1
|
Oyama S, Ogawa N, Yasunaga T, Yamamoto H. Preparation of Amorphous Probucol with Fluvastatin Sodium Salt and Stability Comparison Studies of Co-amorphous Probucol with Fluvastatin Sodium Salt and Atorvastatin Calcium Trihydrate Salt. Chem Pharm Bull (Tokyo) 2024; 72:1073-1083. [PMID: 39710376 DOI: 10.1248/cpb.c24-00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A co-amorphous state composed of probucol (PC) and fluvastatin sodium salt (FLU) was prepared by spray-drying (SD). We have previously reported that PC and atorvastatin calcium trihydrate salt (ATO) formed a co-amorphous state when prepared by a SD method and that the solubility of PC and the amorphous stability were improved by the preparation of the co-amorphous state. In the present study, the physicochemical properties, including the amorphous stability of the prepared co-amorphous state, were characterized. Powder X-ray diffraction measurement results suggested that PC and FLU formed a co-amorphous state and that a higher percentage of PC was dissolved from the PC-FLU co-amorphous state than from the PC-ATO co-amorphous state. The results are attributed to FLU exhibiting greater solubility and wettability than ATO, which is supported by the results of solubility tests and contact-angle measurements. The stability of the amorphous state of PC is higher in the co-amorphous state with ATO than in that with FLU. This difference is attributed to differences in the molecular interaction modes between PC-FLU and PC-ATO. Therefore, the selection of high-wettability molecules as a co-former for the co-amorphous state enhances its water solubility. The present study also indicates that molecular interactions enhance the stability of the co-amorphous state.
Collapse
Affiliation(s)
- Shinji Oyama
- Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| | - Noriko Ogawa
- Department of Pharmacy, College of Pharmacy, Kinjo Gakuin University
| | - Toshiya Yasunaga
- Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| | - Hiromitsu Yamamoto
- Department of Pharmaceutical Engineering, School of Pharmacy, Aichi Gakuin University
| |
Collapse
|
2
|
Mohapatra D, Kumar DN, Shreya S, Pandey V, Dubey PK, Agrawal AK, Sahu AN. Quality by design-based development and optimization of fourth-generation ternary solid dispersion of standardized Piper longum extract for melanoma therapy. Drug Deliv Transl Res 2023; 13:3094-3131. [PMID: 37294426 DOI: 10.1007/s13346-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
The study aimed to enhance the solubility, dissolution, and oral bioavailability of standardized Piper longum fruits ethanolic extract (PLFEE) via fourth-generation ternary solid dispersion (SD) for melanoma therapy. With the use of solvent evaporation method, the standardized PLFEE was formulated into SD, optimized using Box-Wilson's central composite design (CCD), and evaluated for pharmaceutical performance and in vivo anticancer activity against melanoma (B16F10)-bearing C57BL/6 mice. The optimized SD showed good accelerated stability, high yield, drug content, and content uniformity for bioactive marker piperine (PIP). The X-ray diffraction (XRD), differential scanning calorimetry (DSC), polarized light microscopy (PLM), and selected area electron diffraction (SAED) analysis revealed its amorphous nature. The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and high-performance thin layer chromatography (HPTLC) revealed the compatibility of excipients with the PLFEE. The contact angle measurement and in vitro dissolution study revealed excellent wetting of SD and improved dissolution profile as compared to the plain PLFEE. The in vivo oral bioavailability of SD reflected a significant (p < 0.05) improvement in bioavailability (Frel = 188.765%) as compared to plain extract. The in vivo tumor regression study revealed the improved therapeutic activity of SD as compared to plain PLFEE. Further, the SD also improved the anticancer activity of dacarbazine (DTIC) as an adjuvant therapy. The overall result revealed the potential of developed SD for melanoma therapy either alone or as an adjuvant therapy with DTIC.
