1
|
Yu Y, Cheung YT, Cheung CW. Discovery of Glucose Metabolism-Associated Genes in Neuropathic Pain: Insights from Bioinformatics. Int J Mol Sci 2024; 25:13503. [PMID: 39769264 PMCID: PMC11679926 DOI: 10.3390/ijms252413503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction has been demonstrated to contribute to diabetic pain, pointing towards a potential correlation between glucose metabolism and pain. To investigate the relationship between altered glucose metabolism and neuropathic pain, we compared samples from healthy subjects with those from intervertebral disc degeneration (IVDD) patients, utilizing data from two public datasets. This led to the identification of 412 differentially expressed genes (DEG), of which 234 were upregulated and 178 were downregulated. Among these, three key genes (Ins, Igfbp3, Plod2) were found. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated the enrichment of hub genes in pathways such as the positive regulation of the ErbB signaling pathway, monocyte activation, and response to reactive oxygen species; thereby suggesting a potential correlation between these biological pathways and pain sensation. Further analysis identified three key genes (Ins, Igfbp3, and Plod2), which showed significant correlations with immune cell infiltration, suggesting their roles in modulating pain through immune response. To validate our findings, quantitative real-time polymerase chain reaction (qPCR) analysis confirmed the expression levels of these genes in a partial sciatic nerve ligation (PSNL) model, and immunofluorescence studies demonstrated increased immune cell infiltration at the injury site. Behavioral assessments further corroborated pain hypersensitivity in neuropathic pain (NP) models. Our study sheds light on the molecular mechanisms underlying NP and aids the identification of potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ying Yu
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
| | - Yan-Ting Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
| | - Chi-Wai Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
- Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
González-Hernández S, Sato R, Sato Y, Liu C, Li W, Liu C, Jackson S, Kubota Y, Mukouyama YS. ENDOTHELIAL PROX1 INDUCES BLOOD-BRAIN BARRIER DISRUPTION IN THE CENTRAL NERVOUS SYSTEM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.03.616513. [PMID: 39803470 PMCID: PMC11722279 DOI: 10.1101/2024.10.03.616513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The central nervous system (CNS) parenchyma has conventionally been believed to lack lymphatic vasculature, likely due to a non-permissive microenvironment that hinders the formation and growth of lymphatic endothelial cells (LECs). Recent findings of ectopic expression of LEC markers including Prospero Homeobox 1 (PROX1), a master regulator of lymphatic differentiation, and the vascular permeability marker Plasmalemma Vesicle Associated Protein (PLVAP), in certain glioblastoma and brain arteriovenous malformations (AVMs), has prompted investigation into their roles in cerebrovascular malformations, tumor environments, and blood-brain barrier (BBB) abnormalities. To explore the relationship between ectopic LEC properties and BBB disruption, we utilized endothelial cell-specific Prox1 overexpression mutants. When induced during embryonic stages of BBB formation, endothelial Prox1 expression induces hybrid blood-lymphatic phenotypes in the developing CNS vasculature. This effect is not observed when Prox1 is overexpressed during postnatal BBB maturation. Ectopic Prox1 expression leads to significant vascular malformations and enhanced vascular leakage, resulting in BBB disruption when induced during both embryonic and postnatal stages. Mechanistically, PROX1 downregulates critical BBB-associated genes, including ß-catenin and Claudin-5, which are essential for BBB development and maintenance. These findings suggest that PROX1 compromises BBB integrity by negatively regulating BBB-associated gene expression and Wnt/ß-catenin signaling.
