1
|
AHMED KK, KASSAB HJ, AL RAMAHI IJ, ALWAN ZS. Taste Masking of Steroids for Oral Formulations. Turk J Pharm Sci 2024; 20:352-360. [PMID: 38254331 PMCID: PMC10803926 DOI: 10.4274/tjps.galenos.2023.24968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
Abstract
Objectives Oral steroids are commonly prescribed to children. Steroids have a strong bitter taste that limits their oral acceptance in children. The objective of this study was to formulate a pediatric-friendly and palatable oral dosage form of steroids. Materials and Methods Solid dispersions of dexamethasone were prepared using polyethylene glycol, pectin, and Eudragit as carrier polymers, and chocolate as a flavoring agent. Taste masking efficiency was evaluated by healthy volunteers to select the best formula. The selected formula was pressed into chewable tablets with varying amounts of sweeteners. Chewable tablets were evaluated for palatability, hardness, and chewing index. The typical application of the taste masking approach was confirmed using prednisolone. Results Eudragit-based solid dispersions were effective in dexamethasone taste masking. Using 40% mannitol resulted in palatable tablets with acceptable hardness and chewing difficulty. The effectiveness of the taste masking approach was successfully used to prepare prednisolone chewable tablets. However, an increase in the carrier: drug ratio and a change in the flavor to pineapple were necessary to achieve maximum palatability of prednisolone chewable tablets. Conclusion Eudragit solid dispersion is an effective method for the taste masking highly bitter steroids. The solid dispersion was successfully pressed into a palatable, easy-to-chew, and pediatric-friendly chewable tablet dosage form. The carrier: drug ratio and the choice of flavoring agent are crucial factors in improving tablet palatability.
Collapse
Affiliation(s)
- Kawther Khalid AHMED
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Baghdad, Iraq
| | - Hanan Jalal KASSAB
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Baghdad, Iraq
| | - Intesar Jawad AL RAMAHI
- Avi Sina Center for Pharmaceutical Research, Corporation of Research and Industry Development, Baghdad, Iraq
| | - Zahraa Salim ALWAN
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Baghdad, Iraq
| |
Collapse
|
2
|
Bernsen EC, Hogenes VJ, Nuijen B, Hanff LM, Huitema ADR, Diekstra MHM. Practical Recommendations for the Manipulation of Kinase Inhibitor Formulations to Age-Appropriate Dosage Forms. Pharmaceutics 2022; 14:2834. [PMID: 36559327 PMCID: PMC9782008 DOI: 10.3390/pharmaceutics14122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Over 75 kinase inhibitors (KIs) have been approved for the treatment of various cancers. KIs are orally administrated but mostly lack pediatric age-appropriate dosage forms or instructions for dose manipulation. This is highly problematic for clinical practice in pediatric oncology, as flexible oral formulations are essential to individually set dosages and to adjust it to a child's swallowability. Most KIs are poorly soluble, categorized in Biopharmaceutics Classification System (BCS) class II or IV, and improperly manipulating the KI formulation can alter pharmacokinetics and jeopardize KI drug safety and efficacy. Therefore, the goals of this review were to provide practical recommendations for manipulating the formulation of the 15 most frequently used KIs in pediatric oncology (i.e., bosutinib, cabozantinib, cobimetinib, crizotinib, dabrafenib, dasatinib, entrectinib, imatinib, larotrectinib, nilotinib, ponatinib, ruxolitinib, selumetinib, sunitinib and trametinib) based on available literature studies and fundamental drug characteristics and to establish a decision tool that supports decisions regarding formulation manipulation of solid oral dosages of KIs that have been or will be licensed (for adult and/or pediatric cancers) but are not included in this review.
Collapse
Affiliation(s)
- Emma C. Bernsen
- Princess Máxima Center for Pediatric Oncology, Department of Pharmacology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Valery J. Hogenes
- Princess Máxima Center for Pediatric Oncology, Department of Pharmacology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Bastiaan Nuijen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lidwien M. Hanff
- Princess Máxima Center for Pediatric Oncology, Department of Pharmacology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Alwin D. R. Huitema
- Princess Máxima Center for Pediatric Oncology, Department of Pharmacology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute—Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Meta H. M. Diekstra
- Princess Máxima Center for Pediatric Oncology, Department of Pharmacology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| |
Collapse
|
3
|
Pereira M, Silva FC, Simões S, Ribeiro HM, Almeida AJ, Marto J. Innovative, Sugar-Free Oral Hydrogel as a Co-administrative Vehicle for Pediatrics: a Strategy to Enhance Patient Compliance. AAPS PharmSciTech 2022; 23:107. [PMID: 35381882 DOI: 10.1208/s12249-022-02265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 11/30/2022] Open
Abstract
Palatability and swallowability in the pediatric population are perceived as true challenges in the oral administration of medication. Pediatric patients have high sensitivity to taste and reduced ability to take solid dosage forms, which can often lead to a poor therapeutic compliance. It is crucial to find new strategies to simplify the oral administration of drugs to children. The present paper reports the development of a new hydrogel vehicle adapted to the pediatric population. Several polymers with similar properties were selected and adjustments were made to obtain the desired characteristics of the final product. The developed formulations were studied for organoleptic properties, rheology, mucoadhesion properties, preservative efficacy, and stability. Physical and chemical compatibilities between the vehicle and several drugs/medicines, at the time of administration, were also studied. Six final formulations with different polymers, odor, and color were chosen, and no known interactions with medications were observed. The proposed new oral vehicles are the first sugar-free vehicle hydrogels designed to make the intake of oral solid forms a more pleasant and safer experience for pediatric patients.
