1
|
Wang F, He K, Wang R, Ma H, Marriott PJ, Hill MR, Simon GP, Holl MMB, Wang H. A Homochiral Porous Organic Cage-Polymer Membrane for Enantioselective Resolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400709. [PMID: 38721928 DOI: 10.1002/adma.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/07/2024] [Indexed: 05/21/2024]
Abstract
Membrane-based enantioselective separation is a promising method for chiral resolution due to its low cost and high efficiency. However, scalable fabrication of chiral separation membranes displaying both high enantioselectivity and high flux of enantiomers is still a challenge. Here, the authors report the preparation of homochiral porous organic cage (Covalent cage 3 (CC3)-R)-based enantioselective thin-film-composite membranes using polyamide (PA) as the matrix, where fully organic and solvent-processable cage crystals have good compatibility with the polymer scaffold. The hierarchical CC3-R channels consist of chiral selective windows and inner cavities, leading to favorable chiral resolution and permeation of enantiomers; the CC3-R/PA composite membranes display an enantiomeric excess of 95.2% for R-(+)-limonene over S-(-)-limonene and a high flux of 99.9 mg h-1 m-2. This work sheds light on the use of homochiral porous organic cages for preparing enantioselective membranes and demonstrates a new route for the development of next-generation chiral separation membranes.
Collapse
Affiliation(s)
- Fanmengjing Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Kaiqiang He
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ruoxin Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hongyu Ma
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Philip J Marriott
- School of Chemistry, Monash University, Clayton, Victoria, 3800, Australia
| | - Matthew R Hill
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Mark M Banaszak Holl
- Department of Mechanical and Materials Engineering, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
2
|
Razazi A, Kakanezhadi A, Raisi A, Pedram B, Dezfoulian O, Davoodi F. D-limonene inhibits peritoneal adhesion formation in rats via anti-inflammatory, anti-angiogenic, and antioxidative effects. Inflammopharmacology 2024; 32:1077-1089. [PMID: 38308792 DOI: 10.1007/s10787-023-01417-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 02/05/2024]
Abstract
The aim of this research was to investigate the effects of D-limonene on decreasing post-operative adhesion in rats and to understand the mechanisms involved. Peritoneal adhesions were induced by creating different incisions and excising a 1 × 1 cm section of the peritoneum. The experimental groups included a sham group, a control group in which peritoneal adhesions were induced without any treatment, and two treatment groups in which animals received D-limonene with dosages of 25 and 50 mg/kg after inducing peritoneal adhesions. Macroscopic examination of adhesions showed that both treatment groups had reduced adhesion bands in comparison to the control group. Immunohistochemical assessment of TGF-β1, TNF-α, and VEGF on day 14 revealed a significant increment in the level of immunopositive cells for the mentioned markers in the control group, whereas administration of limonene in both doses significantly reduced levels of TGF-β1, TNF-α, and VEGF (P < 0.05). Induction of peritoneal adhesions in the control group significantly increased TGF-β1, TNF-α, and VEGF on days 3 and 14 in western blot evaluation, while treatment with limonene significantly reduced TNF-α level on day 14 (P < 0.05). Moreover, VEGF levels in both treatment groups significantly reduced on days 3 and 14. In the control group, a significant increment in the levels of MDA and NO and a notable decline in the levels of GPX, CAT was observed (P < 0.05). Limonene 50 group significantly reduced MDA level and increased GPx and CAT levels on day 14 (P < 0.05). In summary, D-limonene reduced adhesion bands, inflammatory cytokines, angiogenesis, and oxidative stress.