Collapse
Affiliation(s)
- Sara González-Hernández
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryo Sato
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yuya Sato
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Present Address: Knowledge Palette, Inc. Kobe, Hyogo, Japan
| | - Chang Liu
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Present Address: Sarepta Therapeutics, Inc. Durham, NC, USA
| | - Wenling Li
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sadhana Jackson
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yoshiaki Kubota
- Department of Anatomy, Institute for Advanced Medical, Research and Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoh-suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Developmental Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Jian Y, Li Y, Zhang Y, Tang M, Deng M, Liu C, Cheng M, Xiao S, Deng C, Wei Z. Lymphangiogenesis: novel strategies to promote cutaneous wound healing. BURNS & TRAUMA 2024; 12:tkae040. [PMID: 39328366 PMCID: PMC11427083 DOI: 10.1093/burnst/tkae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 09/28/2024]
Abstract
The cutaneous lymphatic system regulates tissue inflammation, fluid balance and immunological responses. Lymphangiogenesis or lymphatic dysfunction may lead to lymphedema, immune deficiency, chronic inflammation etc. Tissue regeneration and healing depend on angiogenesis and lymphangiogenesis during wound healing. Tissue oedema and chronic inflammation can slow wound healing due to impaired lymphangiogenesis or lymphatic dysfunction. For example, impaired lymphangiogenesis or lymphatic dysfunction has been detected in nonhealing wounds such as diabetic ulcers, venous ulcers and bedsores. This review summarizes the structure and function of the cutaneous lymphatic vessel system and lymphangiogenesis in wounds. Furthermore, we review wound lymphangiogenesis processes and remodelling, especially the influence of the inflammatory phase. Finally, we outline how to control lymphangiogenesis to promote wound healing, assess the possibility of targeting lymphangiogenesis as a novel treatment strategy for chronic wounds and provide an analysis of the possible problems that need to be addressed.
Collapse
Affiliation(s)
- Yang Jian
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Yanji Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingyuan Tang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Mingfu Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Chenxiaoxiao Liu
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Maolin Cheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| | - Zairong Wei
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, No. 149 Dalian Road, Hui chuan District, Zunyi, Guizhou, 563003, China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, No. 6 West Xuefu Road, Xinpu District, Zunyi, Guizhou, 563003, China
| |
Collapse
|
4
|
Li S, Li J, Yang X, Huang J, Feng S, Xie Z, Yang N, Wang Y, Zhou N. Peripheral nervous system lymphatic vessels: A simple delivery route to promote nerve regeneration. Exp Neurol 2024; 377:114783. [PMID: 38688418 DOI: 10.1016/j.expneurol.2024.114783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/09/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
The structural and functional features of lymphatic vessels in the peripheral nervous system (pLVs) is still unclear. Here, we clarify the existence of pLVs in rats, PROX1-EGFP transgenic mice and human, and exhibit a clear three-dimensional structure for helping understand its structural features. Moreover, two specific phenotypes of lymphatics endothelial cells (Rnd1Hi LECs and Ccl21Hi LECs) in peripheral nerves are well characterized by single-cell sequencing. Subsequently, the ability of trans-lymphatic delivery to peripheral nerves via pLVs has been dynamically demonstrated. After peripheral nerve injury (PNI), extensive lymphangiogenesis occurs in the lesion area and further enhances the efficiency of retrograde lymphatic-nerve transport. In PNI animal models, subcutaneously footpad-injected exosomes are efficiently delivered to sciatic nerve via pLVs which can promote nerve regeneration. The trans-lymphatic delivery to peripheral nerves via pLVs can subtly bypass BNB which provides an easy and alternative delivery route for PNI treatment.
Collapse
Affiliation(s)
- Senrui Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Jiangnan Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoqi Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China; State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinsheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Shuai Feng
- Department of Hand and Podiatric Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Zhenjun Xie
- Department of Hand and Podiatric Surgery, Henan Provincial People's Hospital, Zhengzhou 450000, China
| | - Ningning Yang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Yuanyi Wang
- Department of Spinal Surgery, The First Hospital of Jilin University, Orthopedics Center, Jilin University, Changchun 130021, China.
| | - Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
5
|
Davidsson P, Eketjäll S, Eriksson N, Walentinsson A, Becker RC, Cavallin A, Bogstedt A, Collén A, Held C, James S, Siegbahn A, Stewart R, Storey RF, White H, Wallentin L. Vascular endothelial growth factor-D plasma levels and VEGFD genetic variants are independently associated with outcomes in patients with cardiovascular disease. Cardiovasc Res 2023; 119:1596-1605. [PMID: 36869765 DOI: 10.1093/cvr/cvad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 03/05/2023] Open
Abstract
AIMS The vascular endothelial growth factor (VEGF) family is involved in pathophysiological mechanisms underlying cardiovascular (CV) diseases. The aim of this study was to investigate the associations between circulating VEGF ligands and/or soluble receptors and CV outcome in patients with acute coronary syndrome (ACS) and chronic coronary syndrome (CCS). METHODS AND RESULTS Levels of VEGF biomarkers, including bFGF, Flt-1, KDR (VEGFR2), PlGF, Tie-2, VEGF-A, VEGF-C, and VEGF-D, were measured in the PLATO ACS cohort (n = 2091, discovery cohort). Subsequently, VEGF-D was also measured in the STABILITY CCS cohort (n = 4015, confirmation cohort) to verify associations with CV outcomes. Associations between plasma VEGF-D and outcomes were analysed by multiple Cox regression models with hazard ratios (HR [95% CI]) comparing the upper vs. the lower quartile of VEGF-D. Genome-wide association study (GWAS) of VEGF-D in PLATO identified SNPs that were used as genetic instruments in Mendelian randomization (MR) meta-analyses vs. clinical endpoints. GWAS and MR were performed in patients with ACS from PLATO (n = 10 013) and FRISC-II (n = 2952), and with CCS from the STABILITY trial (n = 10 786). VEGF-D, KDR, Flt-1, and PlGF showed significant association with CV outcomes. VEGF-D was most strongly associated with CV death (P = 3.73e-05, HR 1.892 [1.419, 2.522]). Genome-wide significant associations with VEGF-D levels were identified at the VEGFD locus on chromosome Xp22. MR analyses of the combined top ranked SNPs (GWAS P-values; rs192812042, P = 5.82e-20; rs234500, P = 1.97e-14) demonstrated a significant effect on CV mortality [P = 0.0257, HR 1.81 (1.07, 3.04) per increase of one unit in log VEGF-D]. CONCLUSION This is the first large-scale cohort study to demonstrate that both VEGF-D plasma levels and VEGFD genetic variants are independently associated with CV outcomes in patients with ACS and CCS. Measurements of VEGF-D levels and/or VEGFD genetic variants may provide incremental prognostic information in patients with ACS and CCS.
Collapse
Affiliation(s)
- Pia Davidsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Susanna Eketjäll
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Niclas Eriksson
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
| | - Anna Walentinsson
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Richard C Becker
- Division of Cardiovascular Health and Disease, Heart, Lung and Vascular Institute, University of Cincinnati College of Medicine, 231 Albert Sabin Way ML 0542, Cincinnati, OH, 45267, USA
| | - Anders Cavallin
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Anna Bogstedt
- Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Anna Collén
- Projects, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83 Mölndal, Sweden
| | - Claes Held
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Stefan James
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Agneta Siegbahn
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
- Clinical Chemistry, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| | - Ralph Stewart
- Green Lane Cardiovascular Service, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK
| | - Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital, 2 Park Road, Grafton, Auckland 1023, New Zealand
| | - Lars Wallentin
- Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds väg 38, 751 85 Uppsala, Sweden
- Department of Medical Sciences, Cardiology, Uppsala University, Akademiska Sjukhuset, 751 85 Uppsala, Sweden
| |
Collapse
|
6
|
Wang M, Wu S, Wang J, Fan D, Li Z, Tian S, Yao S, Zhang H, Gao H. MiRNA-206 Affects the Recovery of Sciatic Function by Stimulating BDNF Activity through the Down-regulation of Notch3 Expression. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2023; 23:109-121. [PMID: 36856106 PMCID: PMC9976182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of microRNA 206 (miRNA-206) on neurological recovery through Notch receptor 3 (Notch3). METHODS The sciatic functional index (SFI), nerve conduction velocity (NCV), tricipital muscle wet weight (TWW) and cross-sectional area of the muscular fiber, and grip strength of posterior limbs were detected by establishing a model of the sciatic nerve to evaluate the effect of sciatic nerve injury model. miRNA-206 expression in the model was detected by real-time quantitative polymerase chain reaction (qRT-PCR), to regulate the effects of miRNA-206 on the proliferation of gastrocnemius myocytes by Cell Counting Kit-8 (CCK-8). RESULTS SFI of the model established by immediate epineurium suture after sciatic nerve resection was in the range of -150% to -100% and TWW, the average area of gastrocnemius myocytes, the NCV, and the grasping power of the hind limbs in the model were all lower than those in the normal group. And in the model, TWW, the average area of gastrocnemius myocytes, NCV, and grip strength of posterior limbs were lower in the normal group, which verified the successful establishment of the model. CONCLUSION Over-expression of miRNA-206 can down-regulate Notch3 expression, and then stimulate brain-derived neurotrophic factor (BDNF) activity to promote the repair and functional recovery of sciatic nerve injury.
