1
|
Lv Y, Guo S, Jin L, Wang K, Li Y, Li H, Lu Y, Liu H. MiR-5195-3p predicts clinical prognosis and represses colorectal cancer progression by targeting TLR4/MyD88 signaling. Cell Div 2024; 19:29. [PMID: 39390599 PMCID: PMC11468180 DOI: 10.1186/s13008-024-00133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Recent studies have highlighted the role of miR-5195-3p in suppressing cell growth in various cancers. However, the specific functional impact of miR-5195-3p in colorectal cancer (CRC) remain to be fully clarified. The importance of miR-5195-3p in CRC was evaluated, aiming to uncover its underlying molecular mechanism and identify it as a potential therapeutic target for CRC. RESULTS Our research has shown that miR-5195-3p is markedly under-expressed in CRC tissues and cell cultures, with its reduced presence associated with a higher TNM stage, lymphatic invasion, and unfavorable survival outcome. Ectopic miR-5195-3p expression curtailed proliferation, migration, and invasion of SW1116 and HT29 cells. Additionally, we discovered that miR-5195-3p directly targets and negatively influences Toll-like receptor 4 (TLR4) in CRC cells. Moreover, an inverse relationship was noted between miR-5195-3p and TLR4 expression in CRC tissue samples. Notably, restoring TLR4 expression counteracted miR-5195-3p's suppressive impact on cell growth, motility, invasiveness, epithelial-mesenchymal transition (EMT), and the TLR4/MyD88 signaling pathway in SW1116 and HT29 cells. CONCLUSIONS MiR-5195-3p suppresses the CRC cellular functions through the downregulation of TLR4/MyD88 signaling, indicating that targeting miR-5195-3p might offer a viable therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Yandong Lv
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Shuwei Guo
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Lingtong Jin
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Kai Wang
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Yongsheng Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Haonan Li
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Yikang Lu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China
| | - Hongzhou Liu
- Department of Colorectal Surgery, Heping Hospital Affiliated to Changzhi Medical College, No.110 Yanan South Road, Luzhou District, 046000, Changzhi City, Shanxi Province, P. R. China.
| |
Collapse
|
2
|
He C, Wu Y, Nan X, Zhang W, Luo Y, Wang H, Li M, Liu C, Liu J, Mou X, Liu Y. Induction of CX3CL1 expression by LPS and its impact on invasion and migration in oral squamous cell carcinoma. Front Cell Dev Biol 2024; 12:1371323. [PMID: 38915444 PMCID: PMC11195639 DOI: 10.3389/fcell.2024.1371323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Purpose: This study aimed to explore the expression of CX3CL1 induced by lipopolysaccharide (LPS) in oral squamous cell carcinoma (OSCC) and its impact on biological characteristics such as invasion and migration, taking the foundation for new targets for the treatment and prognosis of OSCC. Methods: This study utilized a variety of techniques, including bioinformatics, molecular biology, and cell experiments, to investigate the expression of CX3CL1 and its receptor CX3CR1 in OSCC patients' cancer tissues or OSCC cell lines. Extracting, organizing, and analyzing the TCGA database on the expression of CX3CL1 and its receptor CX3CR1 in cancer tissues and corresponding paracancerous normal tissues of OSCC patients by bioinformatics methods. The expression of CX3CL1 in cancerous and normal tissues of OSCC patients was verified by IHC, and the changes in mRNA and protein expression of CX3CL1 and its receptor CX3CR1 in OSCC cell lines were detected before and after lipopolysaccharide LPS stimulation by RT-PCR, ELISA, and WB. Changes in cell biological behavior by overexpression of CX3CL1 in OSCC cell lines were detected by CCK-8, Transwell, scratch healing assay, and cloning assay. The effects of overexpressing cell lines on the AKT pathway and Epithelial-mesenchymal Transition (EMT)-related protein expression before and after LPS stimulation were detected by Western Blot. Results: (1) CX3CL1 and its receptor CX3CR1 were found to be downregulated in OSCC tissues of patients or OSCC cell lines. (2) After LPS stimulation, CX3CL1 gene expression increased in both OSCC cell lines, while CX3CR1 expression remained unchanged. (3) OSCC cell lines overexpressing CX3CL1 showed changes in cell biological characteristics, including decreased proliferation, invasion, migration, and stemness, which were more pronounced after LPS stimulation. (4) Overexpression of CX3CL1 in OSCC cell lines decreased EMT-related protein expression and AKT phosphorylation. On the contrary were promoted by LPS stimulation. Conclusion: CX3CL1 and CX3CR1 are downregulated in OSCC cancer tissues and cell lines compared to adjacent normal tissues and cells. LPS stimulation increases CX3CL1 expression in OSCC cell lines, suggesting that inflammation may induce CX3CL1 expression and that the CX3CL1 gene may play an important role in OSCC progression. Overexpression of CX3CL1 inhibits OSCC cell proliferation, migration, invasion, and stemness, suggesting that CX3CL1 plays a critical role in suppressing OSCC development. CX3CL1 suppresses OSCC invasion and migration by affecting EMT progression and AKT phosphorylation, and partially reverse the process that LPS causes and affects the development of OSCC.