Collapse
Affiliation(s)
- Ali Razazi
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Ali Kakanezhadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Abbas Raisi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Behnam Pedram
- Department of Veterinary, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran.
| | - Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
3
|
Bhattacharjee B, Chakrovorty A, Biswas M, Samadder A, Nandi S. To Explore the Putative Molecular Targets of Diabetic Nephropathy and their Inhibition Utilizing Potential Phytocompounds. Curr Med Chem 2024; 31:3752-3790. [PMID: 37211853 DOI: 10.2174/0929867330666230519112312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/17/2023] [Accepted: 03/31/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND This review critically addresses the putative molecular targets of Diabetic Nephropathy (DN) and screens effective phytocompounds that can be therapeutically beneficial, and highlights their mechanistic modalities of action. INTRODUCTION DN has become one of the most prevalent complications of clinical hyperglycemia, with individual-specific variations in the disease spectrum that leads to fatal consequences. Diverse etiologies involving oxidative and nitrosative stress, activation of polyol pathway, inflammasome formation, Extracellular Matrix (ECM) modifications, fibrosis, and change in dynamics of podocyte functional and mesangial cell proliferation adds up to the clinical complexity of DN. Current synthetic therapeutics lacks target-specific approach, and is associated with the development of inevitable residual toxicity and drug resistance. Phytocompounds provides a vast diversity of novel compounds that can become an alternative therapeutic approach to combat the DN. METHODS Relevant publications were searched and screened from research databases like GOOGLE SCHOLAR, PUBMED and SCISEARCH. Out of 4895 publications, the most relevant publications were selected and included in this article. RESULT This study critically reviews over 60 most promising phytochemical and provides with their molecular targets, that can be of pharmacological significance in context to current treatment and concomitant research in DN. CONCLUSION This review highlights those most promising phytocompounds that have the potential of becoming new safer naturally-sourced therapeutic candidates and demands further attention at clinical level.
Collapse
Affiliation(s)
- Banani Bhattacharjee
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Arnob Chakrovorty
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Maharaj Biswas
- Endocrinology and Reproductive Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Asmita Samadder
- Cytogenetics and Molecular Biology Laboratory, Department of Zoology, University of Kalyani, Kalyani, 741235, India
| | - Sisir Nandi
- Department of Pharmaceutical Chemistry, Global Institute of Pharmaceutical Education and Research, Affiliated to Uttarakhand Technical University, Kashipur, 244713, India
| |
Collapse
|
4
|
Andrade C, Gomes NGM, Duangsrisai S, Andrade PB, Pereira DM, Valentão P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113177. [PMID: 32768637 DOI: 10.1016/j.jep.2020.113177] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/23/2020] [Accepted: 07/09/2020] [Indexed: 05/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes mellitus remains the most lethal metabolic disease of contemporaneous times and despite the therapeutic arsenal currently available, research on new antidiabetic agents remains a priority. In recent years, the revitalization of Thai Traditional Medicine (TTM) became a clear priority for the Thai government, and many efforts have been undertaken to accelerate research on herbal medicines and their use in medical services in various hospitals. Additionally, and particularly in rural areas, treatment of diabetes and associated symptomatology frequently relies on herbal preparations recommended by practitioners of TTM. In the current work, medicinal plants used in Thailand for treating diabetes, as well as their hypoglycaemic pharmacological evidences and potential therapeutic use for diabetes-related complications were reviewed. MATERIALS AND METHODS Ethnopharmacological information on the plant materials used in TTM for diabetes treatment was collected through literature search in a range of scientific databases using the search terms: diabetes, folk medicine, Thailand medicinal plants, traditional medicine. Information regarding scientific evidence on the antidiabetic effects of surveyed species was obtained considering not only the most common taxonomic designation, but also taxonomic synonyms, and including the keywords 'diabetes' and 'hypoglycaemic effect'. RESULTS A total of 183 species known to be used for diabetes management in TTM were reviewed, with 30% of them still lacking experimental evidences to support claims regarding the mechanisms and phytochemicals underlying their antidiabetic properties. Moreover, a total of 46 bioactives displaying effective antidiabetic effects have been isolated from 24 species, their underlying mechanism(s) of action being fully or partially disclosed. CONCLUSIONS We deliver the most extensive survey dealing with the ethnomedicinal knowledge of Thai medicinal plants utilized on diabetes management. We are certain that the current review will spark further research on Thai plants for the development of new standardized phytomedicines through drug discovery programmes.