Collapse
|
4
|
Freerks L, Sucher W, Tarnow MJ, Eckert C, Klein S. Vehicles for Drug Administration to Children: Results and Learnings from an In-Depth Screening of FDA-Recommended Liquids and Soft Foods for Product Quality Assessment. Pharm Res 2022; 39:497-509. [PMID: 35233727 PMCID: PMC8986743 DOI: 10.1007/s11095-022-03208-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
Purpose Mixing with liquids or soft foods is a common procedure to improve acceptability of oral medicines in children but may affect drug stability and the in vivo performance of the administered drug product. The aim of the present study was to obtain an overview of the variability of critical attributes of commonly used vehicles and to identify which vehicle characteristics need to be considered when developing in vitro methods for evaluating product quality. Methods One product of each vehicle listed in the FDA draft guidance “Use of Liquids and/or Soft Foods as Vehicles for Drug Administration” was analyzed with regard to composition, calorific content and physicochemical properties. Results The studied vehicles show wide variability, both in composition and physicochemical properties. No correlation was observed between vehicle composition and physicochemical properties. Comparison of results of the present study with previously published data also provided variability in physicochemical properties within individual vehicle types. Conclusions To identify acceptable (qualified) vehicles for global drug product labeling, it is important that the vehicles selected for in vitro compatibility screening reflect the variability in composition and essential physicochemical properties of the vehicles recommended on the product label, rather than relying on results obtained with a single vehicle of each type. Future activities will focus on the development of standardized dosing vehicles that can represent key vehicle characteristics in all their variability to ensure reliable risk assessment.
Collapse
Affiliation(s)
- Lisa Freerks
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix Hausdorff Straße 3, 17489, Greifswald, Germany
| | - Wenke Sucher
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix Hausdorff Straße 3, 17489, Greifswald, Germany
| | - Marie-Josefin Tarnow
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix Hausdorff Straße 3, 17489, Greifswald, Germany
| | - Carolin Eckert
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix Hausdorff Straße 3, 17489, Greifswald, Germany
| | - Sandra Klein
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, Felix Hausdorff Straße 3, 17489, Greifswald, Germany.
| |
Collapse
|
5
|
Johannesson J, Hansson P, Bergström CAS, Paulsson M. Manipulations and age-appropriateness of oral medications in pediatric oncology patients in Sweden: Need for personalized dosage forms. Biomed Pharmacother 2022; 146:112576. [PMID: 35062056 DOI: 10.1016/j.biopha.2021.112576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Due to the lack of age-appropriate formulations for children, healthcare professionals and caregivers frequently manipulate dosage forms to facilitate oral administration and obtain the required dose. In this study, we investigated drug manipulation and age-appropriateness of oral medications for pediatric oncology patients with the aim of identifying the therapeutic needs for personalized dosage forms. An observational study at a pediatric oncology ward, combined with analysis of the age-appropriateness of the oral medications, was performed. Nurses frequently manipulated solid dosage forms to administer them via enteral feeding tubes. Of the active pharmaceutical ingredients (APIs) assessed for age-appropriateness, 74% (29 of 39) were identified to need personalization, either because of lack of child-friendly dosage form, suitable dosage strength, or both. Most APIs, due to limited solubility, were sensitive to formulation changes, such as drug manipulation. This study demonstrates problems and therapeutic needs regarding oral dosage forms in treatment of children with cancer. Expertise in formulation design, new manufacturing technologies, and patient-centered information are needed to address age-appropriate formulations for children.
Collapse
Affiliation(s)
- Jenny Johannesson
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Paula Hansson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Uppsala Biomedical Center, P.O Box 580, SE-751 23 Uppsala, Sweden
| | - Mattias Paulsson
- Department of Women's and Children's Health, Uppsala University, Akademiska sjukhuset, SE-751 85 Uppsala, Sweden.