Collapse
Affiliation(s)
- Chanjuan He
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Changsha Stomatological Hospital, Changsha, China
| | - Yuehan Wu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xiaoxu Nan
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Weifang Zhang
- Hunan Prevention and Treatment Institute for Occupational Diseases, Changsha, China
| | - Yu Luo
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Honglan Wang
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Mengqi Li
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Changyue Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Jiaming Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Xuelin Mou
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Ying Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
3
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
4
|
Jha A, Nath N, Kumari A, Kumari N, Panda AK, Mishra R. Polymorphisms and haplotypes of TLR-4/9 associated with bacterial infection, gingival inflammation/recession and oral cancer. Pathol Res Pract 2023; 241:154284. [PMID: 36563560 DOI: 10.1016/j.prp.2022.154284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND The expression and SNPs of innate immunity genes TLR-4/9 for bacterial infection, gingival inflammation/gingival recession (GIGR), and oral squamous cell carcinoma (OSCC) are largely unknown. PATIENTS AND METHOD 235 specimens (120 OSCC cases, among which 85 cases with either Porphyromonas gingivalis, Fusobacterium nucleatum or Treponema denticola infection and GIGR) and 115 healthy controls were used to know the expression and polymorphisms (TLR-4: N1:rs10759931, N2:rs11536889, N3:rs1927911, N4:rs4986790; TLR-9: N5:rs5743836, N6:rs352140, N7:rs187084 and N8:rs352139) of TLR-4/9 by western blot, RT-PCR, and allele-specific (AS)-PCR followed by sequencing. RESULTS Increased TLR-4/9 mRNA/protein expression, bacterial infection (BI) and GIGR were associated with OSCC incidence. One of the three BI and GIGR was observed in 70.83% of OSCC cases, whereas all the HC used were free from any of these three BI/GIGR. The N3: CT-genotype (Odds Ratio hereafter as O.R.=1.811, p = 0.0338), TT-genotype (O.R.=3.094, p = 0.0124), 'T'-allele (O.R.=1.821, p = 0.003), N4: AG-genotype (O.R.=2.015, p = 0.0222) and 'G'-allele (O.R.=1.86, p = 0.018) of TLR-4 as well as the N5: CC-genotype (O.R.=3.939, p = 0.0017), 'C'-allele (O.R.=1.839, p = 0.0042), N6: AA-genotype (O.R.=2.195, p = 0.0234), 'A'-allele (O.R.=1.569, p = 0.0163), N7: TC-genotype (O.R.=2.083, p = 0.0136), CC-genotype (O.R.=2.984, p = 0.003) and 'C'-allele (O.R.=1.885, p = 0.0008) of TLR-9 were associated with increased OSCC risk. Similarly, the N2:'C'-allele (O.R.=1.615, p = 0.0382), N3: TT-genotype (O.R.=2.829, p = 0.0336), 'T'-allele (O.R.=1.742, p = 0.0115), N4: AG-genotype (O.R.=2.221, p = 0.0147) and 'G'-allele (O.R.=1.890, p = 0.0238) of TLR-4 as well as the N5: CC-genotype (O.R.=2.830, p = 0.031), N6: AA-genotype (O.R.=2.6, p = 0.0122) and 'A'-allele (O.R.=1.746, p = 0.0064), N7:CC-genotype (O.R.2.706, p = 0.0111) and 'C'-allele (O.R. 1.774, p = 0.0055) of TLR-9 were correlated with GIGR and BI. TLR-4 (N1-N2-N3-N4: A-C-T-A (O.R.=2.1, p = 0.0069) and TLR-9 (N5-N6-N7-N8: T-A-C-A (O.R.=2.019, p = 0.0263); C-A-C-A (O.R.=6.0, p = 0.0084); C-A-C-G (O.R.=4.957, p = 0.0452) haplotypes were linked with OSCC vulnerability, while the TLR-4 (N1-N2-N3-N4: G-C-C-A (O.R.=0.5752, p = 0.0131) and TLR-9 (N5-N6-N7-N8: T-G-T-A (O.R.=0.5438, p = 0.0314); T-G-T-G (O.R.=0.5241, p = 0.036) haplotypes offered protection. CONCLUSION TLR-4/9 expression, polymorphisms, and BI-induced GIGR could increase OSCC risk. This may be used in pathogenesis and oral cancer prediction.
Collapse
Affiliation(s)
- Arpita Jha
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Nidhi Nath
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Anjali Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Nidhi Kumari
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| | - Aditya K Panda
- P.G. Department of Biotechnology, Berhampur University, Bhanja Bihar, Berhampur 760007, Odisha, India.
| | - Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
5
|
Vishwakarma A, Srivastava A, Mishra S, Verma D. Taxonomic and functional profiling of Indian smokeless tobacco bacteriome uncovers several bacterial-derived risks to human health. World J Microbiol Biotechnol 2022; 39:20. [PMID: 36409379 DOI: 10.1007/s11274-022-03461-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Smokeless tobacco (ST) consumption keeps human oral health at high risk which is one of the major reasons for oral tumorigenesis. The chemical constituents of the ST products have been well discussed; however, the inhabitant microbial diversity of the ST products is less explored especially from south Asian regions. Therefore, the present investigation discusses the bacteriome-based analysis of indigenous tobacco products. The study relies on 16S amplicon-based bacteriome analysis of Indian smokeless tobacco (ST) products using a metagenomic approach. A total of 59,15,143 high-quality reads were assigned to 34 phyla, 82 classes, 176 orders, 256 families, 356 genera, and 154 species using the SILVA database. Of the phyla (> 1%), Firmicutes dominate among the Indian smokeless tobacco followed by Proteobacteria, Bacteroidetes, and Actinobacteria (> 1%). Whereas, at the genera level (> 1%), Lysinibacillus, Dickeya, Terribacillus, and Bacillus dominate. The comparative analysis between the loose tobacco (LT) and commercial tobacco (CT) groups showed no significant difference at the phyla level, however, only three genera (Bacillus, Aerococcus, and Halomonas) were identified as significantly different between the groups. It indicates that CT and LT tobacco share similar bacterial diversity and poses equal health risks to human oral health. The phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt 2.0) based analysis uncovered several genes involved in nitrate/nitrite reduction, biofilm formation, and pro-inflammation that find roles in oral pathogenesis including oral cancer. The strong correlation analysis of these genes with several pathogenic bacteria suggests that tobacco products pose a high bacterial-derived risk to human health. The study paves the way to understand the bacterial diversity of Indian smokeless tobacco products and their putative functions with respect to human oral health. The study grabs attention to the bacterial diversity of the smokeless tobacco products from a country where tobacco consumers are rampantly prevalent however oral health is of least concern.