Collapse
Affiliation(s)
- Meng Wang
- Post-graduation Education Office, College of General Practice and Continuing Education, Qiqihar Medical University, Qiqihar, China
| | - Shuang Wu
- Ward 5, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Dandan Fan
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zhiyong Li
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shaohua Tian
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Sining Yao
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongyu Zhang
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongwei Gao
- Ward 2, Department of Orthopedics, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
7
|
Wang YC, Meng WT, Zhang HF, Zhu J, Wang QL, Mou FF, Guo HD. Lymphangiogenesis, a potential treatment target for myocardial injury. Microvasc Res 2023; 145:104442. [PMID: 36206847 DOI: 10.1016/j.mvr.2022.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/26/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
The lymphatic vascular system is crucial for the regulation of tissue fluid homeostasis, lipid metabolism, and immune function. Cardiac injury quickly leads to myocardial edema, cardiac lymphatic dysfunction, which ultimately results in myocardial fluid imbalance and cardiac dysfunction. Therefore, lymphangiogenesis-targeted therapy may improve the recovery of myocardial function post cardiac ischemia as observed in myocardial infarction (MI). Indeed, a promising strategy for the clinical treatment of MI relies on vascular endothelial growth factor-C (VEGF-C)-targeted therapy, which promotes lymphangiogenesis. However, much effort is needed to identify the mechanisms of lymphatic transport in response to heart disease. This article reviews regulatory factors of lymphangiogenesis, and discusses the effects of lymphangiogenesis on cardiac function after cardiac injury and its regulatory mechanisms. The involvement of stem cells on lymphangiogenesis was also discussed as stem cells could differentiate into lymphatic endothelial cells (LECs) and stimulate phenotype of LECs.
Collapse
Affiliation(s)
- Ya-Chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wan-Ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai-Feng Zhang
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang-Li Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Blockade of Cholecystokinin Type 2 Receptors Prevents the Onset of Vincristine-Induced Neuropathy in Mice. Pharmaceutics 2022; 14:pharmaceutics14122823. [PMID: 36559317 PMCID: PMC9788598 DOI: 10.3390/pharmaceutics14122823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Vincristine (VCR) is responsible for the onset of the VCR-induced peripheral neuropathy (VIPN), associated with neuropathic pain. Several reports have strongly linked the cholecystokinin type 2 receptor (CCK2R) to nociceptive modulation. Thus, our aim was to evaluate the effect of CCK2R blockade on the onset of VIPN, as well as its interaction on VCR anticancer efficacy. VCR was administrated in mice for 8 days (100 µg/kg/d, i.p.). Transcriptomic analysis of the dorsal root ganglia (DRG) was performed at day 7 in VCR and control mice. Proglumide (30 mg/kg/d), a CCK1R and CCK2R antagonist, and Ly225910 (1 mg/kg/d), a selective CCK2R antagonist, were administrated one day before and during VCR treatment. Tactile sensitivity was assessed during treatments. Immunofluorescence and morphological analyses were performed on the skin, DRG and sciatic nerve at day 7. The cytotoxicity of VCR in combination with proglumide/Ly225910 was evaluated in human cancer cell lines. Cck2r was highly upregulated in the DRG of VCR mice. Proglumide accelerated the recovery of normal sensitivity, while Ly225910 totally prevented the onset of allodynia and nerve injuries induced by VCR. Proglumide or Ly225910 in combination with VCR did not affect the cytotoxicity of VCR. Targeting CCK2R could therefore be an effective strategy to prevent the onset of VIPN.