Collapse
Affiliation(s)
- Catarina Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Nelson G M Gomes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Sutsawat Duangsrisai
- Department of Botany, Faculty of Science, Kasetsart University, Ngam Wong Wang Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Paula B Andrade
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade Do Porto, R. Jorge Viterbo Ferreira, Nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Anandakumar P, Kamaraj S, Vanitha MK. D-limonene: A multifunctional compound with potent therapeutic effects. J Food Biochem 2020; 45:e13566. [PMID: 33289132 DOI: 10.1111/jfbc.13566] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/15/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022]
Abstract
D-limonene or 4-isopropenyl-1-methylcyclohexene (C10 H16 ) is a monocyclic monoterpene abundant in citrus plants like lemon, orange, and grape. The application of D-limonene in the form of flavor and fragrance additive in perfumes, soaps, foods, and beverages is consistently increased due to its high-quality fragrance property. This review is intended to analyze and delineate every possible available evidence and details about D-limonene with the special focus on its therapeutic efficacy. Many studies have reported that D-limonene effectively plays a valuable role in the prevention of several chronic and degenerative diseases. This review provides worthy information about the beneficial effects of D-limonene such as antioxidant, antidiabetic, anticancer, anti-inflammatory, cardioprotective, gastroprotective, hepatoprotective, immune modulatory, anti-fibrotic, anti-genotoxic etc. This could in turn help in the application of D-limonene for clinical studies. PRACTICAL IMPLICATIONS: Various plant families contain Terpenes as their secondary metabolites. Monoterpenes constitute an important part of these secondary metabolites. D-limonene is a well-identified monoterpene that is commonly applied as a fragrance ingredient in essential oils. D-limonene is known to possess remarkable biological activities. It can be effectively used for treating various ailments and diseases. Due to its diverse functions, it can be efficiently utilized for human health.
Collapse
Affiliation(s)
- Pandi Anandakumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Deoghar, Jharkhand, India
| | - Sattu Kamaraj
- Department of Biotechnology, Periyar University, PG Extension Centre, Dharmapuri, Tamilnadu, India
| | - Manickam Kalappan Vanitha
- Department of Medical Biochemistry, University of Madras, Taramani Campus, Chennai, Tamilnadu, India
| |
Collapse
|
6
|
Patil R, Arvindekar A. Glycation of gut proteins initiates microbial dysbiosis and can promote establishment of diabetes in experimental animals. Microb Pathog 2020; 152:104589. [PMID: 33171259 DOI: 10.1016/j.micpath.2020.104589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Diabetes and obesity is associated with change in the gut microbiota, however, the reason for such transition is still unknown. The secondary complications in diabetes mainly stem from protein glycation, oxidative stress and inflammatory response. It is intended to study the correlation between gut proteins glycation and microbial dysbiosis and thereby progression to diabetes. The study was carried out through feeding high fructose to male Wistar rats and evaluating their gut microbiota. The rate of gut flora excretion via faecal matter was found to decrease on fructose feed for 7 days. Intestinal flora was drastically reduced and pathogenic succession observed. Intestinal fluorescence studies confirmed that there is heavy glycation of gut proteins. Microbes obtained from fructose fed animals could grow on glycated BSA. There was significant increase in level of TNF-α and IFN-γ providing evidence of inflammation. Though microbial dysbiosis was observed in diabetes, the cause for this remained elusive. In the present study we prove that high fructose feed and glycation of the gut proteins probably prevent adherence/survival of the gut microflora in control animals and promotes transition to a changed microflora which is capable of adhering/utilizing glycated proteins as well as high fructose. The changed microbiota, enhanced protein glycation and inflammation help in establishing insulin resistance.
Collapse
Affiliation(s)
- Rahul Patil
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India
| | - Akalpita Arvindekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, M.S, India.
