1
|
Rischard F, Gore E, Flourat A, Savary G. The challenges faced by multifunctional ingredients: A critical review from sourcing to cosmetic applications. Adv Colloid Interface Sci 2025; 340:103463. [PMID: 40043509 DOI: 10.1016/j.cis.2025.103463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025]
Abstract
In response to the growing consumer demand for natural ingredients and simplified formulations, the cosmetic industry has seen a surge in the development and application of multifunctional ingredients. These versatile components, capable of serving multiple roles, effectively streamline the ingredient list of final cosmetic products, aligning with the current market trends. This review provides an overview of the advancements made and limits encountered in the field of multifunctional cosmetic ingredients over recent years (from 1998 to present time). The pursuit of sourcing these multipurpose ingredients has become a significant focus, with a clear shift towards natural and bio-based products, while answering the requests of consumers for eco-friendly options. By prioritizing sustainable and ethics, researchers not only adhere to regulatory standards but also pioneers innovations that set new benchmarks for quality and responsibility. The review also delves into formulation strategies for multifunctional ingredients, a critical aspect of their development process. It discusses the various approaches adopted by researchers to effectively incorporate these ingredients into cosmetic products, ensuring their safety and stability. Lastly, the review addresses the regulatory landscape surrounding cosmetic ingredients. It underscores the importance of adhering to the regulations set forth by governing bodies, ensuring the safety and efficacy, and highlights the lack of dispositions for these innovative multifunctional ingredients. In conclusion, this review offers a comprehensive insight into the multifunctional cosmetic ingredients, from their sourcing and formulation to their application and regulation, providing a valuable resource for researchers and industry professionals alike.
Collapse
Affiliation(s)
- Floriane Rischard
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France; URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France
| | - Ecaterina Gore
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France
| | - Amandine Flourat
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, 51110 Pomacle, France
| | - Géraldine Savary
- Université Le Havre Normandie, Normandie Univ, URCOM UR 3221, F-76600 Le Havre, France.
| |
Collapse
|
2
|
Wyżga B, Kamiński K, Hąc-Wydro K. The influence of Leucidal, a natural cosmetic preservative, on fibroblast and keratinocytes. Studies on cells and on model membrane systems. Arch Biochem Biophys 2024; 757:110044. [PMID: 38797227 DOI: 10.1016/j.abb.2024.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/28/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
The aim of this work was to investigate the influence of Leucidal® Liquid (abbr. Leucidal), which is recommended as a natural cosmetic ingredient of antimicrobial properties, on model membranes of keratinocytes and fibroblasts. The toxicity tests on cell lines were also performed to allow for a more detailed discussion of the results. As model membrane systems the lipid Langmuir monolayers were applied. During the investigations, the surface pressure/area measurements, penetration studies and Brewster Angle Microscopy (BAM) visualization were performed for one component and mixed lipid monolayers. It was evidenced that at the membrane - corresponding conditions, the components of Leucidal do not penetrate either model keratinocyte and fibroblast membranes or one component films composed of the major lipids of skin cell membranes. Leucidal makes these systems slightly more expanded and less stable, however this is not reflected in the changes in the film morphology. Only the ceramide systems were sensitive to the presence of Leucidal, i.e. the incorporation of Leucidal components manifested well in the decrease of the films' condensation and alterations in their morphology. The tests on cells demonstrated that Leucidal is non toxic for these types of cells at the concentrations suggested by the producer. A thorough comparison of these results with those published for bacteria model membranes enabled us to discuss them in the context of the mechanism of action of Leucidal components. It was concluded that Leucidal components are of low affinity to the skin cellular model membranes of low content of Leucidal-sensitive ceramides and are not toxic for fibroblast and keratinocyte cell lines. Moreover, the lipid composition of the membrane and its molecular organization can be important targets for Leucidal components, decisive from the point of view of the activity and selectivity of the studied composition.