Collapse
|
9
|
Hedysarum Polysaccharide Alleviates Oxidative Stress to Protect Against Diabetic Peripheral Neuropathy via Modulation of the Keap1/Nrf2 signaling pathway. J Chem Neuroanat 2022; 126:102182. [DOI: 10.1016/j.jchemneu.2022.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
10
|
Liu Q, Ma Z, Cao Q, Zhao H, Guo Y, Liu T, Li J. Perineural invasion-associated biomarkers for tumor development. Biomed Pharmacother 2022; 155:113691. [PMID: 36095958 DOI: 10.1016/j.biopha.2022.113691] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Perineural invasion (PNI) is the process of neoplastic invasion of peripheral nerves and is considered to be the fifth mode of cancer metastasis. PNI has been detected in head and neck tumors and pancreatic, prostate, bile duct, gastric, and colorectal cancers. It leads to poor prognostic outcomes and high local recurrence rates. Despite the increasing number of studies on PNI, targeted therapeutic modalities have not been proposed. The identification of PNI-related biomarkers would facilitate the non-invasive and early diagnosis of cancers, the establishment of prognostic panels, and the development of targeted therapeutic approaches. In this review, we compile information on the molecular mediators involved in PNI-associated cancers. The expression and prognostic significance of molecular mediators and their receptors in PNI-associated cancers are analyzed, and the possible mechanisms of action of these mediators in PNI are explored, as well as the association of cells in the microenvironment where PNI occurs.
Collapse
Affiliation(s)
- Qi Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhiming Ma
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian Cao
- Department of Education, The Second Hospital of Jilin University, Changchun 130041, China
| | - Hongyu Zhao
- Gastroenterology and Center of Digestive Endoscopy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yu Guo
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, China.
| |
Collapse
|
11
|
Heinzel JC, Oberhauser V, Keibl C, Schädl B, Swiadek NV, Längle G, Frick H, Slezak C, Prahm C, Grillari J, Kolbenschlag J, Hercher D. ESWT Diminishes Axonal Regeneration following Repair of the Rat Median Nerve with Muscle-In-Vein Conduits but Not after Autologous Nerve Grafting. Biomedicines 2022; 10:biomedicines10081777. [PMID: 35892677 PMCID: PMC9394363 DOI: 10.3390/biomedicines10081777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/06/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Investigations reporting positive effects of extracorporeal shockwave therapy (ESWT) on nerve regeneration are limited to the rat sciatic nerve model. The effects of ESWT on muscle-in-vein conduits (MVCs) have also not been investigated yet. This study aimed to evaluate the effects of ESWT after repair of the rat median nerve with either autografts (ANGs) or MVCs. In male Lewis rats, a 7 mm segment of the right median nerve was reconstructed either with an ANG or an MVC. For each reconstructive technique, one group of animals received one application of ESWT while the other rats served as controls. The animals were observed for 12 weeks, and nerve regeneration was assessed using computerized gait analysis, the grasping test, electrophysiological evaluations and histological quantification of axons, blood vessels and lymphatic vasculature. Here, we provide for the first time a comprehensive analysis of ESWT effects on nerve regeneration in a rat model of median nerve injury. Furthermore, this study is among the first reporting the quantification of lymphatic vessels following peripheral nerve injury and reconstruction in vivo. While we found no significant direct positive effects of ESWT on peripheral nerve regeneration, results following nerve repair with MVCs were significantly inferior to those after ANG repair.