| |
Collapse
|
7
|
Younis NS. D-Limonene mitigate myocardial injury in rats through MAPK/ERK/NF-κB pathway inhibition. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:259-266. [PMID: 32392917 PMCID: PMC7193911 DOI: 10.4196/kjpp.2020.24.3.259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases are the primary reason of mortality, among which myocardial infarction (MI) is the most dominant and prevalent. This study was considered to examine D-Limonene protective action against isoproterenol (ISO) induced MI. Wister male rats were dispersed into four groups. Normal and D-Limonene control group in which rats administered saline or D-Limonene. ISO control animals were administered saline for 21 days then challenged with ISO (85 mg/kg, subcutaneously) on 20th and 21st day for MI induction. D-Limonene pretreated group in which animals were pretreated with D-Limonene 50 mg/kg orally for 21 days then administered ISO on 20th and 21st day. MI prompted variations were assessed by myocardial infarction area determination, blood pressure (BP) alterations, cardiac injury biomarkers and inflammatory mediators measurements. For more depth investigation, both the apoptotic status was evaluated via measuring mRNA expression of Bcl-2 and Bax as well as mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signal transduction were investigated via Western blotting. MI group revealed significant infarcted area, blood pressure alterations, myocardial injury enzymes intensification together with inflammatory cytokines amplification. MI was associated with activation of MAPK-ERK signal pathway and apoptotic status within the myocardium. On the other hand, pretreated with D-Limonene demonstrated deterred infracted area, reduced myocardial enzymes, improved BP indices, lessened inflammatory levels. Furthermore, D-Limonene pretreatment caused a decline in MAPK proteins pathway and Bax relative mRNA expression, while intensifying Bcl-2 mRNA expression promoting that D-Limonene may constrain MI induced myocardial apoptosis. D-Limonene mitigated MI injury through MAPK/NF-κB pathway inhibition and anti-apoptotic effect.
Collapse
Affiliation(s)
- Nancy Safwat Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Hasa 31982, Kingdom of Saudi Arabia
- Department of Pharmacology, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Kamble SP, Ghadyale VA, Patil RS, Haldavnekar VS, Arvindekar AU. Inhibition of GLUT2 transporter by geraniol from Cymbopogon martinii: a novel treatment for diabetes mellitus in streptozotocin-induced diabetic rats. J Pharm Pharmacol 2019; 72:294-304. [DOI: 10.1111/jphp.13194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
Abstract
Objective
To isolate and identify the bioactive component from Cymbopogon martinii having GLUT2 transporter inhibitory activity – towards development of a novel strategy for treatment of diabetes mellitus.
Method
Isolation of bioactive component was carried out using differential solvent extraction, HPTLC and HPLC, and identification was done by GC-MS. In-vitro studies on intestine, liver, kidney and in-vivo assessment by OGTT and long-term treatment on diabetic rats were carried out.
Key findings
Geraniol was isolated and identified as bioactive component. Intestinal glucose absorption demonstrated 60.28% inhibition of transport at 648.34 μm of geraniol. It was found to inhibit glucose release from liver on adrenaline challenge by 89.82% at 324.17 μm/ml. Kidney glycogen content doubled using 648.34 μm of geraniol as compared to control. Geraniol demonstrated 2.14 times higher renal glucose output than diabetic control. OGTT demonstrated prevention of postprandial spikes. Prolonged treatment for 60 days with 29.37 mm/kg B.W. twice a day of geraniol improved the lipid profile, HbA1C levels and renal parameters. In mRNA studies for 10 days, over expression of GLUT2 was prevented by geraniol.
Conclusions
Inhibition of GLUT2 by geraniol has the potential to reduce hyperglycaemia and prevent secondary complications in diabetes.