| |
Collapse
|
6
|
Guimarães M, Vertzoni M, Fotaki N. Performance Evaluation of Montelukast Pediatric Formulations: Part II - a PBPK Modelling Approach. AAPS J 2022; 24:27. [PMID: 35013803 PMCID: PMC8816611 DOI: 10.1208/s12248-021-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to build a physiologically based pharmacokinetic (PBPK) model coupled with age-appropriate in vitro dissolution data to describe drug performance in adults and pediatric patients. Montelukast sodium was chosen as a model drug. Two case studies were investigated: case study 1 focused on the description of formulation performance from adults to children; case study 2 focused on the description of the impact of medicine co-administration with vehicles on drug exposure in infants. The PBPK model for adults and pediatric patients was developed in Simcyp® v18.2 informed by age-appropriate in vitro dissolution results obtained in a previous study. Oral administration of montelukast was simulated with the ADAM™ model. For case study 1, the developed PBPK model accurately described montelukast exposure in adults and children populations after the administration of montelukast chewable tablets. Two-stage dissolution testing in simulated fasted gastric to intestinal conditions resulted in the best description of in vivo drug performance in adults and children. For case study 2, a good description of in vivo drug performance in infants after medicine co-administration with vehicles was achieved by incorporating in vitro drug dissolution (under simulated fasted gastric to fed intestinal conditions) into a fed state PBPK model with consideration of the in vivo dosing conditions (mixing of formulation with applesauce or formula). The case studies presented demonstrate how a PBPK absorption modelling strategy can facilitate the description of drug performance in the pediatric population to support decision-making and biopharmaceutics understanding during pediatric drug development.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Centre for Therapeutic Innovation, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
7
|
Guimarães M, Somville P, Vertzoni M, Fotaki N. Performance Evaluation of Montelukast Pediatric Formulations: Part I-Age-Related In Vitro Conditions. AAPS J 2022; 24:26. [PMID: 35013835 PMCID: PMC8817206 DOI: 10.1208/s12248-021-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to explore the potential of biopharmaceutics in vitro tools to predict drug product performance in the pediatric population. Biorelevant dissolution set-ups were used to predict how age and medicine administration practices affect the in vitro dissolution of oral formulations of a poorly water-soluble compound, montelukast. Biorelevant age-appropriate dissolution studies of Singulair® (granules and chewable tablets) were conducted with the µDISS profiler™, USP 4 apparatus, USP 2 apparatus, and mini-paddle apparatus. Biorelevant simulating fluids representative of adult and pediatric conditions were used in the dissolution studies. The biorelevant dissolution conditions were appropriately selected (i.e. volumes, transit times, etc.) to mimic the gastrointestinal conditions of each of the subpopulations tested. Partial least squares regression (PLS-R) was performed to understand the impact of in vitro variables on the dissolution of montelukast. Montelukast dissolution was significantly affected by the in vitro hydrodynamics used to perform the dissolution tests (µDISS profiler™: positive effect); choice of simulation of gastric (negative effect) and/or intestinal conditions (positive effect) of the gastrointestinal tract; and simulation of prandial state (fasted state: negative effect, fed state: positive effect). Age-related biorelevant dissolution of Singulair® granules predicted the in vivo effect of the co-administration of the formulation with applesauce and formula in infants. This study demonstrates that age-appropriate biorelevant dissolution testing can be a valuable tool for the assessment of drug performance in the pediatric population.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Pascal Somville
- UCB Pharma S.A., Product Development, B-1420, Braine l'Alleud, Belgium
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Centre for Therapeutic Innovation and Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
8
|
Truong S, Tang EKY, Khan RN, Nguyen MN, von Ungern Sternberg BS, Yeo AWY, Lim LY. Prior administration of chocolate improves the palatability of bitter drugs: The Choc-with-Med study. J Paediatr Child Health 2021; 57:1267-1273. [PMID: 33739547 DOI: 10.1111/jpc.15448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 03/06/2021] [Indexed: 11/30/2022]
Abstract
AIM The paediatric population has a low adherence and acceptance rate of unpalatable medicines. This study aimed to determine whether eating chocolate immediately prior to drug administration would help to mask the bitter taste of a drug. The difference in taste masking efficacy between white, milk and dark chocolate was a secondary measure outcome. METHODS A controlled repeated measures crossover taste trial was conducted using a taste panel of 29 young healthy adults who met the criteria to differentiate intensity in bitterness taste. Participants separately tasted solutions of quinine, flucloxacillin and clindamycin using the swill and spit method, singularly and following blinded prior administration of white, milk or dark chocolate. Drug solutions administered without prior chocolate served as controls. Bitterness score for each tasting was recorded using a 5-point scale. RESULTS Regardless of chocolate type, mean taste scores with prior chocolate for quinine (range 2.00-2.34), clindamycin (3.72-3.83) and flucloxacillin (3.38-3.45) were all lower than mean scores for respective drugs without chocolate (3.24, 4.75 and 4.28, respectively; P < 0.0001 for all comparisons). Dark chocolate was most efficacious for masking the bitter taste of quinine, but the differences in taste masking efficacy between dark, milk and white chocolates were not statistically significant for flucloxacillin and clindamycin. CONCLUSIONS Prior administration of chocolate results in lower perceived bitterness compared to control tastings of quinine, flucloxacillin and clindamycin solutions; however, there is no clear difference in this effect between the dark, milk and white chocolates used in this study.
Collapse
Affiliation(s)
- Shannon Truong
- School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Edith Kai Yan Tang
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Perth, Western Australia, Australia
| | - R Nazim Khan
- School of Mathematics and Statistics, The University of Western Australia, Perth, Western Australia, Australia
| | - Minh Ngoc Nguyen
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Perth, Western Australia, Australia
| | - Britta S von Ungern Sternberg
- Department of Anaesthesia and Pain Management, Perth Children's Hospital and The University of Western Australia (School of Medicine), Perth, Western Australia, Australia
| | - Allen Wan Yan Yeo
- Department of Trauma/General Surgery, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
9
|
Gleeson JP, Fein KC, Whitehead KA. Oral delivery of peptide therapeutics in infants: Challenges and opportunities. Adv Drug Deliv Rev 2021; 173:112-124. [PMID: 33774115 PMCID: PMC8178217 DOI: 10.1016/j.addr.2021.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022]
Abstract
The vast majority of drugs are not designed or developed for pediatric and infant populations. Peptide drugs, which have become increasingly relevant in the past several decades, are no exception. Unfortunately, nearly all of the 60+ approved peptide drugs are formulated for injection, a particularly unfriendly mode of administration for infants. Although three peptide drugs were recently approved for oral formulations, this major advance in peptide drug delivery is available only for adults. In this review, we consider the current challenges and opportunities for the oral formulation of peptide therapeutics, specifically for infant populations. We describe the strategies that enable oral protein delivery and the potential impact of infant physiology on those strategies. We also detail the limited but encouraging progress towards 1) adapting conventional drug development and delivery approaches to infants and 2) designing novel infant-centric formulations. Together, these efforts underscore the feasibility of oral peptide delivery in infants and provide motivation to increase attention paid to this underserved area of drug delivery and formulation.