Collapse
Affiliation(s)
- Debadatta Mohapatra
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Dulla Naveen Kumar
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Singh Shreya
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Vivek Pandey
- Centre for Genetics Disorders, Institute of Science (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Pawan K Dubey
- Centre for Genetics Disorders, Institute of Science (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Ashish Kumar Agrawal
- Nanomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Alakh N Sahu
- Phytomedicine Research Laboratory, Department of Pharmaceutical Engineering & Technology, IIT (BHU), Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
3
|
AlMuhsin A, Ahad A, Bin Jardan YA, Raish M, Ahmad A, Alkharfy KM, Al-Jenoobi FI. Quality assessment of different brands of atorvastatin tablets available in Riyadh, Saudi Arabia. BMC Pharmacol Toxicol 2022; 23:69. [PMID: 36100946 PMCID: PMC9469509 DOI: 10.1186/s40360-022-00598-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 06/29/2022] [Indexed: 11/11/2022] Open
Abstract
Background Hypolipidemic agents have been shown to be helpful in the primary and secondary prevention of cardiovascular disease. Most often, statins are prescribed to treat hyperlipidemia. There are a number of statins available in the market today, but atorvastatin is the most widely prescribed. It is essential that the drugs should have the appropriate amount of active pharmaceutical ingredient and meet the necessary physical properties. The main purpose of the study was to evaluate the quality of different marketed brands of atorvastatin calcium tablets available in Saudi Arabia. Methods In this study, innovator product coded as (AS-1) and five generics brands (coded as AS-2 to AS-6) of atorvastatin tablets 20 mg available in Saudi Arabia were evaluated for in vitro dissolution test, weight variations, friability and hardness tests. The analysis of drug was carried out by “high-performance liquid chromatography” (HPLC) method using C18 column (4.6 × 150 mm, 5 μm). The mobile phase was consisted of acetonitrile and HPLC water (pH 2.1, adjusted with orthophosphoric acid) in ratio of 52:48 v/v, the flow rate was 1.0 ml/min. Atorvastatin was detected at a wavelength of 254 nm. Results According to the results of the dissolution study, the investigated products released more than 90% of atorvastatin in 15 min. Within 60 min, the brands AS-1, AS-3, AS-5, and AS-6 depicted nearly 100% atorvastatin release, while the brand AS-2 displayed 91.69% drug release. According to our findings, the investigated atorvastatin innovator (AS-1) and generic brands such as AS-2 to AS-6 were of good pharmaceutical quality. Conclusions All generic brands of atorvastatin tablets available in the Saudi Arabian market met the pharmacopoeia's consistency checks such as weight variation, friability, hardness and in vitro dissolution. Hence, focusing on their in vitro release properties, it was determined that these brands could be used interchangeably.
Collapse
Affiliation(s)
- Ali AlMuhsin
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.,Department of Inspection support, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
4
|
Faraji E, Mohammadi M, Mahboobian MM. Development of the Binary and Ternary Atorvastatin Solid Dispersions: In Vitro and In Vivo Investigations. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6644630. [PMID: 34527740 PMCID: PMC8437629 DOI: 10.1155/2021/6644630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 11/18/2022]
Abstract
The object of this study was to prepare binary and ternary solid dispersions of atorvastatin (ATR) by the melting method using PEGs and poloxamer 188 (P188) as the carriers, singly and in combination with each other. Dissolution behavior, solubility studies, X-ray diffractometry, differential scanning calorimetry, and Fourier transform infrared spectroscopy were studied. Furthermore, antihyperlipidemic activities of formulations were compared to each other by serum lipid analyses in hyperlipidemic rats. Based on the results, the highest dissolution efficiency (DE30 = 83%) was obtained by binary systems consisted of ATR and P188. Also, no additional improvement was observed in dissolution properties of ternary solid dispersion formulations. Solubility studies showed enhancement of ATR phase solubility in water and a buffer solution containing P188 or PEG 10000. Furthermore, saturated solubility of ATR in the buffer solution improved more than twofold in the optimized ternary dispersion system. No crystalline changes occurred in PEG-based formulations; meanwhile, partial amorphization happened in the ATR-P188 combination. Finally, the in vivo study in hyperlipidemic rats exhibited a rapid decrease in the lipid profile of all formulations compared to ATR (after 7 days). Moreover, reduction of serum triglycerides and total cholesterol on the 14th day in the ATR group (p value < 0.01) was less than solid dispersion or physical mixing preparations (p value < 0.001). These findings proved the appropriate influence of using PEG and P188 in solid dispersion systems for the improvement of the therapeutic efficiency of ATR.
Collapse
Affiliation(s)
- Elahe Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Mehdi Mahboobian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
5
|
Borde S, Paul SK, Chauhan H. Ternary solid dispersions: classification and formulation considerations. Drug Dev Ind Pharm 2021; 47:1011-1028. [PMID: 33818224 DOI: 10.1080/03639045.2021.1908342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of active pharmaceutical compounds from the biopharmaceutical classification system (BCS) belonging to Class II and IV have significantly increased in recent years. These compounds have high therapeutic potential but are difficult to formulate as oral dosage forms due to their poor aqueous solubility. The solubility and bioavailability of these poorly water-soluble compounds can be increased by various formulation approaches, such as amorphous solid dispersions (ASD), salt formation, complexations, etc. Out of these techniques, the ASD approach, where compounds are converted into amorphous form and embedded in the hydrophilic matrix, have been successfully used in many marketed preparations. The recent advancement of this ASD approach is the design of ternary solid dispersions (TSD), where an additional component is added to further improve their performance in terms of solubility, stability, and processability. This review discusses the classification, mechanism of performance improvement, preparation techniques, and characterizations for TSD.
