for both calcitonin gene-related peptide and substance P were sparse in the myocardial layer, but numerous in epicardial nerves and particularly abundant within the endocardium. Electron microscopic observations demonstrate that intrinsic ventricular nerves have a distinctive morphology, which may be attributed to remodelling of the peripheral nerves after their access into the ventricular wall. In conclusion, the rabbit ventricles display complex structural organization of intrinsic ventricular nerves, NFs and ganglionic cells. The results provide a basic anatomical background for further functional analysis of the intrinsic nervous system in the cardiac ventricles.
Collapse
Affiliation(s)
- Neringa Pauziene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Paulius Alaburda
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Audrys G Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Hermanas Inokaitis
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aiste Masaityte
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Gabriele Rudokaite
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Inga Saburkina
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Plisiene
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dainius H Pauza
- Faculty of Medicine, Institute of Anatomy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
22
|
Brack KE. The heart's 'little brain' controlling cardiac function in the rabbit. Exp Physiol 2014; 100:348-53. [PMID: 25833107 PMCID: PMC4409095 DOI: 10.1113/expphysiol.2014.080168] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Abstract
NEW FINDINGS What is the topic of this review? The topic of the review is the intrinsic cardiac nervous system in the rabbit. What advances does it highlight? The anatomy of rabbit intrinsic ganglia is similar to that of other species, including humans. Immunohistochemistry confirms the presence of cholinergic and adrenergic neurones, with a striking arrangement of neuronal nitric oxide synthase-positive cell bodies. Activation of atrial ganglia produces effects on local and remote regions. Heart disease is a primary cause of mortality in the developed world, and it is well recognized that neural mechanisms play an important role in many cardiac pathologies. The role of extrinsic autonomic nerves has traditionally attracted the most attention. However, there is a rich intrinsic innervation of the heart, including numerous cardiac ganglia (ganglionic plexuses), that has the potential to affect cardiac function independently as well as to influence the actions of the extrinsic nerves. To investigate this, an isolated, perfused, innervated rabbit Langendorff heart preparation was considered the best option. Although ganglionic plexuses have been well described for several species, there was no full description of the anatomy and histochemistry of rabbit hearts. To this end, rabbit intrinsic ganglia were located using acetylcholinesterase histology (n = 33 hearts). This revealed six generalized ganglionic regions, defined as a left neuronal complex above the left pulmonary vein, a right neuronal complex around the base of right cranial vein, three scattered in the dorsal right atrium and a region containing numerous ventricular ganglia located on the conus arteriosus. Using immunohistochemistry, neurons were found to contain choline acetyltransferase or tyrosine hydroxylase and/or neuronal nitric oxide synthase in differing amounts (choline acetyltransferase > tyrosine hydroxylase > neuronal nitric oxide synthase). The function of rabbit intrinsic ganglia was investigated using a bolus application of nicotine or electrical stimulation at each of the above sites whilst measuring heart rate and atrioventricular conduction. Nicotine applied to different ganglionic plexuses caused a bradycardia, a tachycardia or a mixture of the two, with the right atrial plexus producing the largest chronotropic responses. Electrical stimulation at these sites induced only a bradycardia. Atrioventricular conduction was modestly changed by nicotine, the main response being a prolongation. Electrical stimulation produced significant prolongation of atrioventricular conduction, particularly when the right neuronal complex was stimulated. These studies show that the intrinsic plexuses of the heart are important and could be crucial for understanding impairments of cardiac function. Additionally, they provide a strong basis from which to progress using the isolated, innervated rabbit heart preparation.
Collapse
Affiliation(s)
- Kieran E Brack
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, UK; Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, UK
| |
Collapse
|