Collapse
|
9
|
Tewari D, Samoilă O, Gocan D, Mocan A, Moldovan C, Devkota HP, Atanasov AG, Zengin G, Echeverría J, Vodnar D, Szabo B, Crişan G. Medicinal Plants and Natural Products Used in Cataract Management. Front Pharmacol 2019; 10:466. [PMID: 31263410 PMCID: PMC6585469 DOI: 10.3389/fphar.2019.00466] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023] Open
Abstract
Cataract is the leading reason of blindness worldwide and is defined by the presence of any lens opacities or loss of transparency. The most common symptoms of cataract are impaired vision, decreased contrast sensitivity, color disturbance, and glare. Oxidative stress is among the main mechanisms involved in the development of age-related cataract. Surgery through phacoemulsification and intraocular lens implantation is the most effective method for cataract treatment, however, there are chances of serious complications and irreversible loss of vision associated with the surgery. Natural compounds consisting of antioxidant or anti-inflammatory secondary metabolites can serve as potential leads for anticataract agents. In this review, we tried to document medicinal plants and plant-based natural products used for cataract treatment worldwide, which are gathered from available ethnopharmacological/ethnobotanical data. We have extensively explored a number of recognized databases like Scifinder, PubMed, Science Direct, Google Scholar, and Scopus by using keywords and phrases such as “cataract”, “blindness”, “traditional medicine”, “ethnopharmacology”, “ethnobotany”, “herbs”, “medicinal plants”, or other relevant terms, and summarized the plants/phytoconstituents that are evaluated in different models of cataract and also tabulated 44 plants that are traditionally used in cataract in various folklore medical practices. Moreover, we also categorized the plants according to scientific studies carried out in different cataract models with their mechanisms of action.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Ovidiu Samoilă
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gocan
- Department of Ophthalmology, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cadmiel Moldovan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Dan Vodnar
- Department of Food Science, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bianca Szabo
- Department of Anatomy, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Nalawade ML, Patil RS, Bavkar LN, Rooge SB, Haldavnekar VS, Arvindekar AU. Early metabolic changes in the gut leads to higher expression of intestinal alpha glucosidase and thereby causes enhanced postprandial spikes. Life Sci 2019; 218:8-15. [DOI: 10.1016/j.lfs.2018.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022]
|
11
|
Role of medicinal plants in the management of diabetes mellitus: a review. 3 Biotech 2019; 9:4. [PMID: 30555770 DOI: 10.1007/s13205-018-1528-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/03/2018] [Indexed: 01/20/2023] Open
Abstract
Medicinal plants have a vast potential in the treatment of various ailments due to the presence of therapeutically important phytochemicals. Diabetes is a serious metabolic disorder and several marketed medications are available to alleviate the symptoms of diabetes. However, these over the counter drugs are expensive and associated with several complications. Herbal medicines are gaining importance as they are cost-effective and also display improved therapeutic effects with lesser side effects. The present review includes the reports available on medicinal plants used for treating diabetes complications. The aim of the review is to categorize and summarize the available information on medicinal plants with anti-diabetic properties and suggesting outlooks for future research. A systematic search was performed on medicinal plants with anti-diabetic properties using several search engines such as Google Scholar, PubMed, Science Direct and other online journals and books. All the plants listed in this review are native to Asian countries and are routinely used by the traditional practitioners for the treatment of various ailments. Based on the literature data available, a total of 81 medicinal plants with anti-diabetic, anti-hyperglycemic, hypoglycemic, anti-lipidemic and insulin mimetic properties have been compiled in this review. This review provides useful information about the different medicinal plants for treating diabetes-associated complications. Further research can be carried out to study the active constituents and mechanism of these plants.
Collapse
|
12
|
Limonene: Aroma of innovation in health and disease. Chem Biol Interact 2018; 283:97-106. [PMID: 29427589 DOI: 10.1016/j.cbi.2018.02.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 12/31/2022]
Abstract
Natural products obtained in dietary components may aid the prevention and treatment of a variety of diseases. Reports in the scientific literature have demonstrated that the consumption of terpenes is a successful alternative in the treatment of several diseases, triggering beneficial biological effects in clinical and preclinical studies. The monoterpene limonene is largely used in alimentary items, cleaning products, and it is one of the most frequent fragrances used in cosmetics formulation. The therapeutic effects of limonene have been extensively studied, proving anti-inflammatory, antioxidant, antinociceptive, anticancer, antidiabetic, antihyperalgesic, antiviral, and gastroprotective effects, among other beneficial effects in health. In this review, we collected, presented, and analyzed evidence from the scientific literature regarding the usage of limonene and its activities and underlying mechanisms involved in combating diseases. The highlighting of limonene applications could develop a useful targeting of innovative research in this field as well as the development of a limonene-based phytomedicine which could be used in a variety of conditions of health and disease.