Collapse
Affiliation(s)
- Beata Wyżga
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland; Jagiellonian University, Doctoral School of Exact and Natural Sciences, Łojasiewicza 11, 30-348, Kraków, Poland
| | - Kamil Kamiński
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland
| | - Katarzyna Hąc-Wydro
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387, Kraków, Poland.
| |
Collapse
|
3
|
Wang Z, Fang J, Zu S, Sun Q, Song Z, Geng J, Wang D, Li M, Wang C. Protective Effect of Panax notoginseng Extract Fermented by Four Different Saccharomyces cerevisiae Strains on H 2O 2 Induced Oxidative Stress in Skin Fibroblasts. Clin Cosmet Investig Dermatol 2024; 17:621-635. [PMID: 38505810 PMCID: PMC10949305 DOI: 10.2147/ccid.s443717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/16/2024] [Indexed: 03/21/2024]
Abstract
Purpose To produce Panax notoginseng extract as a cosmetic ingredient through Saccharomyces cerevisiae fermentation. Methods We first compared the total sugar content, polysaccharide content, reducing sugar content, total phenolic content, total saponin content, DPPH free radical, ABTS free radical, hydroxyl free radical scavenging ability and ferric reducing antioxidant power (FRAP) of Panax notoginseng fermented extract (pnFE) and unfermented extract (pnWE). Their potential correlations were analyzed by Pearson's correlation analysis. Then, the oxidative stress model of H2O2-induced MSFs was used to evaluate the effects of different pnFE on MSF viability, reactive oxygen species (ROS), malondialdehyde (MDA), and the activities of catalase (CAT), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) to explore their protective effects on MSFs subjected to H2O2-induced cellular oxidative damage. Finally, their safety and stability were evaluated by using the red blood cell (RBC) test and hen's egg test-chorioallantoic membrane (HET-CAM) assay, and changes in pH and content of soluble solids, respectively. Results Compared with pnWE, pnFE has more active substances and stronger antioxidant capacity. In addition, pnFE has a protective effect on H2O2-induced oxidative stress in MSFs with appropriate safety and stability. Conclusion PnFE has broad application prospects in the field of cosmetics.
Collapse
Affiliation(s)
- Ziwen Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Jiaxuan Fang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Shigao Zu
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Qianru Sun
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Zixin Song
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Jiman Geng
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Dongdong Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Meng Li
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| | - Changtao Wang
- Beijing Key Laboratory of Plant Resource Research and Development, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing, 100048, People’s Republic of China
| |
Collapse
|
4
|
Tanaka M, Doi T, Takeda A, Nakamura A, Azuma Y, Kawaguchi M, Tagami T. Rapid Determination of Preservatives in Cosmetics Using a Core-Shell Column. J Chromatogr Sci 2023; 61:637-643. [PMID: 36124661 DOI: 10.1093/chromsci/bmac073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Indexed: 11/14/2022]
Abstract
Preservatives are frequently added to cosmetics to maintain product quality. Our laboratory quantifies 11 preservatives in cosmetics each year for regulatory purposes. In laboratories, many manufactures also analyze the preservatives in their products for quality control. To analyze many cosmetic samples, a rapid analysis method is required for efficiency. In this study, we developed a rapid method for the simultaneous determination of 11 regulated preservatives in cosmetics using a core-shell column by high-performance liquid chromatography. In this method, the 11 preservatives were separated within 17 min, which was approximately half the time reported in the previous study. The peak resolution for each preservative was >2.6, the correlation coefficients of the calibration curves were >0.9988, the percent recoveries were 92.0-111.9% and the relative standard deviations were <3.5% (n = 3). The relative standard deviations among 6 researchers were <4.7%. Thus, it is an effective rapid determination method for the analysis of preservatives in cosmetics.