Collapse
Affiliation(s)
- John P Gleeson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Katherine C Fein
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, United States.
| |
Collapse
|
10
|
Vinarov Z, Abrahamsson B, Artursson P, Batchelor H, Berben P, Bernkop-Schnürch A, Butler J, Ceulemans J, Davies N, Dupont D, Flaten GE, Fotaki N, Griffin BT, Jannin V, Keemink J, Kesisoglou F, Koziolek M, Kuentz M, Mackie A, Meléndez-Martínez AJ, McAllister M, Müllertz A, O'Driscoll CM, Parrott N, Paszkowska J, Pavek P, Porter CJH, Reppas C, Stillhart C, Sugano K, Toader E, Valentová K, Vertzoni M, De Wildt SN, Wilson CG, Augustijns P. Current challenges and future perspectives in oral absorption research: An opinion of the UNGAP network. Adv Drug Deliv Rev 2021; 171:289-331. [PMID: 33610694 DOI: 10.1016/j.addr.2021.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023]
Abstract
Although oral drug delivery is the preferred administration route and has been used for centuries, modern drug discovery and development pipelines challenge conventional formulation approaches and highlight the insufficient mechanistic understanding of processes critical to oral drug absorption. This review presents the opinion of UNGAP scientists on four key themes across the oral absorption landscape: (1) specific patient populations, (2) regional differences in the gastrointestinal tract, (3) advanced formulations and (4) food-drug interactions. The differences of oral absorption in pediatric and geriatric populations, the specific issues in colonic absorption, the formulation approaches for poorly water-soluble (small molecules) and poorly permeable (peptides, RNA etc.) drugs, as well as the vast realm of food effects, are some of the topics discussed in detail. The identified controversies and gaps in the current understanding of gastrointestinal absorption-related processes are used to create a roadmap for the future of oral drug absorption research.
Collapse
Affiliation(s)
- Zahari Vinarov
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Chemical and Pharmaceutical Engineering, Sofia University, Sofia, Bulgaria
| | - Bertil Abrahamsson
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Hannah Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Philippe Berben
- Pharmaceutical Development, UCB Pharma SA, Braine- l'Alleud, Belgium
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - James Butler
- GlaxoSmithKline Research and Development, Ware, United Kingdom
| | | | - Nigel Davies
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gøril Eide Flaten
- Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | | | | | | | | | | | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, Basel, Switzerland
| | - Alan Mackie
- School of Food Science & Nutrition, University of Leeds, Leeds, United Kingdom
| | | | | | - Anette Müllertz
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Petr Pavek
- Faculty of Pharmacy, Charles University, Hradec Králové, Czech Republic
| | | | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Kiyohiko Sugano
- College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, Japan
| | - Elena Toader
- Faculty of Medicine, University of Medicine and Pharmacy of Iasi, Romania
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Saskia N De Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clive G Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
11
|
Martir J, Flanagan T, Mann J, Fotaki N. Impact of Food and Drink Administration Vehicles on Paediatric Formulation Performance Part 2: Dissolution of Montelukast Sodium and Mesalazine Formulations. AAPS PharmSciTech 2020; 21:287. [PMID: 33063245 PMCID: PMC7561592 DOI: 10.1208/s12249-020-01815-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/08/2020] [Indexed: 11/30/2022] Open
Abstract
Paediatric medicines are not always age-appropriate, causing problems with dosing, acceptability and adherence. The use of food and drinks as vehicles for medicine co-administration is common practice, yet the impact on drug bioavailability, safety and efficacy remains unaddressed. The aim of this study was to use in vitro dissolution testing, under infant simulating conditions, to evaluate the effect of co-administration with vehicles on the dissolution performance of two poorly soluble paediatric drugs. Dissolution studies of mesalazine and montelukast formulations were conducted with mini-paddle apparatus on a two-stage approach: simulated gastric fluid followed by addition of simulated intestinal fluid. The testing scenarios were designed to reflect daily administration practices: direct administration of formulation; formulation co-administered with food and drinks, both immediately after mixing and 4 h after mixing. Drug dissolution was significantly affected by medicine co-administration with vehicles, compared to the direct administration of formulation. Furthermore, differences were observed on drug dissolution when the formulations were mixed with different vehicles of the same subtype. The time between preparation and testing of the drug-vehicle mixture also impacted dissolution behaviour. Drug dissolution was shown to be significantly affected by the physicochemical properties and composition of the vehicles, drug solubility in each vehicle and drug/formulation characteristics. Ultimately, in this study, we show the potential of age-appropriate in vitro dissolution testing as a useful biopharmaceutical tool for estimating drug dissolution in conditions relevant to the paediatric population. The setup developed has potential to evaluate the impact of medicine co-administration with vehicles on paediatric formulation performance.