Collapse
Affiliation(s)
- Akanksha Vishwakarma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ankita Srivastava
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - SukhDev Mishra
- Department of Bio-Statistics and Data Management, ICMR-National Institute of Occupational Health, Ahmedabad, India
| | - Digvijay Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| |
Collapse
|
6
|
Karavyraki M, Porter RK. Evidence of a role for interleukin-6 in anoikis resistance in oral squamous cell carcinoma. Med Oncol 2022; 39:60. [PMID: 35484352 PMCID: PMC9050791 DOI: 10.1007/s12032-022-01664-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023]
Abstract
In an endeavour to understand metastasis from oral squamous cell carcinomas, we characterised the metastatic potential of a human tongue derived cell line (SCC-4 cells) and compared this phenotype to pre-cancerous dysplastic oral keratinocyte (DOK) cells derived from human tongue and primary gingival keratinocytes (PGK). We demonstrate that SCC-4 cells constitutively synthesize and release significant amounts of IL-6, a process that is enhanced by the addition of the TLR2/TLR6 agonist, Pam2CSK4. The expression of TLR2/6 and IL-6Ra/gp130 receptors was also confirmed in SCC-4 cells. Cancerous SCC-4 human tongue cells also have a classic EMT profile, unlike precancerous human tongue DOK cells. We also established that IL-6 is driving anoikis resistance in an autocrine fashion and that anti-IL-6 neutralising antibodies, anti-IL-6 receptor antibodies and anti-TLR2 receptor antibodies inhibit anoikis resistance in cancerous SCC-4 human tongue cells. The data suggest a promising role for anti-IL-6 receptor antibody and anti-TLR2 receptor antibody treatment for oral cancer.
Collapse
Affiliation(s)
- Marilena Karavyraki
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute (TBSI), Pearse Street, Dublin, D02 R590, Ireland
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute (TBSI), Pearse Street, Dublin, D02 R590, Ireland.
| |
Collapse
|
7
|
Sajid M, Srivastava S, Kumar A, Kumar A, Singh H, Bharadwaj M. Bacteriome of Moist Smokeless Tobacco Products Consumed in India With Emphasis on the Predictive Functional Potential. Front Microbiol 2022; 12:784841. [PMID: 35003015 PMCID: PMC8740325 DOI: 10.3389/fmicb.2021.784841] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/24/2021] [Indexed: 01/22/2023] Open
Abstract
Smokeless tobacco products (STPs) carry assorted microbial population that contributes to carcinogens synthesis like tobacco-specific nitrosamines (TSNAs). Extensive exploration of microbiota-harboring STPs is required to understand their full carcinogenic potential. Here, we applied 16S rRNA gene sequencing to investigate bacteriome present in moist STPs immensely consumed in India (Khaini, Moist-snuff, Qiwam, and Snus). Further, the functional metagenome was speculated by PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) to assign the abundance of genes related to nitrogen metabolism, bacterial toxins, antibiotic drug resistance and other pro-inflammatory molecules. Highly diverse bacterial communities were observed in all moist STPs. Taxonomic analysis revealed a total of 549 genera belonging to four major phyla Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria. Overall, the core bacterial genera Acinetobacter, Bacillus, Prevotella, Acetobacter, Lactobacillus, Paracoccus, Flavobacterium, and Bacteroides were significantly abundant in moist STPs. Elevated moisture-holding products like Moist-snuff and Qiwam harbor rich bacterial species diversity and showed similar bacteriome composition. Furthermore, Qiwam products showed the highest level of genes associated with nitrogen metabolism, antibiotic resistance, toxins, and pro-inflammation (predicted by PICRUSt) which can contribute to the synthesis of TSNAs and induction of oral cancer. The present broad investigation of moist STPs-associated bacteriome prevalence and their detailed metabolic potential will provide novel insight into the oral carcinogenesis induced by STPs.
Collapse
Affiliation(s)
- Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Sonal Srivastava
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Amit Kumar
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Anuj Kumar
- Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Harpreet Singh
- ICMR-AIIMS Computational Genomics Centre, Division of Biomedical Informatics, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
8
|
Sun S, Yang H, Wang F, Zhao S. Oct4 downregulation-induced inflammation increases the migration and invasion rate of oral squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1440-1449. [PMID: 34553218 DOI: 10.1093/abbs/gmab127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
Inflammatory changes are involved in tumor cell proliferation, migration, and invasion. Tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) play important roles in inflammatory regulation during tumor development. Oct4 acts as a transcription factor that modulates inflammatory changes in mesenchymal stem cells. In this study, we explored the role of Oct4 in the invasion and migration of oral squamous cell carcinoma (OSCC) cells. LPS and TNF-α were used to treat the OSCC cell lines HN4 and CAL27 to induce inflammation. The generation of inflammatory cytokines, including TNF-α, interleukin (IL)-1β, and IL-6, was evaluated by enzyme-linked immunosorbent assay and real-time quantitative PCR. Western blot analysis was employed to detect the expression and phosphorylation of JNK1, p65, and STAT3, which are key modulators of inflammation. Wound scratch healing and transwell invasion assays were further used to determine the role of inflammation in the invasion and migration of OSCC cells. Robust inflammation was observed in HN4 and CAL27 cells treated with LPS and TNF-α. A marked increase in JNK1, p65, and STAT3 phosphorylation levels in OSCC cells was also detected after LPS and TNF-α treatment. The migration and invasion of HN4 and CAL27 cells were significantly boosted by stimulation with LPS and TNF-α. Furthermore, Oct4 mRNA and protein levels were significantly upregulated by stimulation with LPS and TNF-α. Silencing of Oct4 led to reduced inflammation and decreased levels of phosphorylated JNK1, p65, and STAT3 and impaired invasion and migration in LPS- and TNF-α-stimulated OSCC cells. Overall, LPS- and TNF-α-induced inflammation suppressed the migration and invasion of OSCC cells by upregulating Oct4 expression.
