1
|
Niederquell A, Herzig S, Schönenberger M, Stoyanov E, Kuentz M. Computational Support to Explore Ternary Solid Dispersions of Challenging Drugs Using Coformer and Hydroxypropyl Cellulose. Mol Pharm 2024. [PMID: 39388157 DOI: 10.1021/acs.molpharmaceut.4c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A majority of drugs marketed in amorphous formulations have a good glass-forming ability, while compounds less stable in the amorphous state still pose a formulation challenge. This work explores ternary solid dispersions of two model drugs with a polymer (i.e., hydroxypropyl cellulose) and a coformer as stabilizing excipients. The aim was to introduce a computational approach by preselecting additives using solubility parameter intervals (i.e., overlap range of solubility parameter, ORSP) followed by more advanced COSMO-RS theory modeling. Thus, a mapping of calculated mixing enthalpy and melting points is proposed for in silico evaluation prior to hot melt extrusion. Following experimental testing of process feasibility, the selected formulations were tested for their physical stability using conventional bulk analytics and by confocal laser scanning and atomic force microscopy imaging. In line with the in silico screening, dl-malic and l-tartaric acid (20%, w/w) in HPC formulations showed no signs of early drug crystallization after 3 months. However, l-tartaric acid formulations displayed few crystals on the surface, which was likely a humidity-induced surface phenomenon. Although more research is needed, the conclusion is that the proposed computational small-scale extrusion approach of ternary solid dispersion has great potential in the formulation development of challenging drugs.
Collapse
Affiliation(s)
- Andreas Niederquell
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Susanne Herzig
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| | - Monica Schönenberger
- Nano Imaging Lab, Swiss Nanoscience Institute, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Edmont Stoyanov
- Nisso Chemical Europe, Berliner Allee 42, 40212 Düsseldorf, Germany
| | - Martin Kuentz
- Institute for Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences FHNW, Hofackerstr. 30, 4132 Muttenz, Switzerland
| |
Collapse
|
2
|
Paulausks A, Kolisnyk T, Mohylyuk V. The Increase in the Plasticity of Microcrystalline Cellulose Spheres' When Loaded with a Plasticizer. Pharmaceutics 2024; 16:945. [PMID: 39065642 PMCID: PMC11279479 DOI: 10.3390/pharmaceutics16070945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Compaction pressure can induce an undesirable solid-state polymorphic transition in drugs, fragmentation, loss of coated pellet integrity, and the decreased viability and vitality of microorganisms. Thus, the excipients with increased plasticity can be considered as an option to decrease the undesirable effects of compaction pressure. This study aims to increase the plasticity (to reduce the mean yield pressure; Py) of dried microcrystalline cellulose (MCC) by loading it with a specially selected plasticizer. Diethyl citrate (DEC), water, and glycerol were the considered plasticizers. Computation of solubility parameters was used to predict the miscibility of MCC with plasticizers (possible plasticization effect). Plasticizer-loaded MCC spheres with 5.0 wt.% of water, 5.2 wt.% of DEC, and 4.2 wt.% glycerol were obtained via the solvent method, followed by solvent evaporation. Plasticizer-loaded formulations were characterised by TGA, DSC, pXRD, FTIR, pressure-displacement profiles, and in-die Heckel plots. Py was derived from the in-die Heckel analysis and was used as a plasticity parameter. In comparison with non-plasticized MCC (Py = 136.5 MPa), the plasticity of plasticizer-loaded formulations increased (and Py decreased) from DEC (124.7 MPa) to water (106.6 MPa) and glycerol (99.9 MPa), and that was in full accordance with the predicted miscibility likeliness order based on solubility parameters. Therefore, water and glycerol were able to decrease the Py of non-plasticized MCC spheres by 16.3 and 30.0%, respectively. This feasibility study showed the possibility of modifying the plasticity of MCC by loading it with a specially selected plasticizer.