Collapse
|
12
|
Martir J, Flanagan T, Mann J, Fotaki N. In Vivo Predictive Dissolution Testing of Montelukast Sodium Formulations Administered with Drinks and Soft Foods to Infants. AAPS PharmSciTech 2020; 21:282. [PMID: 33051713 PMCID: PMC7554011 DOI: 10.1208/s12249-020-01825-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
In vitro dissolution testing conditions that reflect and predict in vivo drug product performance are advantageous, especially for the development of paediatric medicines, as clinical testing in this population is hindered by ethical and technical considerations. The aim of this study was to develop an in vivo predictive dissolution test in order to investigate the impact of medicine co-administration with soft food and drinks on the dissolution performance of a poorly soluble compound. Relevant in vitro dissolution conditions simulating the in vivo gastrointestinal environment of infants were used to establish in vitro-in vivo relationships with corresponding in vivo data. Dissolution studies of montelukast formulations were conducted with mini-paddle apparatus on a two-stage approach: infant fasted-state simulated gastric fluid (Pi-FaSSGF; for 1 h) followed by either infant fasted-state or infant fed-state simulated intestinal fluid (FaSSIF-V2 or Pi-FeSSIF, respectively; for 3 h). The dosing scenarios tested reflected in vivo paediatric administration practices: (i.) direct administration of formulation; (ii.) formulation co-administered with vehicles (formula, milk or applesauce). Drug dissolution was significantly affected by co-administration of the formulation with vehicles compared with after direct administration of the formulation. Montelukast dissolution from the granules was significantly higher under fed-state simulated intestinal conditions in comparison with the fasted state and was predictive of the in vivo performance when the granules are co-administered with milk. This study supports the potential utility of the in vitro biorelevant dissolution approach proposed to predict in vivo formulation performance after co-administration with vehicles, in the paediatric population.
Collapse
|
13
|
Vallet T, Elhamdaoui O, Berraho A, Cherkaoui LO, Kriouile Y, Mahraoui C, Mouane N, Pense-Lheritier AM, Ruiz F, Bensouda Y. Medicines Acceptability in Hospitalized Children: An Ongoing Need for Age-Appropriate Formulations. Pharmaceutics 2020; 12:pharmaceutics12080766. [PMID: 32823568 PMCID: PMC7463451 DOI: 10.3390/pharmaceutics12080766] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022] Open
Abstract
Although knowledge on medicine acceptability remains fragmented, this multi-faceted concept has emerged as a key factor for compliance in pediatrics. In order to investigate the acceptability of medicines used in the University Medical Centre Ibn Sina (CHIS) of Rabat, Morocco, an observational study was conducted. Using a multivariate approach integrating the many aspects of acceptability, standardized observer reports were collected for 570 medicine intakes in patients up to the age of 16, then analyzed on a reference framework. Tablets appeared to be well accepted in children greater than 6 years old, but were crushed/dissolved for 90% of the 40 children aged from 3 to 5, and 100% of the 38 patients younger than 3. Moreover, the prescribed dose was fully taken for only 52% and 16% of these younger children, respectively. Despite this, tablets represented 24% of evaluations in children from 3 to 5 and 20% in infants and toddlers. Oral liquid preparations appeared to be better accepted than tablets in preschoolers, but not for those under 3. Overall, these findings highlight the lack of suitable alternatives for the younger children, especially for formulations of antiepileptics, antithrombotic, and psycholeptic agents in the local context.
Collapse
Affiliation(s)
- Thibault Vallet
- ClinSearch, 110 Avenue Pierre Brossolette, 92240 Malakoff, France;
- Correspondence: ; Tel.: +33-(0)-1-47-35-17-17
| | - Omar Elhamdaoui
- Faculty of Pharmacy and Medicine, Mohammed V University in Rabat, Impasse Souissi, 10170 Rabat, Morocco; (O.E.); (A.B.); (L.O.C.); (Y.K.); (C.M.); (N.M.); (Y.B.)
- Specialties Hospital, University Medical Centre Ibn Sina (CHIS), Quartier Souissi, 10170 Rabat, Morocco
| | - Amina Berraho
- Faculty of Pharmacy and Medicine, Mohammed V University in Rabat, Impasse Souissi, 10170 Rabat, Morocco; (O.E.); (A.B.); (L.O.C.); (Y.K.); (C.M.); (N.M.); (Y.B.)
- Specialties Hospital, University Medical Centre Ibn Sina (CHIS), Quartier Souissi, 10170 Rabat, Morocco
| | - Lalla Ouafae Cherkaoui
- Faculty of Pharmacy and Medicine, Mohammed V University in Rabat, Impasse Souissi, 10170 Rabat, Morocco; (O.E.); (A.B.); (L.O.C.); (Y.K.); (C.M.); (N.M.); (Y.B.)
- Specialties Hospital, University Medical Centre Ibn Sina (CHIS), Quartier Souissi, 10170 Rabat, Morocco
| | - Yamna Kriouile
- Faculty of Pharmacy and Medicine, Mohammed V University in Rabat, Impasse Souissi, 10170 Rabat, Morocco; (O.E.); (A.B.); (L.O.C.); (Y.K.); (C.M.); (N.M.); (Y.B.)