Collapse
Affiliation(s)
- Shuntao Sun
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Hongyu Yang
- Department of Stomatology, Shenzhen Hospital, Peking University, Shenzhen 518035, China
| | - Feng Wang
- Department of Stomatology, Shenzhen Hospital, Peking University, Shenzhen 518035, China
| | - Shanshan Zhao
- Department of Stomatology, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
9
|
Li Y, Xiong Y, Wang Z, Han J, Shi S, He J, Shen N, Wu W, Wang R, Lv W, Deng Y, Liu W. FAM49B promotes breast cancer proliferation, metastasis, and chemoresistance by stabilizing ELAVL1 protein and regulating downstream Rab10/TLR4 pathway. Cancer Cell Int 2021; 21:534. [PMID: 34645466 PMCID: PMC8513284 DOI: 10.1186/s12935-021-02244-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the most common cancers and the leading cause of death in women. Previous studies have demonstrated that FAM49B is implicated in several tumor progression, however, the role and mechanism of FAM49B in BC remain to be explored. Therefore, in this study, we aimed to systematically study the role of FAM49B in the proliferation, metastasis, apoptosis, and chemoresistance of BC, as well as the corresponding molecular mechanisms and downstream target. METHODS The ONCOMINE databases and Kaplan-Meier plotter databases were analyzed to find FAM49B and its prognostic values in BC. FAM49B expression in BC and adjacent non-tumor tissues was detected by western blot and IHC. Kaplan-Meier analysis was used to identify the prognosis of BC patients. After FAM49B knockdown in MCF-7 and MDA-MB-231 cells, a combination of co-immunoprecipitation, MTT, migration, and apoptosis assays, nude mouse xenograft tumor model, in addition to microarray detection and data analysis was used for further mechanistic studies. RESULTS In BC, the results showed that the expression level of FAM49B was significantly higher than that in normal breast tissue, and highly expression of FAM49B was significantly positively correlated with tumor volume, histological grade, lymph node metastasis rate, and poor prognosis. Knockdown of FAM49B inhibited the proliferation and migration of BC cells in vitro and in vivo. Microarray analysis revealed that the Toll-like receptor signaling pathway was inhibited upon FAM49B knockdown. In addition, the gene interaction network and downstream protein validation of FAM49B revealed that FAM49B positively regulates BC cell proliferation and migration by promoting the Rab10/TLR4 pathway. Furthermore, endogenous FAM49B interacted with ELAVL1 and positively regulated Rab10 and TLR4 expression by stabilizing ELAVL1. Moreover, mechanistic studies indicated that the lack of FAM49B expression in BC cells conferred more sensitivity to anthracycline and increased cell apoptosis by downregulating the ELAVL1/Rab10/TLR4/NF-κB signaling pathway. CONCLUSION These results demonstrate that FAM49B functions as an oncogene in BC progression, and may provide a promising target for clinical diagnosis and therapy of BC.
Collapse
Affiliation(s)
- Yanhui Li
- Clinical School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yue Xiong
- Clinical School of Medicine, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Zhen Wang
- Department of Laboratory Medicine, Medical College, Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jianjun Han
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Sufang Shi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Jinglan He
- Department of Orthopedic Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Na Shen
- Science and Education Division, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Wenjuan Wu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Rui Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Weiwei Lv
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yajun Deng
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Weiguang Liu
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
10
|
Li L, Zhou Z, Mai K, Li P, Wang Z, Wang Y, Cao Y, Ma X, Zhang T, Wang D. Protein overexpression of toll-like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. Oncol Lett 2021; 22:786. [PMID: 34594427 PMCID: PMC8456488 DOI: 10.3892/ol.2021.13047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/13/2021] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common type of malignancy of the head and neck. In the present study, the expression of Toll-like receptor 4 (TLR4) and myeloid differentiation primary response gene 88 (MyD88) was evaluated in 55 OSCC tissues and their corresponding adjacent tissues using immunohistochemistry and reverse-transcription quantitative PCR. The results indicated that TLR4 and MyD88 were overexpressed in OSCC. Furthermore, high expression of MyD88 was negatively associated with a poor degree of differentiation, recurrence and metastasis of the tumor and was positively associated with underlying disease, including hypertension, heart disease and diabetes mellitus. Furthermore, high expression of TLR4 was positively associated with a long growth time of the tumor. In conclusion, the present study evaluated the expression levels of TLR4 and MyD88 in OSCC, as well as the association between them and clinicopathological factors, to provide markers for the prognosis and treatment of OSCC. These two genes may serve as biomarkers to optimize OSCC treatment, setting a new direction for stratifying patients and developing precise and personalized treatment regimens; the TLR4/MyD88 pathway may serve as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Lili Li
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Stomatology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530028, P.R. China
| | - Zhuoqian Zhou
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Khangvu Mai
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ping Li
- Department of Pathology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zongqi Wang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yaxi Wang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yang Cao
- Department of Pathology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xuemeng Ma
- Department of Pathology, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Tingting Zhang
- Department of Disease Control and Prevention, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Daiyou Wang
- Department of Oral and Maxillofacial Surgery, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Guangxi Clinical Research Center for Craniofacial Deformity, College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
11
|
Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll Like Receptors as Sensors of the Tumor Microbial Dysbiosis: Implications in Cancer Progression. Front Cell Dev Biol 2021; 9:732192. [PMID: 34604233 PMCID: PMC8485072 DOI: 10.3389/fcell.2021.732192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/23/2021] [Indexed: 01/02/2023] Open
Abstract
The microbiota is a complex ecosystem of active microorganisms resident in the body of mammals. Although the majority of these microorganisms resides in the distal gastrointestinal tract, high-throughput DNA sequencing technology has made possible to understand that several other tissues of the human body host their own microbiota, even those once considered sterile, such as lung tissue. These bacterial communities have important functions in maintaining a healthy body state, preserving symbiosis with the host immune system, which generates protective responses against pathogens and regulatory pathways that sustain the tolerance to commensal microbes. Toll-like receptors (TLRs) are critical in sensing the microbiota, maintaining the tolerance or triggering an immune response through the direct recognition of ligands derived from commensal microbiota or pathogenic microbes. Lately, it has been highlighted that the resident microbiota influences the initiation and development of cancer and its response to therapies and that specific changes in the number and distribution of taxa correlate with the existence of cancers in various tissues. However, the knowledge of functional activity and the meaning of microbiome changes remain limited. This review summarizes the current findings on the function of TLRs as sensors of the microbiota and highlighted their modulation as a reflection of tumor-associated changes in commensal microbiota. The data available to date suggest that commensal "onco-microbes" might be able to break the tolerance of TLRs and become complicit in cancer by sustaining its growth.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
- Molecular Targeting Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
12
|
Baraniya D, Jain V, Lucarelli R, Tam V, Vanderveer L, Puri S, Yang M, Al-Hebshi NN. Screening of Health-Associated Oral Bacteria for Anticancer Properties in vitro. Front Cell Infect Microbiol 2020; 10:575656. [PMID: 33123499 PMCID: PMC7573156 DOI: 10.3389/fcimb.2020.575656] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
While extensive literature exists about the role of oral bacterial pathogens like Porphyromonas gingivalis and Fusobacterium nucleatum in oral squamous cell carcinoma (OSCC), the role of health-associated species has been largely unexplored. In this study, we assessed the effect of Streptococcus mitis, Rothia mucilaginosa, Neisseria flavescens, Haemophilus parainfluenzae, Lautropia mirabilis, and Veillonella parvula on proliferation and expression of marker genes (IL-6, TNF-α, MMP3, CD36, CCD1, and NANOG) in OSCC cell lines CAL27, SCC25, and SCC4. Porphyromonas gingivalis was included as a pathogenic control. Both bacterial lysates (3 concentrations) and live cells (3 MOIs) were tested. S. mitis, H. parainfluenzae, and N. flavescens resulted in substantial, dose-dependent reduction of proliferation, which was found to be mediated by H2O2 for the former and intracellular infection in the latter two species. However, only H. parainfluenzae showed differential antiproliferative effect against the cancer cell lines vs. the normal control (TIGKs). In the gene expression assays, the health-associated species mostly downregulated CD36, a gene that plays an important role in tumor growth and metastasis, while P. gingivalis upregulated it. IL6 and TNF expression, on the other hand, was upregulated by almost all species, particularly the Gram-negatives including P. gingivalis. The effect on other genes was less evident and varied significantly by cell line. This exploratory study is the first insight into how health-associated bacteria may interact with OSCC. Further studies to explore whether the observed effects may have implications for the prevention or treatment of oral cancer are warranted.
Collapse
Affiliation(s)
- Divyashri Baraniya
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Vinay Jain
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Ronald Lucarelli
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Vincent Tam
- Department of Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lisa Vanderveer
- Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, United States
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Maobin Yang
- Regenerative Research Laboratory, Department of Endodontology, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Nezar Noor Al-Hebshi
- Oral Microbiome Research Laboratory, Department of Oral Health Sciences, Maurice H. Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States.,Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, United States
| |
Collapse
|
13
|
Kong Q, Liang Y, He Q, You Y, Wu L, Liang L, Liang J. Autophagy inhibits TLR4-mediated invasiveness of oral cancer cells via the NF-κB pathway. Oral Dis 2020; 26:1165-1174. [PMID: 32291890 DOI: 10.1111/odi.13355] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Toll-like receptor 4 (TLR4) is abnormally expressed in oral cancer tissues and promotes cancer cell invasion. The purpose of this study was to clarify the mechanism by which autophagy regulates oral cancer invasion through the TLR4-NF-κB pathway. SUBJECTS AND METHODS We examined TLR4 expression in oral cancer tissues and analysed the relationship between its expression and clinicopathological features. The invasion and migration of LPS-stimulated oral cancer cells with up- or downregulation of TLR4 expression was detected in addition to NF-κB signalling and autophagy levels. Furthermore, the role of autophagy in regulating TLR4-mediated cell invasiveness was explored by silencing the expression of key autophagy genes ATG7 and p62. RESULTS We found that TLR4 overexpression was closely related to cervical lymphatic metastasis and poor survival. TLR4 activated the NF-κB pathway to promote the invasiveness of OSCC cells, and autophagy partly inhibited invasiveness by suppressing the NF-κB pathway. We observed that p62 translocated from the cytoplasm to the nucleus when autophagy was activated by LPS. Finally, silencing p62 further promoted LPS-mediated cell invasiveness. CONCLUSION Toll-like receptor 4 significantly enhanced the invasiveness of OSCC cells. Autophagy may regulate cell invasiveness through the NF-κB pathway by modulating both the cytoplasmic and nuclear levels of p62.