Collapse
Affiliation(s)
- Johannes C. Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Viola Oberhauser
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Claudia Keibl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Barbara Schädl
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Core Facility Morphology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicole V. Swiadek
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Längle
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Helen Frick
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Cyrill Slezak
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Department of Physics, Utah Valley University, Orem, UT 84058, USA
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Institute of Molecular Biotechnology, Department of Biotechnology, BOKU—University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (J.C.H.); (C.P.); (J.K.)
| | - David Hercher
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Donaueschingenstraße 13, 1200 Vienna, Austria; (V.O.); (C.K.); (B.S.); (N.V.S.); (G.L.); (H.F.); (C.S.); (J.G.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
12
|
Hromada C, Hartmann J, Oesterreicher J, Stoiber A, Daerr A, Schädl B, Priglinger E, Teuschl-Woller AH, Holnthoner W, Heinzel J, Hercher D. Occurrence of Lymphangiogenesis in Peripheral Nerve Autografts Contrasts Schwann Cell-Induced Apoptosis of Lymphatic Endothelial Cells In Vitro. Biomolecules 2022; 12:820. [PMID: 35740945 PMCID: PMC9221261 DOI: 10.3390/biom12060820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Peripheral nerve injuries pose a major clinical concern world-wide, and functional recovery after segmental peripheral nerve injury is often unsatisfactory, even in cases of autografting. Although it is well established that angiogenesis plays a pivotal role during nerve regeneration, the influence of lymphangiogenesis is strongly under-investigated. In this study, we analyzed the presence of lymphatic vasculature in healthy and regenerated murine peripheral nerves, revealing that nerve autografts contained increased numbers of lymphatic vessels after segmental damage. This led us to elucidate the interaction between lymphatic endothelial cells (LECs) and Schwann cells (SCs) in vitro. We show that SC and LEC secretomes did not influence the respective other cell types' migration and proliferation in 2D scratch assay experiments. Furthermore, we successfully created lymphatic microvascular structures in SC-embedded 3D fibrin hydrogels, in the presence of supporting cells; whereas SCs seemed to exert anti-lymphangiogenic effects when cultured with LECs alone. Here, we describe, for the first time, increased lymphangiogenesis after peripheral nerve injury and repair. Furthermore, our findings indicate a potential lymph-repellent property of SCs, thereby providing a possible explanation for the lack of lymphatic vessels in the healthy endoneurium. Our results highlight the importance of elucidating the molecular mechanisms of SC-LEC interaction.
Collapse
Affiliation(s)
- Carina Hromada
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Jaana Hartmann
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Oesterreicher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anton Stoiber
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Anna Daerr
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Barbara Schädl
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Eleni Priglinger
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Andreas H. Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, 1200 Vienna, Austria; (C.H.); (A.D.); (A.H.T.-W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
| | - Wolfgang Holnthoner
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| | - Johannes Heinzel
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Unfallklinik Tuebingen, University of Tuebingen, 72076 Tuebingen, Germany
| | - David Hercher
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (J.H.); (J.O.); (A.S.); (B.S.); (E.P.); (W.H.)
- Ludwig Boltzmann Institute for Traumatology, The Research Centre in Cooperation with AUVA, 1200 Vienna, Austria;
| |
Collapse
|
13
|
Yin GN, Shin TY, Ock J, Choi MJ, Limanjaya A, Kwon MH, Liu FY, Hong SS, Kang JH, Gho YS, Suh JK, Ryu JK. Pericyte‑derived extracellular vesicles‑mimetic nanovesicles improves peripheral nerve regeneration in mouse models of sciatic nerve transection. Int J Mol Med 2022; 49:18. [PMID: 34935051 PMCID: PMC8711595 DOI: 10.3892/ijmm.2021.5073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/02/2021] [Indexed: 11/06/2022] Open
Abstract
Pericyte‑derived extracellular vesicle‑mimetic nanovesicles (PC‑NVs) play an important role in the improvement of erectile function after cavernous nerve injury. However, the impact of PC‑NVs on the peripheral nervous system (PNS), such as the sciatic nerve, is unclear. In this study, PC‑NVs were isolated from mouse cavernous pericytes (MCPs). A sciatic nerve transection (SNT) model was established using 8‑week‑old C57BL/6J mice. The sciatic nerve was harvested 5 and 14 days for immunofluorescence and western blot studies. Function studies were evaluated by performing the rotarod test and walking track analysis. The results demonstrated that PC‑NVs could stimulate endothelial cells, increase neuronal cell content, and increase macrophage and Schwann cell presence at the proximal stump rather than the distal stump in the SNT model, thereby improving angiogenesis and nerve regeneration in the early stage of sciatic nerve regeneration. In addition, PC‑NVs also increased the expression of neurotrophic factors (brain‑derived nerve growth factor, neurotrophin‑3 and nerve growth factor) and the activity of the cell survival signaling pathway (PI3K/Akt signaling), and reduced the activity of the JNK signaling pathway. Additionally, after 8 weeks of local application of PC‑NVs in SNT model mice, their motor and sensory functions were significantly improved, as assessed by performing the rotarod test and walking track analysis. In conclusion, the present study showed that the significant improvement of neurovascular regeneration in mice following treatment with PC‑NVs may provide a favorable strategy for promoting motor and sensory regeneration and functional recovery of the PNS.