- Pediatrics Hospital, University Medical Centre Ibn Sina (CHIS), Avenue Ibn Rochd, 10100 Rabat, Morocco
| | - Chafiq Mahraoui
- Faculty of Pharmacy and Medicine, Mohammed V University in Rabat, Impasse Souissi, 10170 Rabat, Morocco; (O.E.); (A.B.); (L.O.C.); (Y.K.); (C.M.); (N.M.); (Y.B.)
- Pediatrics Hospital, University Medical Centre Ibn Sina (CHIS), Avenue Ibn Rochd, 10100 Rabat, Morocco
| | - Nezha Mouane
- Faculty of Pharmacy and Medicine, Mohammed V University in Rabat, Impasse Souissi, 10170 Rabat, Morocco; (O.E.); (A.B.); (L.O.C.); (Y.K.); (C.M.); (N.M.); (Y.B.)
- Pediatrics Hospital, University Medical Centre Ibn Sina (CHIS), Avenue Ibn Rochd, 10100 Rabat, Morocco
| | | | - Fabrice Ruiz
- ClinSearch, 110 Avenue Pierre Brossolette, 92240 Malakoff, France;
| | - Yahya Bensouda
- Faculty of Pharmacy and Medicine, Mohammed V University in Rabat, Impasse Souissi, 10170 Rabat, Morocco; (O.E.); (A.B.); (L.O.C.); (Y.K.); (C.M.); (N.M.); (Y.B.)
- Specialties Hospital, University Medical Centre Ibn Sina (CHIS), Quartier Souissi, 10170 Rabat, Morocco
| |
Collapse
|
14
|
Optimal Design, Characterization and Preliminary Safety Evaluation of an Edible Orodispersible Formulation for Pediatric Tuberculosis Pharmacotherapy. Int J Mol Sci 2020; 21:ijms21165714. [PMID: 32784947 PMCID: PMC7460872 DOI: 10.3390/ijms21165714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022] Open
Abstract
The severity of tuberculosis (TB) in children is considered a global crisis compounded by the scarcity of pharmaceutical formulations suitable for pediatric use. The purpose of this study was to optimally develop and evaluate a pyrazinamide containing edible orodispersible film formulation potentially suitable for use in pediatrics actively infected with TB. The formulation was prepared employing aqueous-particulate blending and solvent casting methods facilitated by a high performance Box Behnken experimental design template. The optimized orodispersible formulation was mechanically robust, flexible, easy to handle, exhibited rapid disintegration with initial matrix collapse occurring under 60 s (0.58 ± 0.05 min ≡ 34.98 ± 3.00 s) and pyrazinamide release was controlled by anomalous diffusion coupled with matrix disintegration and erosion mechanisms. It was microporous in nature, light weight (57.5 ± 0.5 mg) with an average diameter of 10.5 mm and uniformly distributed pyrazinamide load of 101.13 ± 2.03 %w/w. The formulation was physicochemically stable with no evidence of destructive drug–excipient interactions founded on outcomes of characterization and environmental stability investigations. Preliminary inquiries revealed that the orodispersible formulation was cytobiocompatible, palatable and remained intact under specific storage conditions. Summarily, an edible pyrazinamide containing orodispersible film formulation was optimally designed to potentially improve TB pharmacotherapy in children, particularly the under 5 year olds.
Collapse
|
15
|
Aguilar-de-Leyva Á, Linares V, Casas M, Caraballo I. 3D Printed Drug Delivery Systems Based on Natural Products. Pharmaceutics 2020; 12:E620. [PMID: 32635214 PMCID: PMC7407805 DOI: 10.3390/pharmaceutics12070620] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 01/28/2023] Open
Abstract
In the last few years, the employment of 3D printing technologies in the manufacture of drug delivery systems has increased, due to the advantages that they offer for personalized medicine. Thus, the possibility of producing sophisticated and tailor-made structures loaded with drugs intended for tissue engineering and optimizing the drug dose is particularly interesting in the case of pediatric and geriatric population. Natural products provide a wide range of advantages for their application as pharmaceutical excipients, as well as in scaffolds purposed for tissue engineering prepared by 3D printing technologies. The ability of biopolymers to form hydrogels is exploited in pressure assisted microsyringe and inkjet techniques, resulting in suitable porous matrices for the printing of living cells, as well as thermolabile drugs. In this review, we analyze the 3D printing technologies employed for the preparation of drug delivery systems based on natural products. Moreover, the 3D printed drug delivery systems containing natural products are described, highlighting the advantages offered by these types of excipients.
Collapse
Affiliation(s)
| | | | - Marta Casas
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 41012 Seville, Spain; (Á.A.-d.-L.); (V.L.); (I.C.)
| | | |
Collapse
|
16
|
Martir J, Flanagan T, Mann J, Fotaki N. Impact of Food and Drink Administration Vehicles on Paediatric Formulation Performance: Part 1-Effects on Solubility of Poorly Soluble Drugs. AAPS PharmSciTech 2020; 21:177. [PMID: 32592045 PMCID: PMC7373161 DOI: 10.1208/s12249-020-01722-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/04/2020] [Indexed: 11/30/2022] Open
Abstract
Food and drinks are commonly used to facilitate administration of
paediatric medicines to improve palatability and enhance patient compliance.