Collapse
|
13
|
Tupe RS, Kemse NG, Khaire AA, Shaikh SA. Attenuation of glycation-induced multiple protein modifications by Indian antidiabetic plant extracts. PHARMACEUTICAL BIOLOGY 2017; 55:68-75. [PMID: 27608964 PMCID: PMC7011994 DOI: 10.1080/13880209.2016.1228683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 02/03/2016] [Accepted: 08/18/2016] [Indexed: 05/20/2023]
Abstract
CONTEXT Protein glycation is the major contributing factor in the development of diabetic complications. The antiglycation potential of medicinal plants provides a promising opportunity as complementary interventions for complications. OBJECTIVE To investigate the antiglycation potential of 19 medicinal plants extracts using albumin by estimating different indicators: (1) glycation (early and late), (2) albumin oxidation, and (3) amyloid aggregation. MATERIALS AND METHODS The effect of aqueous plant extracts (1% w/v) on protein glycation was assessed by incubating albumin (10 mg/mL) with fructose (250 mM) for 4 days. Degree of protein glycation in the absence and presence of plant extracts was assessed by estimating fructosamine, advanced glycation end products (AGEs), carbonyls, free thiol group and β-amyloid aggregation. RESULTS Petroselinum crispum, Boerhavia diffusa, Terminalia chebula, Swertia chirayita and Glycyrrhiza glabra showed significant antiglycating activity. P. crispum and A. barbadensis inhibited the carbonyl stress and protected the thiol group from oxidative damage. There was significant correlation between protein thiols and amyloid inhibition (R = -.69, p < .001). CONCLUSION P. crispum, B. diffusa and T. chebula had the most potent antiglycation activity. These plant exerted noticeable antiglycation activity at different glycation modifications of albumin. These findings are important for identifying plants with potential to combat diabetic complications.
Collapse
Affiliation(s)
- Rashmi S. Tupe
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, Maharashtra, India
- CONTACT Dr. Rashmi S. TupeBiochemical Sciences Division, Rajiv Gandhi Institute of IT and BT, Bharati Vidyapeeth University, Pune-411 046, Maharashtra, India
| | - Nisha G. Kemse
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Amrita A. Khaire
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, Maharashtra, India
| | - Shamim A. Shaikh
- Biochemical Sciences Division, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth University, Pune, Maharashtra, India
| |
Collapse
|
14
|
Prasanna G, Hari N, Saraswathi N. Hydroxy methoxy benzaldehyde from Sesbania grandilfora inhibits the advanced glycation end products (AGEs)-mediated fibrillation in hemoglobin. J Biomol Struct Dyn 2017; 36:819-829. [DOI: 10.1080/07391102.2017.1300543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- G. Prasanna
- Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu 613401, India
| | - N. Hari
- NMR Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu 613401, India
| | - N.T. Saraswathi
- Molecular Biophysics Laboratory, School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamilnadu 613401, India
| |
Collapse
|
15
|
Jagdale AD, Bavkar LN, More TA, Joglekar MM, Arvindekar AU. Strong inhibition of the polyol pathway diverts glucose flux to protein glycation leading to rapid establishment of secondary complications in diabetes mellitus. J Diabetes Complications 2016; 30:398-405. [PMID: 26896333 DOI: 10.1016/j.jdiacomp.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/31/2015] [Accepted: 01/02/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND Polyol pathway and protein glycation are implicated in establishing secondary complications in diabetes. Their relative contribution to the process needs to be evaluated. It is essential to understand why some aldose reductase inhibitors (ARIs) trials are successful while some have failed and to study their effect on protein glycation. METHODS Aldose reductase (AR) was assayed using xylose as substrate; protein glycation was evaluated using total and specific fluorescence, fructoseamine and protein bound carbonyl content (PCO) measurements. Long term studies were carried out on streptozotocin induced diabetic rats for evaluation of urine parameters, tissue fluorescence. Anti-cataract action was studied by lens culture studies. RESULTS Epalrestat, a commercial ARI was also found to possess potent glycation inhibitory action. Long term experiments revealed strong protein glycation with higher concentration of citronellol (ARI) demonstrating shift in glucose flux. Treatment with epalrestat and limonene revealed improved urine parameters and tissue fluorescence. Lens culture studies revealed cataract formation at higher inhibition of AR while no lens opacity was observed at lower citronellol concentration and with limonene and epalrestat. CONCLUSION Strong inhibition of AR shifts the glucose flux to protein glycation causing damage. ARIs possessing protein glycation inhibition are more useful in amelioration of secondary complications.