Collapse
Affiliation(s)
- Guo Nan Yin
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Tae Young Shin
- Department of Urology, Ewha Woman's University School of Medicine, Seoul 07804, Republic of Korea
| | - Jiyeon Ock
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Min-Ji Choi
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Anita Limanjaya
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Mi-Hye Kwon
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Fang-Yuan Liu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine, Program in Biomedical Science and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University College of Medicine, Incheon 22332, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jun-Kyu Suh
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Ji-Kan Ryu
- Department of Urology and National Research Center for Sexual Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
14
|
The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. Int J Mol Sci 2022; 23:ijms23020931. [PMID: 35055117 PMCID: PMC8781560 DOI: 10.3390/ijms23020931] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the crucial regulator of angiogenesis, lymphangiogenesis, lipid metabolism and inflammation, is involved in the development of atherosclerosis and further CVDs (cardiovascular diseases). This review discusses the general regulation and functions of VEGFs, their role in lipid metabolism and atherosclerosis development and progression. These functions present the great potential of applying the VEGF family as a target in the treatment of atherosclerosis and related CVDs. In addition, we discuss several modern anti-atherosclerosis VEGFs-targeted experimental procedures, drugs and natural compounds, which could significantly improve the efficiency of atherosclerosis and related CVDs' treatment.
Collapse
|
15
|
Gadolinium enhancement of cranial nerves: Implications for interstitial fluid drainage from brainstem into cranial nerves in humans. Proc Natl Acad Sci U S A 2021; 118:2106331118. [PMID: 34728566 PMCID: PMC8609323 DOI: 10.1073/pnas.2106331118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Drainage of interstitial fluid and solutes from the brainstem has not been well studied. To map one drainage pathway in the human brainstem, we took advantage of the focal blood–brain barrier disruption occurring in a multiple sclerosis brainstem lesion, coupled with intravenous injection of gadolinium, which simulates an intraparenchymal injection of gadolinium tracer within the restricted confines of this small brain region. Using high-resolution MRI, we show how it is possible for interstitial fluid to drain into the adjacent trigeminal and oculomotor nerves, in keeping with a pathway of communication between the extracellular spaces of the brainstem and cranial nerve parenchyma.
Collapse
|
16
|
Zucal I, Mihic-Probst D, Pignet AL, Calcagni M, Giovanoli P, Frueh FS. Intraneural fibrosis and loss of microvascular architecture - Key findings investigating failed human nerve allografts. Ann Anat 2021; 239:151810. [PMID: 34324996 DOI: 10.1016/j.aanat.2021.151810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Processed nerve allografts are increasingly used in clinical nerve reconstruction with promising results. However, allograft failure has been reported, leading to chronic pain and persistent loss of function. In the present work, we performed a histological and immunohistochemical analysis of two failed allograft reconstructions of a sensory human nerve one year after primary surgery. METHODS Two patients with a superficial radial nerve injury underwent nerve reconstruction with processed nerve allografts. The clinical follow-up was complicated by severe neuropathic pain and absent sensory reinnervation. Consequently, the failed allografts were excised with subsequent histological and immunohistochemical examinations. For that purpose, the collagen content and neurofilament network as well as the blood and lymphatic vasculature were analysed in the center of the specimens. RESULTS Histology revealed increased fibrosis, fatty degeneration, and disorganised proliferation of nerve fibres. Moreover, the microvascular network within the allografts was characterised by increased numbers of microvessels, whereas no difference was found concerning the lymphatic vasculature. CONCLUSION The herein presented histological and immunohistochemical findings indicate that the failure of human allografts is associated with loss of the physiological microvascular architecture. Future studies elucidating the complex interplay of angiogenesis, lymphangiogenesis and axonal regeneration are required to better understand the mechanisms of human allograft failure.