Collapse
Affiliation(s)
- Shambhavi Borde
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Sagar Kumar Paul
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| | - Harsh Chauhan
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE, USA
| |
Collapse
|
6
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Carlan IC, Estevinho BN, Rocha F. Innovation and improvement in food fortification: Microencapsulation of vitamin B2 and B3 by a spray-drying method and evaluation of the simulated release profiles. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1924768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Ioana C. Carlan
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Berta N. Estevinho
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Fernando Rocha
- LEPABE, Departamento de Engenharia Química, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
8
|
Veith H, Wiechert F, Luebbert C, Sadowski G. Combining crystalline and polymeric excipients in API solid dispersions - Opportunity or risk? Eur J Pharm Biopharm 2020; 158:323-335. [PMID: 33296719 DOI: 10.1016/j.ejpb.2020.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/29/2022]
Abstract
Amorphous solid dispersions (ASDs) are often metastable against crystallization of the active pharmaceutical ingredient (API) and thus might undergo unwanted changes during storage. The crystallization tendency of ASDs is influenced by the API crystallization driving force (CDF) and the mobility of the molecules in the ASD. Low molecular weight-excipients are known to stabilize amorphous APIs in so-called co-amorphous formulations. Due to their success in stabilizing co-amorphous APIs, low-molecular weight excipients might also enhance the stability of polymeric ASDs. In this work, we investigated the potential of combined low-molecular weight excipient/polymer formulations with in-silico tools and validated the predictions with long-term stability tests of the most promising excipient/polymer combinations. The considered critical quality attributes for the ASDs were the occurrence of amorphous phase separation, API CDF, and molecular mobility in the ASD. As an example, carbamazepine/polyvinylpyrrolidone ASDs were investigated combined with the excipients fructose, lactose, sucrose, trehalose, saccharin, tryptophan, and urea. Although all excipients had a negative impact on the ASD stability, saccharin still turned out to be the most promising one. Long-term stability studies with ASDs containing either saccharin or tryptophan verified -in agreement to the predictions- that API crystallization occurred faster than in the reference ASDs without additional excipient. This work showed that the addition of crystalline excipients to polymeric ASDs might not only offer opportunities but might also bear risks for the long-term stability of the ASD, even though the crystalline excipient stabilizes the polymer-free API. Consequently, excipients should be evaluated based on the thermodynamic phase behavior of the individual mixture of API/polymer/excipient, rather than based on pure-component properties of the excipient only. In-silico predictions proposed in this work remarkably decrease the number of screening tests for identifying suitable formulation excipients.
Collapse
Affiliation(s)
- Heiner Veith
- TU Dortmund University, Department of Chemical and Biochemical Engineering, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Felix Wiechert
- TU Dortmund University, Department of Chemical and Biochemical Engineering, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Christian Luebbert
- TU Dortmund University, Department of Chemical and Biochemical Engineering, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Gabriele Sadowski
- TU Dortmund University, Department of Chemical and Biochemical Engineering, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany.
| |
Collapse
|
9
|
Cao X, Li H, Wang M, Ren X, Deng Y. Analysis of five active ingredients of Er‐Zhi‐Wan, a traditional Chinese medicine water‐honeyed pill, using the biopharmaceutics classification system. Biomed Chromatogr 2019; 34:e4757. [DOI: 10.1002/bmc.4757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Xuexiao Cao
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Huanhuan Li
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Meng Wang
- Tianjin State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin China
| | - Xiaoliang Ren
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| | - Yanru Deng
- School of Chinese Materia MedicaTianjin University of Traditional Chinese Medicine Tianjin China
| |
Collapse
|
10
|
Setyawan D, Dewi MY, Isadiartuti D. Ternary solid dispersion to improve solubility and dissolution of meloxicam. J Basic Clin Physiol Pharmacol 2019; 30:/j/jbcpp.ahead-of-print/jbcpp-2019-0244/jbcpp-2019-0244.xml. [PMID: 31837255 DOI: 10.1515/jbcpp-2019-0244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Background Meloxicam (MLX) is a potent non-steroidal anti-inflammatory drug with poor solubility. Solid dispersion (SD) is an effective formulation strategy to improve the dissolution rate of poorly water-soluble compounds. Hydroxy propyl methyl cellulose (HPMC) as an inert polymer carrier and nicotinic acid (NA) as disturbance can be used as a matrix of SD. The aim of this study was to determine the effect of MLX-HPMC-NA SD on the solubility and dissolution of MLX. Methods SD was prepared by the solvent evaporation technique with methanol being used as a solvent. Methanol was evaporated at room temperature. SD of MLX was prepared involving various matrix compositions at MLX:HPMC:NA ratios of 1:1:1 (SD1), 1:1:2 (SD2), 1:2:1 (SD3), and 1:2:2 (SD4). Results The solubility profile of MLX in SD3 (64.34 ppm) showed a higher improvement than the physical mixture (15.99 ppm) and pure MLX (6.89 ppm). This increase might be due to the formation of molecular dispersion of MLX in the polymer as hydrophilic matrix and NA have both donor-acceptor sites for hydrogen bonding interactions. The dissolution profile of SD3 also showed the highest improvement. The melting endotherm of SD3 was detected at 219.5 °C, in which case it originated from NA rather than from MLX, showing that MLX was molecularly dispersed and amorphous. Conclusions MLX solubility and dissolution profile could be improved by the SD technique with a matrix of HPMC and NA. The best result was given by SD3 with an MLX:HPMC:NA ratio of 1:2:1. Based on the characterization study, it is predicted that hydrophilic polymer and hydrogen bonding interactions play important roles in MLX solubility or dissolution rate improvement.