However, the impact of this practice on drug solubility and on oral drug
bioavailability is not usually studied. Based on recommended strategies for oral
administration of paediatric medicines with food and drink vehicles, the aims of
this study were (i) to measure the physicochemical properties of (soft) food and
drink vehicles, commonly mixed with paediatric medicines prior to administration,
and (ii) to assess the impact of the co-administered vehicles on the solubility of
two poorly soluble paediatric drugs. Montelukast (sodium) and mesalazine were
selected as the model compounds. Distinct differences were observed between the
physicochemical properties (i.e. pH, surface
tension, osmolality, viscosity and buffer capacity) and macronutrient composition
(i.e. fat, sugar and protein content) of the
different soft foods and drinks, not only among vehicle type but also within
vehicles of the same subtype. Solubility studies of the two model compounds in
selected drinks and soft foods resulted in considerably different drug solubility
values in each vehicle. The solubility of the drugs was significantly affected by
the vehicle physicochemical properties and macronutrient composition, with the
solubility of montelukast being driven by the pH, fat and protein content of the
vehicles and the solubility of mesalazine by vehicle osmolality, viscosity and sugar
content. This vehicle-dependent impact on drug solubility could compromise its
bioavailability, and ultimately affect the safety and/or efficacy of the drug and
should be taken into consideration during paediatric product development.
Collapse
|
17
|
Karavasili C, Gkaragkounis A, Moschakis T, Ritzoulis C, Fatouros DG. Pediatric-friendly chocolate-based dosage forms for the oral administration of both hydrophilic and lipophilic drugs fabricated with extrusion-based 3D printing. Eur J Pharm Sci 2020; 147:105291. [DOI: 10.1016/j.ejps.2020.105291] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/15/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
|
18
|
Martir J, Flanagan T, Mann J, Fotaki N. Co-administration of Paediatric Medicines with Food and Drinks in the Context of Their Physicochemical Properties-a Global Perspective on Practices and Recommendations. AAPS JOURNAL 2020; 22:54. [PMID: 32133550 PMCID: PMC7056676 DOI: 10.1208/s12248-020-0432-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/12/2020] [Indexed: 12/16/2022]
Abstract
Medicine co-administration with food or drink vehicles is a common administration practice in paediatrics. The aims of this review were (i) to describe the current recommended strategies for co-administration of paediatric medicines with food and drinks (vehicles); (ii) to compare current administration recommendations from different countries; and (iii) to obtain a global perspective on the rationale behind the choice of recommended vehicle, in the context of the physicochemical properties of the drug and formulation. This study used a defined search strategy on the practices of paediatric medicine co-administration with vehicles, recommended in a commonly used paediatric and neonatal handbook, in addition to the information previously gathered from UK formularies. Logistic regression analysis was performed to further understand the biopharmaceutical basis of the choice of recommended vehicle for medicine co-administration. Differences were identified in the type of vehicles globally recommended for medicine co-administration. Ultimately, a statistical model was developed which provided an understanding on which vehicle is recommended for use with drugs/formulations, with basis on their biopharmaceutical properties. Overall, this review highlights the areas where further information is needed to support standardised procedures and guide the recommendation of age-appropriate and acceptable vehicles for use in the co-administration of paediatric medicines. Unified requirements are needed for harmonisation of the practice of medicine co-administration with vehicles. In vitro and/or in silico tools should be developed to evaluate the potential clinical outcomes of this practice during paediatric drug development.
Collapse
Affiliation(s)
- Joana Martir
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Talia Flanagan
- Pharmaceutical Technology and Development, Astra Zeneca, Macclesfield, UK.,Currently at UCB Pharma, Chemin du Foriest, B - 1420, Braine-l'Alleud, Belgium
| | - James Mann
- Pharmaceutical Technology and Development, Astra Zeneca, Macclesfield, UK
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
19
|
Classification of WHO Essential Oral Medicines for Children Applying a Provisional Pediatric Biopharmaceutics Classification System. Pharmaceutics 2019; 11:pharmaceutics11110567. [PMID: 31683740 PMCID: PMC6920833 DOI: 10.3390/pharmaceutics11110567] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/23/2022] Open
Abstract
The objective was using the Essential Medicines List for children by the World Health Organization (WHO) to create a pediatric biopharmaceutics classification system (pBCS) of the oral drugs included in the Essential Medicines List by the World Health Organization and to compare our results with the BCS for adults (aBCS). Several methods to estimate the oral drug dose in different pediatric groups were used to calculate dose number (Do) and solubility (high/low). The estimation of the gastrointestinal water volume was adapted to each pediatric group. Provisional permeability classification was done by comparison of each drug lipophilicity versus metoprolol as the model drug of high permeability. As a result, 24.5% of the included drugs moved from the favorable to unfavorable class (i.e., from high to low solubility). Observed changes point out potential differences in product performance in pediatrics compared to adults, due to changes in the limiting factors for absorption. BCS Class Changes 1 to 2 or 3 to 4 are indicative of drugs that could be more sensitive to the choice of appropriate excipient in the development process. Validating a pBCS for each age group would provide a valuable tool to apply in specific pediatric formulation design by reducing time and costs and avoiding unnecessary pediatric experiments restricted due to ethical reasons. Additionally, pBCS could minimize the associated risks to the use of adult medicines or pharmaceutical compound formulations.