Collapse
Affiliation(s)
- Isabel Zucal
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Mihic-Probst
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna-Lisa Pignet
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Florian S Frueh
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
New lymphatic cell formation is associated with damaged brain tissue clearance after penetrating traumatic brain injury. Sci Rep 2021; 11:10193. [PMID: 33986371 PMCID: PMC8119702 DOI: 10.1038/s41598-021-89616-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/22/2021] [Indexed: 12/15/2022] Open
Abstract
We characterized the tissue repair response after penetrating traumatic brain injury (pTBI) in this study. Seventy specific pathogen-free Kunming mice were randomly divided into the following groups: normal control, 1, 3, 7, 15, 21, and 30 days after pTBI. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and immunofluorescence were performed to examine and monitor brain tissue morphology, and the distribution and expression of lymphatic-specific markers lymphatic vessel endothelial receptor-1 (LYVE-1), hematopoietic precursor cluster of differentiation 34 (CD34) antigen, and Prospero-related homeobox-1 (PROX1) protein. H&E staining revealed that damaged and necrotic tissues observed on day 1 at and around the injury site disappeared on day 7, and there was gradual shrinkage and disappearance of the lesion on day 30, suggesting a clearance mechanism. We explored the possibility of lymphangiogenesis causing this clearance as part of the post-injury response. Notably, expression of lymphangiogenesis markers LYVE-1, CD34, and PROX1 was detected in damaged mouse brain tissue but not in normal tissue. Moreover, new lymphatic cells and colocalization of LYVE-1/CD34 and LYVE-1/PROX1 were also observed. Our findings of the formation of new lymphatic cells following pTBI provide preliminary insights into a post-injury clearance mechanism in the brain. Although we showed that lymphatic cells are implicated in brain tissue repair, further research is required to clarify the origin of these cells.
Collapse
|
18
|
Meng FW, Jing XN, Song GH, Jie LL, Shen FF. Prox1 induces new lymphatic vessel formation and promotes nerve reconstruction in a mouse model of sciatic nerve crush injury. J Anat 2020; 237:933-940. [PMID: 32515838 PMCID: PMC7542192 DOI: 10.1111/joa.13247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The peripheral nervous system lacks lymphatic vessels and is protected by the blood–nerve barrier, which prevents lymphocytes and antibodies from entering the neural parenchyma. Peripheral nerve injury results in degeneration of the distal nerve and myelin degeneration causes macrophage aggregation, T lymphocyte infiltration, major histocompatibility complex class II antigen expression, and immunoglobulin G deposition in the nerve membrane, which together result in nerve edema and therefore affect nerve regeneration. In the present paper, we show myelin expression was absent from the sciatic nerve at 7 days after injury, and the expression levels of lymphatic vessel endothelial hyaluronan receptor 1 (LYVE‐1) and Prospero Homeobox 1 (Prox1) were significantly increased in the sciatic nerve at 7 days after injury. The lymphatic vessels were distributed around the myelin sheath and co‐localized with lymphatic endothelial cells. Prox1 induces the formation of new lymphatic vessels, which play important roles in the elimination of tissue edema as well as in morphological and functional restoration of the damaged nerve. This study provides evidence of the involvement of new lymphatic vessels in nerve repair after sciatic nerve injury.
Collapse
Affiliation(s)
- Fan-Wei Meng
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Xue-Ning Jing
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Gui-Hong Song
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Lin-Lin Jie
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Fang-Fang Shen
- Department of Anatomy and Physiology, Shandong College of Traditional Chinese Medicine, Yantai, China
| |
Collapse
|