Collapse
Affiliation(s)
- Dwi Setyawan
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Mulyorejo-60115, Surabaya, Indonesia
| | - Meivita Yusmala Dewi
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Mulyorejo-60115, Surabaya, Indonesia
| | - Dewi Isadiartuti
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Airlangga, Mulyorejo-60115, Surabaya, Indonesia
| |
Collapse
|
11
|
Fathanah A, Setyawan D, Sari R. Improving solubility and dissolution of meloxicam by solid dispersion using hydroxypropyl methylcellulose 2910 3 cps and nicotinamide. J Basic Clin Physiol Pharmacol 2019; 30:/j/jbcpp.ahead-of-print/jbcpp-2019-0249/jbcpp-2019-0249.xml. [PMID: 31837256 DOI: 10.1515/jbcpp-2019-0249] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/12/2019] [Indexed: 11/15/2022]
Abstract
Background Solid dispersion (SD) represents a good method for enhancing the solubility of poorly water-soluble drugs. Meloxicam (MLX), a nonsteroidal anti-inflammatory drug has poor solubility in water. Hydroxypropyl methylcellulose (HPMC) 2910 3 cps, a hydrophilic carrier and nicotinamide (NC), a hydrotropic agent can be used as matrix of SD. The aim of this study is to investigate the effect of HPMC 2910 3 cps and NC as SD matrix on the solubility and dissolution rate of MLX. Methods The SD of MLX was prepared by solvent evaporation method using methanol as solvent. The SD formulations composed of HPMC and NC in different ratios (1:1:1, 1:1:2, 1:2:1, 1:2:2). The physical state of MLX SD were characterized by Differential Thermal Analyzer (DTA), Fourier Transform Infrared Spectroscopy, powder X-ray diffractometer (PXRD), Scanning Electron Microscopy (SEM). The solubility and dissolution of the MLX SD were also evaluated. Results The results of differential thermal analysis (DTA) showed that the melting point of MLX SD was lower than MLX further the X-ray diffractogram showed a decrease of the crystallinity of MLX in SD. Those indicated that MLX was dispersed molecularly in SD. The SD showed a widening transmission peak at 3000-3500 cm-1 which resembled the peak of pure MLX transmission. It indicated that intermolecular hydrogen bonds were formed between MLX, HPMC, and NC. The solubility and the dissolution efficiency (ED60) of SD with MLX-HPMC 2910 3 cps-NC = 1:2:1 increased 3.59 times and 1.50 times higher then MLX substance. Conclusions MLX-HPMC-NC SD system increased the solubility and dissolution of MLX. The SD with MLX-HPMC 2910 3 cps-NC ratio of 1:2:1 had the highest solubility and ED60 compared to the other SD formulas.