Collapse
Affiliation(s)
- Artūrs Paulausks
- Leading Research Group, Faculty of Pharmacy, Riga Stradiņš University, 21 Konsula Str., LV-1007 Riga, Latvia
| | - Tetiana Kolisnyk
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
- Department of Industrial Technology of Drugs, National University of Pharmacy, 53 Pushkins’ka Str., 61002 Kharkiv, Ukraine
| | - Valentyn Mohylyuk
- Leading Research Group, Faculty of Pharmacy, Riga Stradiņš University, 21 Konsula Str., LV-1007 Riga, Latvia
| |
Collapse
|
3
|
Khan T, Hussain A, Siddique MUM, Altamimi MA, Malik A, Bhat ZR. HSPiP, Computational, and Thermodynamic Model-Based Optimized Solvents for Subcutaneous Delivery of Tolterodine Tartrate and GastroPlus‑Based In Vivo Prediction in Humans: Part II. AAPS PharmSciTech 2024; 25:160. [PMID: 38992299 DOI: 10.1208/s12249-024-02880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/22/2024] [Indexed: 07/13/2024] Open
Abstract
In part I, we reported Hansen solubility parameters (HSP, HSPiP program), experimental solubility at varied temperatures for TOTA delivery. Here, we studied dose volume selection, stability, pH, osmolality, dispersion, clarity, and viscosity of the explored combinations (I-VI). Ex vivo permeation and deposition studies were performed to observe relative diffusion rate from the injected site in rat skin. Confocal laser scanning microscopy (CLSM) study was conducted to support ex vivo findings. Moreover, GastroPlus predicted in vivo parameters in humans and the impact of various critical factors on pharmacokinetic parameters (PK). Immediate release product (IR) contained 60% of PEG400 whereas controlled release formulation (CR) contained PEG400 (60%), water (10%) and d-limonene (30%) to deliver 2 mg of TOTA. GastroPlus predicted the plasma drug concentration of weakly basic TOTA as function of pH (from pH 2.0 to 9). The cumulative drug permeation and drug deposition were found to be in the order as B-VI˃ C-VI˃A-VI across rat skin. This finding was further supported with CLSM. Moreover, IR and CR were predicted to achieve Cmax of 0.0038 µg/ mL and 0.00023 µg/mL, respectively, after sub-Q delivery. Added limonene in CR extended the plasma drug concentration over period of 12 h as predicted in GastroPlus. Parameters sensitivity analysis (PSA) assessment predicted that sub-Q blood flow rate is the only factor affecting PK parameters in IR formulation whereas this was insignificant for CR. Thus, sub-Q delivery CR would be promising alternative with ease of delivery to children and aged patient.
Collapse
Affiliation(s)
- Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy Dhule, Dhule, MH, 424001, India
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zahid Rafiq Bhat
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Centre, Houston, Texas, USA
| |
Collapse
|
4
|
Mora-Castaño G, Millán-Jiménez M, Niederquell A, Schönenberger M, Shojaie F, Kuentz M, Caraballo I. Amorphous solid dispersion of a binary formulation with felodipine and HPMC for 3D printed floating tablets. Int J Pharm 2024; 658:124215. [PMID: 38740104 DOI: 10.1016/j.ijpharm.2024.124215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
This study focuses on the combination of three-dimensional printing (3DP) and amorphous solid dispersion (ASD) technologies for the manufacturing of gastroretentive floating tablets. Employing hot melt extrusion (HME) and fused deposition modeling (FDM), the study investigates the development of drug-loaded filaments and 3D printed (3DP) tablets containing felodipine as model drug and hydroxypropyl methylcellulose (HPMC) as the polymeric carrier. Prior to fabrication, solubility parameter estimation and molecular dynamics simulations were applied to predict drug-polymer interactions, which are crucial for ASD formation. Physical bulk and surface characterization complemented the quality control of both drug-loaded filaments and 3DP tablets. The analysis confirmed a successful amorphous dispersion of felodipine within the polymeric matrix. Furthermore, the low infill percentage and enclosed design of the 3DP tablet allowed for obtaining low-density systems. This structure resulted in buoyancy during the entire drug release process until a complete dissolution of the 3DP tablets (more than 8 h) was attained. The particular design made it possible for a single polymer to achieve a zero-order controlled release of the drug, which is considered the ideal kinetics for a gastroretentive system. Accordingly, this study can be seen as an advancement in ASD formulation for 3DP technology within pharmaceutics.
Collapse
Affiliation(s)
- Gloria Mora-Castaño
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Mónica Millán-Jiménez
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Andreas Niederquell
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Monica Schönenberger
- University of Basel, Swiss Nanoscience Institute, Nano Imaging Lab, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | - Fatemeh Shojaie
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Isidoro Caraballo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
5
|
Felton LA, Binzet G, Wiley C, McChesney D, McConville J, Ҫelik M, Muttil P. Spray drying Eudragit® E-PO with acetaminophen using 2- and 3-fluid nozzles for taste masking. Int J Pharm 2024; 658:124191. [PMID: 38701909 PMCID: PMC11139551 DOI: 10.1016/j.ijpharm.2024.124191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Conventional spray drying using a 2-fluid nozzle forms matrix microparticles, where drug is distributed throughout the particle and may not effectively mask taste. In contrast, spray drying using a 3-fluid nozzle has been reported to encapsulate material. The objective of this study was to spray dry Eudragit® E-PO (EE) with acetaminophen (APAP), a water-soluble model drug with a bitter taste, using 2- and 3-fluid nozzles for taste masking. Spray drying EE with APAP, however, resulted in yields of ≤ 13 %, irrespective of nozzle configuration. Yields improved when Eudragit® L 100-55 (EL) or Methocel® E6 (HPMC) was used in the inner fluid stream of the 3-fluid nozzle or in place of EE for the 2-fluid nozzle. Drug release from microparticles prepared with the 2-fluid nozzle was relatively rapid. Using EE in the outer fluid stream of the 3-fluid nozzle resulted in comparatively slower drug release, although drug release was observed, indicating that encapsulation was incomplete. Results from these studies also show that miscible polymers used in the two fluid streams mix during the spray drying process. In addition, findings from this study indicate that the polymer used in the inner fluid stream can impact drug release.