Collapse
|
20
|
Korth-Bradley JM. The Path to Perfect Pediatric Posology - Drug Development in Pediatrics. J Clin Pharmacol 2019; 58 Suppl 10:S48-S57. [PMID: 30248197 DOI: 10.1002/jcph.1081] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/21/2017] [Indexed: 11/06/2022]
Abstract
Reluctance to enroll pediatric subjects in clinical trials has left gaps in information about dosing, safety, and efficacy of medications. Pharmacotherapeutic information for pediatric patients may be available for only a small range of ages and may be deficient, as children respond differently as they grow and mature from prematurity to adolescence. Current regulations, however, require early planning for the participation of children in drug development, as pediatric plans must be submitted at the end of phase 1 (European Union) or the end of phase 2 (United States). These plans are extensive, outlining planned studies, subjects to be enrolled, dose and dosage form justification, planned observations, and statistical analysis as well as planned modeling, simulation, and extrapolation analyses. The extent to which efficacy information in adults can be extrapolated to children depends on how similar the disease is in adults and each of the 5 pediatric age groups. Extrapolation may not be possible for conditions that do not occur in adults, requiring a complete development plan in adults, or extrapolation may be complete because of similar pathology and response to treatment. Pharmacokinetic and safety information cannot be extrapolated and must be collected in children of all ages, unless a waiver is granted. Physiologically based pharmacokinetic modeling, optimal design, population pharmacokinetics, and scavenged samples are all examples of new methodologies being used to study pediatric therapeutics. Clinicaltrials.gov and EU Clinical Trials registry are good sources of results of pediatric trials, although sponsors are also working toward prompt publication of study results in peer-reviewed journals.
Collapse
Affiliation(s)
- Joan M Korth-Bradley
- Clinical Pharmacology, Global Product Development, Pfizer Inc., Collegeville, PA, USA
| |
Collapse
|
21
|
O'Brien F, Clapham D, Krysiak K, Batchelor H, Field P, Caivano G, Pertile M, Nunn A, Tuleu C. Making Medicines Baby Size: The Challenges in Bridging the Formulation Gap in Neonatal Medicine. Int J Mol Sci 2019; 20:E2688. [PMID: 31159216 PMCID: PMC6600135 DOI: 10.3390/ijms20112688] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/17/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
The development of age-appropriate formulations should focus on dosage forms that can deliver variable yet accurate doses that are safe and acceptable to the child, are matched to his/her development and ability, and avoid medication errors. However, in the past decade, the medication needs of neonates have largely been neglected. The aim of this review is to expand on what differentiates the needs of preterm and term neonates from those of the older paediatric subsets, in terms of environment of care, ability to measure and administer the dose (from the perspective of the patient and carer, the routes of administration, the device and the product), neonatal biopharmaceutics and regulatory challenges. This review offers insight into those challenges posed by the formulation of medicinal products for neonatal patients in order to support the development of clinically relevant products.
Collapse
Affiliation(s)
- Fiona O'Brien
- School of Pharmacy, Royal College of Surgeons in Ireland, 111 St Stephens Green Dublin 2, Ireland.
| | | | - Kamelia Krysiak
- School of Pharmacy, Royal College of Surgeons in Ireland, 111 St Stephens Green Dublin 2, Ireland.
| | - Hannah Batchelor
- College of Medical and Dental Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Peter Field
- University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Grazia Caivano
- Chiesi Farmaceutici S.p.A. Largo Francesco Belloli 11/A-43122 Parma, Italy.
| | - Marisa Pertile
- Chiesi Farmaceutici S.p.A. Largo Francesco Belloli 11/A-43122 Parma, Italy.
| | - Anthony Nunn
- Department of Women's and Children's Health, University of Liverpool, Liverpool Women's Hospital, Liverpool L8 7SS, UK.
| | - Catherine Tuleu
- University College London School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
22
|
Guimarães M, Statelova M, Holm R, Reppas C, Symilllides M, Vertzoni M, Fotaki N. Biopharmaceutical considerations in paediatrics with a view to the evaluation of orally administered drug products - a PEARRL review. ACTA ACUST UNITED AC 2018; 71:603-642. [PMID: 29971768 DOI: 10.1111/jphp.12955] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022]
Abstract
OBJECTIVES In this review, the current biopharmaceutical approaches for evaluation of oral formulation performance in paediatrics are discussed. KEY FINDINGS The paediatric gastrointestinal (GI) tract undergoes numerous morphological and physiological changes throughout its development and growth. Some physiological parameters are yet to be investigated, limiting the use of the existing in vitro biopharmaceutical tools to predict the in vivo performance of paediatric formulations. Meals and frequencies of their administration evolve during childhood and affect oral drug absorption. Furthermore, the establishment of a paediatric Biopharmaceutics Classification System (pBCS), based on the adult Biopharmaceutics Classification System (BCS), requires criteria adjustments. The usefulness of computational simulation and modeling for extrapolation of adult data to paediatrics has been confirmed as a tool for predicting drug formulation performance. Despite the great number of successful physiologically based pharmacokinetic models to simulate drug disposition, the simulation of drug absorption from the GI tract is a complicating issue in paediatric populations. SUMMARY The biopharmaceutics tools for investigation of oral drug absorption in paediatrics need further development, refinement and validation. A combination of in vitro and in silico methods could compensate for the uncertainties accompanying each method on its own.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Marina Statelova
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Moira Symilllides
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| |
Collapse
|