Collapse
Affiliation(s)
- Ana Fathanah
- Faculty of Pharmacy, Airlangga University, Department of Pharmaceutics, Nanizar Zaman Joenoes Bldg, Campus C Mulyorejo, Airlangga University Surabaya, Indonesia.,Universitas Airlangga Fakultas Farmasi, Kampus C, UNAIR. Jl. Mulyerejo, Surabaya, Indonesia
| | - Dwi Setyawan
- Faculty of Pharmacy, Airlangga University, Department of Pharmaceutics, Nanizar Zaman Joenoes Bldg, Campus C Mulyorejo, Airlangga University Surabaya, Indonesia
| | - Retno Sari
- Faculty of Pharmacy, Airlangga University, Department of Pharmaceutics, Nanizar Zaman Joenoes Bldg, Campus C Mulyorejo, Airlangga University Surabaya, Indonesia
| |
Collapse
|
12
|
Al-Kazemi R, Al-Basarah Y, Nada A. Dissolution Enhancement of Atorvastatin Calcium by Cocrystallization. Adv Pharm Bull 2019; 9:559-570. [PMID: 31857959 PMCID: PMC6912187 DOI: 10.15171/apb.2019.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/09/2022] Open
Abstract
Purpose: To enhance the dissolution rate of the poorly soluble drug atorvastatin calcium (ATC) by cocrystallization with selected coformers. Enhancement of the dissolution rate and solubility of the drug, which is classified as Class II of the Biopharmaceutical Classification System (BCS), is expected to enhance the bioavailability. Methods: Two methods were used for preparing the cocrystals, solvent drop grinding (SDG) and solvent evaporation (SE) method using 1:1, 1:3, and 1:10 drug-coformer molar ratios. Glucosamine hydrochloride (GluN) and nicotinamide (NIC) were investigated as coformers. The cocrystals, their physical mixtures, and the raw ATC were characterized by fourier transform infrared (FTIR spectroscopy), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), mass spectroscopy (MS), scanning electron microscopy (SEM), solubility, and dissolution rate studies. Results: SDG and SE were effective in improving the dissolution rate of ATC with both coformers. Drug: coformer ratio 1:3 was optimum. The solubility values for ATC, GluN-, and NIC-cocrystals were 26, to 35 and 50 µg/mL, respectively. The dissolution rate of ATC from cocrystals was > 90% after 5 minutes, compared to 41% untreated ATC. Conclusion: Cocrystallization significantly improved the solubility and dissolution, in comparison to the untreated ATC.
Collapse
Affiliation(s)
- Reham Al-Kazemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Health Sciences Center, Gabriya, Kuwait
| | - Yacoub Al-Basarah
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Health Sciences Center, Gabriya, Kuwait
| | - Aly Nada
- Department of Pharmaceutics, Faculty of Pharmacy, Kuwait University, Health Sciences Center, Gabriya, Kuwait
| |
Collapse
|
13
|
Tran PH, Duan W, Lee BJ, Tran TT. Modulation of Drug Crystallization and Molecular Interactions by Additives in Solid Dispersions for Improving Drug Bioavailability. Curr Pharm Des 2019; 25:2099-2107. [DOI: 10.2174/1381612825666190618102717] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/24/2019] [Indexed: 11/22/2022]
Abstract
Background::
An increase in poorly water-soluble drugs makes the design of drug delivery systems
challenging.
Methods::
Currently, a number of prospective solid dispersions have been investigated with potential applications
for delivering a variety of poorly water-soluble drugs. A number of traditional solid dispersions and modifiedsolid
dispersions offer attractive advantages in the fabrication, design and development of those drugs for effective
therapeutics.
Results::
Although traditional solid dispersions can produce a higher release rate, resulting in higher bioavailability
compared to conventional dosage forms, this method is not always a promising approach. Modified-solid
dispersion has demonstrated both the ability of its polymers to transform drug crystals into amorphous forms and
molecular interactivity, thereby improving drug dissolution rate and bioavailability, especially with tough drugs.
However, the classification of modified-solid dispersion, which guides the selection of the right strategy in solid
dispersion preparation, remains ill-defined.
Conclusions::
This review focused on effective strategies in using additives in solid dispersion for improving drug
bioavailability.
Collapse
Affiliation(s)
| | - Wei Duan
- Deakin University, School of Medicine, Geelong, Australia
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, Korea
| | - Thao T.D. Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
14
|
Development and Permeability Testing of Self-Emulsifying Atorvastatin Calcium Pellets and Tablets of Compressed Pellets. Processes (Basel) 2019. [DOI: 10.3390/pr7060365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Self-emulsifying pellets (SEPs) of Atorvastatin Calcium (AtrCa) were developed and processed into tablets (SETs). Self-emulsifying drug delivery system (SEDDS) composed of oleic acid, Tween 20, Span 80 and N-Methyl-2-pyrolidone gave great solubility improvement and was used as oil in water emulsion for the preparation of SEPs. Due to the high 60% w/w SEDDS content required to achieve a therapeutic dose in the final tablet form, sonication was necessary to improve fluidity and stability. Colloidal silicon dioxide (CSD) and microcrystalline cellulose (MCC) were the solids in the pellet formulation employed at a ratio 7:3, which enabled production of pellets with high SEDDS content and acceptable friability as well. Emulsions were characterized physico-chemically, SEPs for physical properties and reconstitution, and tablets of compressed pellets for mechanical strength, disintegration into pellets and drug release. SEPs compressed with 30% MCC at 60 MPa gave tablets of adequate strength that disintegrated rapidly into pellets within 1 min. Emulsion reconstitution took longer than drug release due to adsorption of SEDDS on CSD, implying dissolution at the pellet surface in parallel to that from the dispersed droplets. Compared to the commercial tablet, drug release from the self-emulsifying forms was faster at pH 1.2 where the drug solubility is poor, but slower at pH 6.8 where the solubility is higher. Permeability and cytotoxicity were also studied using Caco-2 cells. The results showed that drug transport from the apical to basolateral compartment of the test well was 1.27 times greater for SEPs than commercial tablets, but 0.86 times lower in the opposite direction. Statistical analysis confirmed the significance of these results. Toxicity was slightly reduced. Therefore, the increased permeability in conjunction with the protection of the drug being dissolved in the SEDDS droplets, may reduce the overall effect of presystemic metabolism and enhance bioavailability.