Collapse
Affiliation(s)
- Qianying Kong
- Zhuhai Stomatology Hospital, Zhuhai, Guangdong, China
| | - Yancan Liang
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qifen He
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yingying You
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lifen Wu
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jun Liang
- Department of Oral and Maxillofacial Surgery, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
14
|
Sharma Y, Bala K. Role of Toll like receptor in progression and suppression of oral squamous cell carcinoma. Oncol Rev 2020; 14:456. [PMID: 32477468 PMCID: PMC7246341 DOI: 10.4081/oncol.2020.456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/20/2020] [Indexed: 12/22/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common type of head and neck squamous cell carcinoma and one of the multifactorial process that consists of most contributing factors such as tobacco smoking, chewing and alcohol consumption that altered the intracellular environment. Recent studies have shown relevance of Toll like receptor (TLR) associated with carcinogenesis. This review aim’s to explore that how TLR associates with progression and suppression of OSCC. This review is a classical review that has confined to articles published in the past 19 years (i.e. 2000-2019) and has summarized the perspective of the authors. 62 articles were reviewed and it was found that progression and suppression of OSCC is associated with different TLRs promoting tumor development and also inhibiting the progression of oral neoplasm. It was found that TLR2, TLR3, TLR4, TLR5, TLR7 and TLR9 are associated with tumor development i.e. in progression of OSCC, where as suppression of OSCC through TLR3 and TLR7. We authors would like to conclude that literature survey has indicated effective TLR’s against OSCC development and can be explored to investigate other TLRs that can be used for therapeutic purposes in near future.
Collapse
Affiliation(s)
- Yash Sharma
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kumud Bala
- Therapeutics and Molecular Diagnostic Lab, Centre For Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
15
|
Xu F, Liu Z, Liu R, Lu C, Wang L, Mao W, Zhu Q, Shou H, Zhang K, Li Y, Chu Y, Gu J, Ge D. Epigenetic induction of tumor stemness via the lipopolysaccharide-TET3-HOXB2 signaling axis in esophageal squamous cell carcinoma. Cell Commun Signal 2020; 18:17. [PMID: 32014008 PMCID: PMC6998358 DOI: 10.1186/s12964-020-0510-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/02/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Esophageal squamous cell cancer (ESCC) is one kind of frequent digestive tumor. The inflammatory environment plays an important role in the tumorigenesis and development of ESCC. Cancer stem cells are a small group of tumor cells with stem cell characteristics, which can potentially hinder the tumor management and treatment. METHODS ELISA was performed to detect the lipopolysaccharide concentration in cancer tissues. qPCR, Western blot, FACS, Immunohistochemistry, Immunofluorescence and Dot blot were applied to detect target genes expression. CCK-8, Colony-formation, Transwell, Sphere and Xenograft were conducted to investigate the function of cells, influenced by risk factors. The survival curve was drawn with the Kaplan-Meier product limit estimator. Nano-hmC-Seal-seq was utilized to detect the downstream target of TET3. ChIP-qPCR was adopted to demonstrate the transcriptional regulation of stem cell-associated genes by HOXB2. RESULTS Lipopolysaccharide concentration was significantly up-regulated in ESCC. High concentration of lipopolysaccharide stimulation induced the stemness of ESCC cells. TET3 expression was elevated with lipopolysaccharide stimulation via p38/ERK-MAPK pathway in ESCC and negatively correlated with patients' survival. TET3 induced the stemness of ESCC cells. Nano-hmC-Seal-seq showed that TET3 overexpression led to a significant increase in 5hmC levels of HOXB2 gene region, which was thus identified as the downstream target of TET3. The binding of HOXB2 to NANOG and cMYC was verified by ChIP-qPCR. CONCLUSIONS Lipopolysaccharide served as a tumor promotor in ESCC by inducing cancer cell stemness through the activation of a LPS-TET3-HOXB2 signaling axis, which might provide a novel therapeutic strategy for ESCC. Video Abstract.
Collapse
Affiliation(s)
- Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhonghe Liu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Ronghua Liu
- Key Laboratory of Medical Epigenetics and Metabolism, Institute of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Wei Mao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Huankai Shou
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Kunpeng Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yin Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Yiwei Chu
- Department of Immunology, Fudan University, Shanghai, People's Republic of China
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
16
|
Gowing SD, Cool-Lartigue JJ, Spicer JD, Seely AJE, Ferri LE. Toll-like receptors: exploring their potential connection with post-operative infectious complications and cancer recurrence. Clin Exp Metastasis 2020; 37:225-239. [PMID: 31975313 DOI: 10.1007/s10585-020-10018-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
Cancer is the leading cause of death in North America. Despite modern advances in cancer therapy, many patients will ultimately develop cancer metastasis resulting in mortality. Surgery to resect early stage solid malignancies remains the cornerstone of cancer treatment. However, surgery places patients at risk of developing post-operative infectious complications that are linked to earlier cancer metastatic recurrence and cancer mortality. Toll-like receptors (TLRs) are evolutionarily-conserved sentinel receptors of the innate immune system that are activated by microbial products present during infection, leading to activation of innate immunity. Numerous types of solid cancer cells also express TLRs, with their activation augmenting their ability to metastasize. Similarly, healthy host-tissue TLRs activated during infection induce a prometastatic environment in the host. Cancer cells additionally secrete TLR activating ligands that activate both cancer TLRs and host TLRs to promote metastasis. Consequently, TLRs are an attractive therapeutic candidate to target infection-induced cancer metastasis and progression.