Collapse
Affiliation(s)
- Misa Tanaka
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Takahiro Doi
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Akihiro Takeda
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Akihiko Nakamura
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Yuki Azuma
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Masami Kawaguchi
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| | - Takaomi Tagami
- Osaka Institute of Public Health, Division of Hygienic Chemistry, Pharmaceutical Affairs Section, 1-3-69 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan
| |
Collapse
|
5
|
Liu S, Zhang N, Liang Z, Li EC, Wang Y, Zhang S, Zhang J. Butylparaben Exposure Induced Darker Skin Pigmentation in Nile Tilapia ( Oreochromis niloticus). TOXICS 2023; 11:119. [PMID: 36850994 PMCID: PMC9959106 DOI: 10.3390/toxics11020119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Butylparaben (BuP), as an emerging contaminant with endocrine-disrupting effects, may exert effects on skin pigmentation in fish by interfering with the neuroendocrine system. Therefore, models of BuP exposure in Nile tilapia (Oreochromis niloticus) were established by adding different doses of BuP (0, 5, 50, 500, and 5000 ng/L) for 56 days. The obtained results showed that BuP exposure induced darker skin pigmentation, manifested as increased melanin content of skin, while genes related to melanin synthesis, including α-MSH and Asip2, significantly changed. In addition, BuP exposure reduced dopamine and γ-aminobutyric acid content in the brain, which is related to the synthesis of α-MSH. Furthermore, the release of neurotransmitters from the brain is affected by light. Thus, the relative gene expression levels in the phototransduction pathway were evaluated to explore the molecular mechanism of BuP-induced darker skin pigmentation, and the obtained results showed that Arr3a and Arr3b expression was significantly upregulated, whereas Opsin expression was significantly downregulated in a BuP dose-dependent manner, indicating that BuP inhibited phototransduction from the retina to the brain. Importantly, correlation analysis results showed that all melanin indexes were significantly positively correlated with Arr3b expression and negatively correlated with Opsin expression. This study indicated that BuP induced darker skin pigmentation in Nile tilapia via the neuroendocrine circuit, which reveals the underlying molecular mechanism for the effects of contaminants in aquatic environments on skin pigmentation in fish.
Collapse
Affiliation(s)
- Song Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Nan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Zhifang Liang
- Hainan ForYou Ecological Environment Technology Co., Ltd., Haikou 570100, China
| | - Er-chao Li
- School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Shijie Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 570100, China
| |
Collapse
|
6
|
Svobodova L, Kejlova K, Rucki M, Chrz J, Kubincova P, Dvorakova M, Kolarova H, Jirova D. Health safety of parabens evaluated by selected in vitro methods. Regul Toxicol Pharmacol 2022; 137:105307. [PMID: 36455707 DOI: 10.1016/j.yrtph.2022.105307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/07/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Seven selected parabens (4 allowed, 3 banned in cosmetics) were tested in order to confirm and expand historical data on their toxicological properties and safety. The aim was to apply novel in vitro methods, which have been sufficiently technically and scientifically validated for the purposes of toxicological testing of chemicals. The study included several toxicological endpoints such as skin/eye irritation, skin sensitization, endocrine disruption and genotoxicity. The battery of selected methods comprised regulatory accepted EpiDerm™ skin model (OECD TG 439); EpiOcular™ corneal model (OECD TG 492) and scientifically valid test method HET-CAM (DB-ALM Protocol No. 47); in chemico test DPRA (OECD TG 442C); in vitro test LuSens (OECD TG 442D) and in vitro test h-CLAT (OECD TG 442E); Ames MPF™ (Xenometrix) and XenoScreen YES/YAS (Xenometrix). Overall, none of the 4 allowed parabens exhibited skin/eye irritation or genotoxicity. However, all allowed parabens in cosmetics were predicted as samples with potentially sensitizing properties in the LuSens and h-CLAT test methods, but not confirmed by DPRA. Endocrine disruption was recorded only at high concentrations, whereas methyl paraben and ethyl paraben exhibited the lowest activity. This study confirmed the safety of use of the allowed parabens in the highest recommended concentrations in cosmetics or pharmaceuticals.