Collapse
|
15
|
Shi X, Xu T, Huang W, Fan B, Sheng X. Stability and Bioavailability Enhancement of Telmisartan Ternary Solid Dispersions: the Synergistic Effect of Polymers and Drug-Polymer(s) Interactions. AAPS PharmSciTech 2019; 20:143. [PMID: 30887265 DOI: 10.1208/s12249-019-1358-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/05/2019] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to investigate the synergistic effect of polymers and drug-polymer(s) interactions on the improved stability and bioavailability of telmisartan (TEL) ternary solid dispersions. As a water-insoluble drug, 40 and 160 mg doses of TEL tablets exhibited bioavailabilities of 42% and 58%, respectively. Through polymer screening, PVP K30 and/or Soluplus were selected and used at different concentrations to prepare TEL amorphous solid dispersions by solvent evaporation. Compared to pure TEL and TEL-PVP K30/Soluplus binary solid dispersions, TEL-PVP K30-Soluplus ternary solid dispersions demonstrated significant advantages, including higher dissolution (over 90% release at 60 min), better amorphous stability (physically stable in 90 days), and improved oral bioavailability (Cmax of 5535.819 ± 325.67 ng/mL and tmax of 1 h). These advantages were related to the complementarity of PVP K30 and Soluplus on TEL. PVP K30 had a better activity to solubilize TEL and achieved a high TEL initial concentration in dissolution media. Simultaneously, the ability of Soluplus to assist in the maintenance of supersaturation played an important role. PVP K30 and Soluplus together inhibited crystallization of the drug at different stages. The existence and intensity of drug-polymer interactions were also determined by DSC (Tg determination) and FT-IR. At the molecular level, a hypothesis was also proposed that the enhancements resulted from the contribution of the synergistic effect between PVP K30 and Soluplus. These results suggested that two polymers, in a combination and via a synergistic effect, could further enhance the bioavailability and amorphous stability of ternary solid dispersions.
Collapse
|
16
|
Mori Y, Takahashi M, Ohno Y, Okura R, Ishida M, Higashi T, Motoyama K, Arima H. Identification of molecular-interaction sites between lowly hydrolyzed polyvinyl alcohols and indomethacin by NMR spectroscopy. Int J Pharm 2018; 549:456-465. [DOI: 10.1016/j.ijpharm.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/22/2018] [Accepted: 08/12/2018] [Indexed: 10/28/2022]
|
17
|
Apiwongngam J, Limwikrant W, Jintapattanakit A, Jaturanpinyo M. Enhanced supersaturation of chlortetracycline hydrochloride by amorphous solid dispersion. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME, Vígh L. Heat Shock Proteins and Autophagy Pathways in Neuroprotection: from Molecular Bases to Pharmacological Interventions. Int J Mol Sci 2018; 19:E325. [PMID: 29361800 PMCID: PMC5796267 DOI: 10.3390/ijms19010325] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer's disease, Parkinson's disease and Huntington's disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dóm Square 8, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary.
| |
Collapse
|
19
|
Davis M, Walker G. Recent strategies in spray drying for the enhanced bioavailability of poorly water-soluble drugs. J Control Release 2017; 269:110-127. [PMID: 29117503 DOI: 10.1016/j.jconrel.2017.11.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/07/2023]
Abstract
Poorly water-soluble drugs are a significant and ongoing issue for the pharmaceutical industry. An overview of recent developments for the preparation of spray-dried delivery systems is presented. Examples include amorphous solid dispersions, spray dried dispersions, microparticles, nanoparticles, surfactant systems and self-emulsifying drug delivery systems. Several aspects of formulation are considered, such as pre-screening, choosing excipient(s), the effect of polymer structure on performance, formulation optimisation, ternary dispersions, fixed-dose combinations, solvent selection and component miscibility. Process optimisation techniques including nozzle selection are discussed. Comparisons are drawn with other preparation techniques such as hot melt extrusion, freeze drying, milling, electro spinning and film casting. Novel analytical and dissolution techniques for the characterization of amorphous solid dispersions are included. Progress in understanding of amorphous supersaturation or recrystallisation from solution gathered from mechanistic studies is discussed. Aspects of powder flow and compression are considered in a section on downstream processing. Overall, spray drying has a bright future due to its versatility, efficiency and the driving force of poorly soluble drugs.