Collapse
Affiliation(s)
- Ashwini D Jagdale
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Laxman N Bavkar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Tanaji A More
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Madhav M Joglekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India
| | - Akalpita U Arvindekar
- Department of Biochemistry, Shivaji University, Kolhapur, 416004 Maharashtra, India.
| |
Collapse
|
16
|
Dandawate PR, Subramaniam D, Padhye SB, Anant S. Bitter melon: a panacea for inflammation and cancer. Chin J Nat Med 2016; 14:81-100. [PMID: 26968675 PMCID: PMC5276711 DOI: 10.1016/s1875-5364(16)60002-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Indexed: 12/11/2022]
Abstract
Nature is a rich source of medicinal plants and their products that are useful for treatment of various diseases and disorders. Momordica charantia, commonly known as bitter melon or bitter gourd, is one of such plants known for its biological activities used in traditional system of medicines. This plant is cultivated in all over the world, including tropical areas of Asia, Amazon, east Africa, and the Caribbean and used as a vegetable as well as folk medicine. All parts of the plant, including the fruit, are commonly consumed and cooked with different vegetables, stir-fried, stuffed or used in small quantities in soups or beans to give a slightly bitter flavor and taste. The plant is reported to possess anti-oxidant, anti-inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity, and immunomodulatory activities. The plant extract inhibits cancer cell growth by inducing apoptosis, cell cycle arrest, autophagy and inhibiting cancer stem cells. The plant is rich in bioactive chemical constituents like cucurbitane type triterpenoids, triterpene glycosides, phenolic acids, flavonoids, essential oils, saponins, fatty acids, and proteins. Some of the isolated compounds (Kuguacin J, Karaviloside XI, Kuguaglycoside C, Momordicoside Q-U, Charantin, α-eleostearic acid) and proteins (α-Momorcharin, RNase MC2, MAP30) possess potent biological activity. In the present review, we are summarizing the anti-oxidant, anti-inflammatory, and anti-cancer activities of Momordica charantia along with a short account of important chemical constituents, providing a basis for establishing detail biological activities of the plant and developing novel drug molecules based on the active chemical constituents.
Collapse
Affiliation(s)
- Prasad R Dandawate
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Dharmalingam Subramaniam
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA
| | - Subhash B Padhye
- Interdisciplinary Science & Technology Research Academy, Abeda Inamdar Senior College, Azam Campus, Pune, 411001, India
| | - Shrikant Anant
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Surgery, The University of Kansas Medical Center, Kansas City, KS 66160, USA; The University of Kansas Cancer Center, Kansas City, KS 66160, USA.
| |
Collapse
|
17
|
Kwatra D, Dandawate P, Padhye S, Anant S. Bitter Melon as a Therapy for Diabetes, Inflammation, and Cancer: a Panacea? ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40495-016-0045-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Chinchansure AA, Korwar AM, Kulkarni MJ, Joshi SP. Recent development of plant products with anti-glycation activity: a review. RSC Adv 2015. [DOI: 10.1039/c4ra14211j] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review article summarizes the plant natural products that inhibit glycation at different stages leading to the AGEs formation.
Collapse
Affiliation(s)
| | - Arvind M. Korwar
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | - Mahesh J. Kulkarni
- Division of Biochemical Sciences
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| | - Swati P. Joshi
- Division of Organic Chemistry
- CSIR-National Chemical Laboratory
- Pune 411 008
- India
| |
Collapse
|
19
|
Joglekar MM, Panaskar SN, Arvindekar AU. Inhibition of advanced glycation end product formation by cymene – A common food constituent. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.09.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
20
|
Joglekar MM, Panaskar SN, Chougale AD, Kulkarni MJ, Arvindekar AU. A novel mechanism for antiglycative action of limonene through stabilization of protein conformation. MOLECULAR BIOSYSTEMS 2013; 9:2463-72. [DOI: 10.1039/c3mb00020f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|