Collapse
Affiliation(s)
- S D Gowing
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada. .,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada.
| | - J J Cool-Lartigue
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - J D Spicer
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| | - A J E Seely
- Department of Thoracic Surgery, Ottawa General Hospital, University of Ottawa, Ottawa, Canada
| | - L E Ferri
- Deparment of Surgery, L.D. MacLean Surgical Research Laboratories, McGill University Health Centre, McGill University, Montreal, Canada.,Montreal General Hospital, Room L8-505, 1650 Cedar Avenue, Montreal, QC, H3G 1A4, Canada
| |
Collapse
|
17
|
Zhang L, Liu Y, Zheng HJ, Zhang CP. The Oral Microbiota May Have Influence on Oral Cancer. Front Cell Infect Microbiol 2020; 9:476. [PMID: 32010645 PMCID: PMC6974454 DOI: 10.3389/fcimb.2019.00476] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The oral microbiota plays an important role in the human microbiome and human health, and imbalances between microbes and their hosts can lead to oral and systemic diseases and chronic inflammation, which is usually caused by bacteria and contributes to cancer. There may be a relationship between oral bacteria and oral squamous cell carcinoma (OSCC); however, this relationship has not been thoroughly characterized. Therefore, in this study, we compared the microbiota compositions between tumor sites and opposite normal tissues in buccal mucosal of 50 patients with OSCC using the 16S rDNA sequencing. Richness and diversity of bacteria were significantly higher in tumor sites than in the control tissues. Cancer tissues were enriched in six families (Prevotellaceae, Fusobacteriaceae, Flavobacteriaceae, Lachnospiraceae, Peptostreptococcaceae, and Campylobacteraceae) and 13 genera, including Fusobacterium, Alloprevotella and Porphyromonas. At the species level, the abundances of Fusobacterium nucleatum, Prevotella intermedia, Aggregatibacter segnis, Capnocytophaga leadbetteri, Peptostreptococcus stomatis, and another five species were significantly increased, suggesting a potential association between these bacteria and OSCC. Furthermore, the functional prediction revealed that genes involved in bacterial chemotaxis, flagellar assembly and lipopolysaccharide (LPS) biosynthesis which are associated with various pathological processes, were significantly increased in the OSCC group. Overall, oral bacterial profiles showed significant difference between cancer sites and normal tissue of OSCC patients, which might be onsidered diagnostic markers and treatment targets. Our study has been registered in the Chinese clinical trial registry (ChiCTR1900025253, http://www.chictr.org.cn/index.aspx).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Jun Zheng
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai, China
| | - Chen Ping Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Yoshida H, Yoshimura H, Matsuda S, Yamamoto S, Ohmori M, Ohta K, Ryoke T, Itoi H, Kiyoshima T, Kobayashi M, Sano K. Celecoxib suppresses lipopolysaccharide-stimulated oral squamous cell carcinoma proliferation in vitro and in vivo. Oncol Lett 2019; 18:5793-5800. [PMID: 31788052 PMCID: PMC6865759 DOI: 10.3892/ol.2019.10975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is one of the most common chronic oral inflammatory conditions worldwide and is associated with a risk of developing oral squamous cell carcinoma (OSCC). Porphyromonas gingivalis is a major pathogen in periodontitis, and its lipopolysaccharide (LPS) promotes the expression of cyclooxygenase-2 (COX-2) in OSCC both in vivo and in vitro. Celecoxib is a selective COX-2 inhibitor; however, its antitumor effects on P. gingivalis LPS-stimulated OSCC and the underlying molecular mechanism remain unclear. To elucidate the association between periodontitis and OSCC, the effect of P. gingivalis-derived LPS on OSCC cell proliferation was examined both in vitro and in vivo in the present study. The expression levels of COX-2 and p53 in OSCC cells with/without celecoxib treatment were determined via western blotting. The therapeutic potential of celecoxib in LPS-stimulated OSCC was evaluated by staining for Ki-67 and p21, as well as with terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling staining. LPS treatment significantly increased OSCC cell proliferation in vitro, and celecoxib significantly inhibited cell proliferation with/without LPS treatment. Celecoxib treatment of OSCC cells downregulated the protein expression levels of COX-2 compared with untreated cells, but there was little change in p53 expression. In the mouse xenograft model, oral administration of celecoxib significantly suppressed tumor growth, reduced the expression of Ki-67, increased the apoptosis index and induced p21 expression with/without LPS treatment. The results from the present study demonstrate that P. gingivalis' LPS can stimulate tumor growth by interacting with OSCC cells. In conclusion, these results suggest that celecoxib could be used for the effective prevention and treatment of LPS-stimulated OSCC.