Collapse
Affiliation(s)
- Mark Davis
- Synthesis and Solid State Pharmaceutical Centre (SSPC), Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Gavin Walker
- Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
20
|
Kaur S, Jena SK, Samal SK, Saini V, Sangamwar AT. Freeze dried solid dispersion of exemestane: A way to negate an aqueous solubility and oral bioavailability problems. Eur J Pharm Sci 2017; 107:54-61. [DOI: 10.1016/j.ejps.2017.06.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/07/2017] [Accepted: 06/25/2017] [Indexed: 12/18/2022]
|
21
|
Cho HJ, Jee JP, Kang JY, Shin DY, Choi HG, Maeng HJ, Cho KH. Cefdinir Solid Dispersion Composed of Hydrophilic Polymers with Enhanced Solubility, Dissolution, and Bioavailability in Rats. Molecules 2017; 22:molecules22020280. [PMID: 28208830 PMCID: PMC6155681 DOI: 10.3390/molecules22020280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to develop cefdinir solid dispersions (CSDs) prepared using hydrophilic polymers with enhanced dissolution/solubility and in vivo oral bioavailability. CSDs were prepared with hydrophilic polymers such as hydroxypropyl-methylcellulose (HPMC; CSD1), carboxymethylcellulose-Na (CMC-Na; CSD2), polyvinyl pyrrolidone K30 (PVP K30; CSD3) at the weight ratio of 1:1 (drug:polymer) using a spray-drying method. The prepared CSDs were characterized by aqueous solubility, differential scanning calorimetry (DSC), powder X-ray diffraction (p-XRD), scanning electron microscopy (SEM), aqueous viscosity, and dissolution test in various media. The oral bioavailability of CSDs was also evaluated in rats and compared with cefdinir powder suspension. The cefdinir in CSDs was amorphous form, as confirmed in the DSC and p-XRD measurements. The developed CSDs commonly resulted in about 9.0-fold higher solubility of cefdinir and a significantly improved dissolution profile in water and at pH 1.2, compared with cefdinir crystalline powder. Importantly, the in vivo oral absorption (represented as AUCinf) was markedly increased by 4.30-, 6.77- and 3.01-fold for CSD1, CSD2, and CSD3, respectively, compared with cefdinir suspension in rats. The CSD2 prepared with CMC-Na would provide a promising vehicle to enhance dissolution and bioavailability of cefdinir in vivo.
Collapse
Affiliation(s)
- Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341, Korea.
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea.
| | - Ji-Ye Kang
- College of Pharmacy, Inje University, 197 Inje-ro, Gimhae 50834, Korea.
| | - Dong-Yeop Shin
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 16419, Korea.
| | - Han-Gon Choi
- College of Pharmacy & Institute of Pharmaceutical Science and Technology, Hanyang University, 55 Hanyangdaehak-ro, Ansan 15588, Korea.
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoei-ro, Yeonsu-gu, Incheon 21936, Korea.
| | - Kwan Hyung Cho
- College of Pharmacy, Inje University, 197 Inje-ro, Gimhae 50834, Korea.
| |
Collapse
|
22
|
Kim DS, Kim DW, Kim KS, Choi JS, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Jin SG, Choi HG. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids Surf B Biointerfaces 2016; 147:250-257. [DOI: 10.1016/j.colsurfb.2016.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/14/2016] [Accepted: 08/07/2016] [Indexed: 12/24/2022]
|
23
|
Dhaundiyal A, Jena SK, Samal SK, Sonvane B, Chand M, Sangamwar AT. Alpha-lipoic acid–stearylamine conjugate-based solid lipid nanoparticles for tamoxifen delivery: formulation, optimization, in-vivo pharmacokinetic and hepatotoxicity study. J Pharm Pharmacol 2016; 68:1535-1550. [DOI: 10.1111/jphp.12644] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/24/2016] [Indexed: 11/30/2022]
Abstract
Abstract
Objectives
This study was designed to demonstrate the potential of novel α-lipoic acid–stearylamine (ALA-SA) conjugate-based solid lipid nanoparticles in modulating the pharmacokinetics and hepatotoxicity of tamoxifen (TMX).