Collapse
Affiliation(s)
- L Svobodova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic; Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Czech Republic.
| | - K Kejlova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| | - M Rucki
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| | - J Chrz
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic; Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Czech Republic.
| | - P Kubincova
- Research Institute for Organic Syntheses Inc., GLP Test Facility - Centre of Ecology, Toxicology and Analytics (CETA), No. 296, 533 54, Rybitví, Czech Republic.
| | - M Dvorakova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| | - H Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacky University in Olomouc, Czech Republic.
| | - D Jirova
- Centre of Toxicology and Health Safety, National Institute of Public Health, Šrobárova 48/49, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
7
|
Han I, Seo JY, Barr DB, Panuwet P, Yakimavets V, D’Souza PE, An-Han H, Afshar M, Chao YY. Evaluating Indoor Air Phthalates and Volatile Organic Compounds in Nail Salons in the Greater New York City Area: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12411. [PMID: 36231706 PMCID: PMC9566193 DOI: 10.3390/ijerph191912411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The Greater New York City area ranks highest in the United States in the number of nail salon technicians, primarily Asian immigrant women. Nail salon technicians are exposed to toxic phthalates and volatile organic compounds daily in nail salons. The purpose of this pilot study was to measure a mixture of phthalates and volatile organic compounds in nail salons in the Greater New York City area, and to characterize work-related determinants of indoor air quality in these nail salons. Working with four Asian nail salon organizations in the Greater New York City area, we measured indoor air phthalates and volatile organic compounds at 20 nail salons from February to May 2021 using silicone wristbands and passive samplers, respectively. Nail salon characteristics were also examined. We measured six phthalates and 31 volatile organic compounds. Di(2-ethylhexyl) phthalate and Diethyl phthalate had the highest concentrations among the six phthalates measured. Concentrations of toluene, d-limonene, methyl methacrylate, and ethyl methacrylate were higher than that of the rest. Manicure/pedicure tables, the number of customers per day, and application of artificial nail (acrylic) services were positively associated with the levels of phthalates and volatile organic compounds. Given the large number of people employed in the nail industry and the even larger number of customers visiting such establishments, exposures to these toxic chemicals are likely to be widespread.
Collapse
Affiliation(s)
- Inkyu Han
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA 19122, USA
| | - Jin Young Seo
- Hunter College School of Nursing, The City University of New York, New York, NY 10010, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Priya Esilda D’Souza
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Heyreoun An-Han
- Gulf Coast Center for Precision Environmental Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Masoud Afshar
- Department of Epidemiology, Human Genetics, and Environmental Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ying-Yu Chao
- School of Nursing, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Goossens A, Aerts O. Contact allergy to and allergic contact dermatitis from formaldehyde and -releasers: A clinical review and update. Contact Dermatitis 2022; 87:20-27. [PMID: 35229319 DOI: 10.1111/cod.14089] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
This review aims to provide a clinically useful update regarding the role of formaldehyde (FA) and its five main releasers (FRs) quaternium-15, diazolidinyl urea, DMDM hydantoin, imidazolidinyl urea and 2-bromo-2-nitropropane-1,3-diol (bronopol) in contact allergy and allergic contact dermatitis. These ubiquitous preservatives are still often, and sometimes undeclared, present in cosmetics, pharmaceuticals, medical devices, household detergents and chemical (industrial) products. In Europe, the use of free FA and quaternium-15 in cosmetics is forbidden and contact allergy rates have been found to be stable to decreasing. However, FA/FRs still readily provoke localized (e.g., facial/hand), airborne and generalized dermatitis, and may also complicate atopic and stasis dermatitis, or result in nummular dermatitis. Seborrheic-, rosacea- and impetigo-like dermatitis have recently been reported. For a correct diagnosis, FA 2% aq. (0.60 mg/cm2 ) should be used, and particularly the FRs bronopol 0.5% pet. and diazolidinyl urea 2% should be patch tested separately in a baseline series. If sensitization to FA occurs, both FA and FRs should preferably be avoided, except perhaps for bronopol in case it tests negatively. If a patient reacts to one or more FRs (such as bronopol, or diazolidinyl/imidazolidinyl urea), but not to FA, then the specific FR(s) should be avoided. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- An Goossens
- Department of Dermatology, University Hospitals KU Leuven, Leuven, Belgium
| | - Olivier Aerts
- Department of Dermatology, University Hospital Antwerp (UZA) and Research group Immunology, INFLA-MED Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|