Collapse
Affiliation(s)
- Hisato Yoshida
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hitoshi Yoshimura
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Shinpei Matsuda
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Satoshi Yamamoto
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Masahiro Ohmori
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Keiichi Ohta
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Takashi Ryoke
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Hayato Itoi
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Tamotsu Kiyoshima
- Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Motohiro Kobayashi
- Department of Tumor Pathology, Unit of Pathological Sciences, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| | - Kazuo Sano
- Department of Dentistry and Oral Surgery, Unit of Sensory and Locomotor Medicine, Division of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
19
|
Zhang L, Tao X, Fu Q, Ge C, Li R, Li Z, Zhu Y, Tian H, Li Q, Liu M, Hu H, Zeng B, Lin Z, Li C, Luo R, Song X. Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncol Rep 2019; 42:1843-1855. [PMID: 31432177 PMCID: PMC6775800 DOI: 10.3892/or.2019.7278] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/31/2019] [Indexed: 02/07/2023] Open
Abstract
Despite the increasing number of available therapeutic methods, the prognosis of non-small cell lung cancer (NSCLC) remains poor. Furthermore, side effects are an important limiting factor in the treatment of NSCLC. Therefore, developing an efficacious, safe, affordable and easily accessible chemotherapeutic agent is necessary for NSCLC treatment. As a natural chemical produced by Zingiberaceae plants, curcumin exerts distinct antitumor effects on several tumor types. In the present study, curcumin was observed to inhibit not only cell proliferation and cell cycle transition, but also cell migration in NSCLC, as determined by a series of experiments (such as MTS assay, colony formation assay, flow cytometric analysis, Transwell migration assay and western blotting). Mechanistically, curcumin induced G2/M phase arrest by controlling cell cycle- and epithelial-mesenchymal transition (EMT)-related checkpoints. Furthermore, curcumin significantly inhibited the expression of Toll-like receptor 4 (TLR4)/MyD88 and EGFR in a dose- and time-dependent manner. Conversely, EGF reversed the inhibitory action of curcumin on TLR4/MyD88. In clinical specimens, TLR4 and MyD88 were highly expressed in NSCLC tissues, and a significant positive association was observed between TLR4 and MyD88 expression. These data suggested that curcumin may control the EGFR and TLR4/MyD88 pathways to synergistically downregulate downstream cell cycle- and EMT-related regulators, in order to block cell proliferation and metastasis in NSCLC. These findings provide evidence for the clinical application of curcumin.
Collapse
Affiliation(s)
- Lanfeng Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Xingyu Tao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Qiaofen Fu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Chunlei Ge
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Ruilei Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Zhen Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Ye Zhu
- Department of Medical Oncology, The Central Hospital of Hengyang, Hengyang, Hunan 421000, P.R. China
| | - Hui Tian
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Qiaolin Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Min Liu
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Hongyan Hu
- Department of Pathology, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Baozhen Zeng
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Zhuyin Lin
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan 650051, P.R. China
| | - Chunyan Li
- Department of Cancer Biotherapy Center, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 510118, P.R. China
| | - Rongcheng Luo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| | - Xin Song
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, P.R. China
| |
Collapse
|
20
|
Li J, Yin J, Shen W, Gao R, Liu Y, Chen Y, Li X, Liu C, Xiang R, Luo N. TLR4 Promotes Breast Cancer Metastasis via Akt/GSK3β/β-Catenin Pathway upon LPS Stimulation. Anat Rec (Hoboken) 2017; 300:1219-1229. [DOI: 10.1002/ar.23590] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/21/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Li
- Department of Anatomy and Histology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| | - Jing Yin
- Department of Anatomy and Histology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
- Department of immunology; Tianjin Children's Hospital; Tianjin 300074 People's Republic of China
| | - Wenzhi Shen
- Department of Anatomy and Histology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| | - Ruifang Gao
- Department of Anatomy and Histology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| | - Yanhua Liu
- Department of Anatomy and Histology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| | - Yanan Chen
- Department of Anatomy and Histology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| | - Xiru Li
- Department of Surgery; Chinese PLA General Hospital; Beijing 100071 China
| | - Chenghu Liu
- Department of Immunology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| | - Rong Xiang
- Department of Immunology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| | - Na Luo
- Department of Anatomy and Histology, School of Medicine; Nankai University; Tianjin 300071 People's Republic of China
| |
Collapse
|
21
|
Yang J, Liu D, Khatri KS, Wang J, Zhang G, Meng C, Guan J. Prognostic value of toll-like receptor 4 and nuclear factor-κBp65 in oral squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:753-764.e1. [DOI: 10.1016/j.oooo.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 07/30/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
|
22
|
Blocking TNF-α inhibits angiogenesis and growth of IFIT2-depleted metastatic oral squamous cell carcinoma cells. Cancer Lett 2015; 370:207-15. [PMID: 26515391 DOI: 10.1016/j.canlet.2015.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/25/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
Our previous study demonstrated that the depletion of interferon-induced protein with tetratricopeptide repeats 2 (IFIT2) promoted metastasis and was associated with a poor prognosis in patients with oral squamous cell carcinoma (OSCC). Our current study explores the major downstream signaling involved in IFIT2 depletion-induced OSCC metastasis. To this end, we used two cell lines (designated sh-control-xeno and sh-IFIT2-xeno) derived from human OSCC xenografts expressing sh-control and sh-IFIT2, respectively, and one metastatic OSCC subline (sh-IFIT2-meta) from an IFIT2-depleted metastatic tumor. We found that the sh-IFIT2-meta cells proliferated more slowly than the sh-control-xeno cells but exhibited higher migration and chemoresistance. Using microarray technology and Ingenuity Pathway Analysis, we found that TNF-α was one of the major downstream targets in IFIT2-depleted OSCC cells. Quantitative real-time PCR, western blotting, and ELISA results confirmed that TNF-α was upregulated in the sh-IFIT2-meta cells. Blocking TNF-α abolished the angiogenic activity induced by the sh-IFIT2-meta cells. Furthermore, the human-specific TNF-α antibody golimumab significantly inhibited in vivo angiogenesis, tumor growth and metastasis of sh-IFIT2-meta cells. These results demonstrate that IFIT2 depletion results in TNF-α upregulation, leading to angiogenesis and metastasis of OSCC cells.
Collapse
|