Methods
α-lipoic acid–stearylamine bioconjugate was synthesized via carbodiimide chemistry and used as a lipid moiety for the generation of TMX-loaded solid lipid nanoparticles (TMX-SLNs). TMX-SLNs were prepared by solvent emulsification–diffusion method and optimized for maximum drug loading using rotatable central composite design. The optimized TMX-SLNs were stabilized using 10% w/w trehalose as cryoprotectant. In addition, pharmacokinetics and hepatotoxicity of freeze-dried TMX-SLNs were also evaluated in Sprague Dawley rats.
Key findings
Initial characterization with transmission electron microscopy revealed spherical morphology with smooth surface having an average particle size of 261.08 ± 2.13 nm. The observed entrapment efficiency was 40.73 ± 2.83%. In-vitro release study showed TMX release was slow and pH dependent. Pharmacokinetic study revealed a 1.59-fold increase in relative bioavailability as compared to TMX suspension. A decrease in hepatotoxicity of TMX is evidenced by the histopathological evaluation of liver tissues.
Conclusions
α-lipoic acid–stearylamine conjugate-based SLNs have a great potential in enhancing the oral bioavailability of poorly soluble drugs like TMX. Moreover, this ALA-SA nanoparticulate system could be of significant value in long-term anticancer therapy with least side effects.
Collapse
Affiliation(s)
- Ankit Dhaundiyal
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Sunil K Jena
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Sanjaya K Samal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Bhavin Sonvane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Mahesh Chand
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| |
Collapse
|
24
|
Singh A, Van den Mooter G. Spray drying formulation of amorphous solid dispersions. Adv Drug Deliv Rev 2016; 100:27-50. [PMID: 26705850 DOI: 10.1016/j.addr.2015.12.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/06/2015] [Accepted: 12/09/2015] [Indexed: 02/01/2023]
Abstract
Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed.
Collapse
|
25
|
Vasconcelos T, Marques S, das Neves J, Sarmento B. Amorphous solid dispersions: Rational selection of a manufacturing process. Adv Drug Deliv Rev 2016; 100:85-101. [PMID: 26826438 DOI: 10.1016/j.addr.2016.01.012] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/21/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022]
Abstract
Amorphous products and particularly amorphous solid dispersions are currently one of the most exciting areas in the pharmaceutical field. This approach presents huge potential and advantageous features concerning the overall improvement of drug bioavailability. Currently, different manufacturing processes are being developed to produce amorphous solid dispersions with suitable robustness and reproducibility, ranging from solvent evaporation to melting processes. In the present paper, laboratorial and industrial scale processes were reviewed, and guidelines for a rationale selection of manufacturing processes were proposed. This would ensure an adequate development (laboratorial scale) and production according to the good manufacturing practices (GMP) (industrial scale) of amorphous solid dispersions, with further implications on the process validations and drug development pipeline.
Collapse
Affiliation(s)
- Teófilo Vasconcelos
- BIAL-Portela & Cª, S.A., Avenida da Siderugia Nacional, 4745-457 Trofa, Portugal; Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Sara Marques
- CIBIO/InBIO-UP-Research Centre in Biodiversity and Genetic Resources, University of Porto, Rua Padre Armando Quintas, n° 7, 4485-661 Vairão, Portugal
| | - José das Neves
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Bruno Sarmento
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
26
|
Nalawade P, Gajjar A. Optimization of Astaxanthin microencapsulation in hydrophilic carriers using response surface methodology. Arch Pharm Res 2015:10.1007/s12272-015-0693-5. [PMID: 26670178 DOI: 10.1007/s12272-015-0693-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/28/2015] [Indexed: 12/11/2022]
Abstract
Astaxanthin (3, 3'-dihydroxy-β, β-carotene-4, 4'-dione; AST) belongs to class of xanthophylls and is very effective antioxidant. It has very poor aqueous solubility resulting in lower bioavailability which presents major concerns in product development for oral use. AST was microencapsulated with soluble polymers using spray drying to improve its solubility and bioavailability. Quality by Design (QbD), a widely used approach for prediction of quality for desired specifications and effects was applied Design of Experiments (DOE), a useful component of QbD was utilized to understand the effect of variables and their interactions. Different formulation variables like ratio of hydrophilic carriers, concentration of solubilizers and homogenizer speed were challenged in the experimental design during the process of microencapsulation. The optimized formulation showed consistent release rate and characterization was done by DSC, XRD and SEM study. Percent cell growth inhibition was increased in optimized formulation as compared to plain AST. This QbD study can form a basis for further development of poorly water soluble AST formulation by oral route with improved bioavailability on larger scale.
Collapse
Affiliation(s)
- Pravin Nalawade
- Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India.
| | - Anuradha Gajjar
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Petlad, Anand, Gujarat, 388421, India
| |
Collapse
|