Collapse
Affiliation(s)
- Linda A Felton
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Gülşilan Binzet
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA; Altınbaş University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Bakırköy 34147 İstanbul, Turkey.
| | - Cody Wiley
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - David McChesney
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Jason McConville
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Metin Ҫelik
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA; Pharmaceutical Technologies International, Inc., 22 Durham Rd, Skillman, NJ 08558, USA.
| | - Pavan Muttil
- University of New Mexico College of Pharmacy, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
6
|
Moreira GG, Taveira SF, Martins FT, Wagner KG, Marreto RN. Multivariate Analysis of Solubility Parameters for Drug-Polymer Miscibility Assessment in Preparing Raloxifene Hydrochloride Amorphous Solid Dispersions. AAPS PharmSciTech 2024; 25:127. [PMID: 38844724 DOI: 10.1208/s12249-024-02844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 09/05/2024] Open
Abstract
The success of obtaining solid dispersions for solubility improvement invariably depends on the miscibility of the drug and polymeric carriers. This study aimed to categorize and select polymeric carriers via the classical group contribution method using the multivariate analysis of the calculated solubility parameter of RX-HCl. The total, partial, and derivate parameters for RX-HCl were calculated. The data were compared with the results of excipients (N = 36), and a hierarchical clustering analysis was further performed. Solid dispersions of selected polymers in different drug loads were produced using solvent casting and characterized via X-ray diffraction, infrared spectroscopy and scanning electron microscopy. RX-HCl presented a Hansen solubility parameter (HSP) of 23.52 MPa1/2. The exploratory analysis of HSP and relative energy difference (RED) elicited a classification for miscible (n = 11), partially miscible (n = 15), and immiscible (n = 10) combinations. The experimental validation followed by a principal component regression exhibited a significant correlation between the crystallinity reduction and calculated parameters, whereas the spectroscopic evaluation highlighted the hydrogen-bonding contribution towards amorphization. The systematic approach presented a high discrimination ability, contributing to optimal excipient selection for the obtention of solid solutions of RX-HCl.
Collapse
Affiliation(s)
- Guilherme G Moreira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil
| | - Stephânia F Taveira
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil
| | - Felipe T Martins
- Institute of Chemistry, Universidade Federal de Goiás, Goiânia, 74.001-970, Brazil
| | - Karl G Wagner
- Department of Pharmaceutics, Pharmaceutical Institute, University of Bonn, 53121, Bonn, Germany
| | - Ricardo N Marreto
- Laboratory of Nanosystems and Drug Delivery Devices (NanoSYS), School of Pharmacy, Universidade Federal de Goiás, Goiânia, Goiás, 74.605-170, Brazil.
| |
Collapse
|
7
|
Wang L, Wu H, Wang Z, Ding Z, Zhao Y, Li S, Zhang H, Jia G, Gao L, Han J. Effects of hypromellose acetate succinate on recrystallization inhibition, miscibility, and dissolution enhancement of baloxavir marboxil solid dispersions. Int J Biol Macromol 2024; 269:132050. [PMID: 38777690 DOI: 10.1016/j.ijbiomac.2024.132050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Solid dispersions (SDs) have emerged as a promising strategy to enhance the solubility and bioavailability of poorly soluble active pharmaceutical ingredients. However, SDs tend to recrystallize unless suitable excipients are utilized. This study aimed to facilitate the rational selection of polymers and formulation design by evaluating the impact of various polymers on the miscibility, and phase behavior of SDs using baloxavir marboxil (BXM) with a high crystallization tendency as a model drug. Meanwhile, the effects of these polymers on the solubility enhancement and recrystallization inhibition were also assessed. The results indicated that the miscibility limit of BXM for HPMCAS was around 40 % drug loading (DL), whereas for PVP, PVPVA, and HPMC approximately 20 % DL. The BXM-HPC system exhibited limited miscibility with DL of 10 % or higher. BXM SDs based on various polymers exhibited varying degrees of spontaneous phase separation once DL exceeded the miscibility limit. Interestingly, a correlation was discovered between the phase separation behavior and the ability of the polymer to inhibit recrystallization. BXM-HPMCAS SDs exhibited optimal dissolution performance, compared with other systems. In conclusion, the physicochemical properties of polymers significantly influence BXM SDs performance and the BXM-HPMCAS SDs might promote an efficient and stable drug delivery system.
Collapse
Affiliation(s)
- Lili Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Hengqian Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhuang Ding
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yanna Zhao
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Suye Li
- Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Guangwei Jia
- Key Laboratory of Clinical Pharmacology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, China
| | - Lingfeng Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jun Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
8
|
Salahshoori I, Vaziri A, Jahanmardi R, Mohseni MM, Khonakdar HA. Molecular Simulation Studies of Pharmaceutical Pollutant Removal (Rosuvastatin and Simvastatin) Using Novel Modified-MOF Nanostructures (UIO-66, UIO-66/Chitosan, and UIO-66/Oxidized Chitosan). ACS APPLIED MATERIALS & INTERFACES 2024; 16:26685-26712. [PMID: 38722359 DOI: 10.1021/acsami.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The ubiquitous presence of pharmaceutical pollutants in the environment significantly threatens human health and aquatic ecosystems. Conventional wastewater treatment processes often fall short of effectively removing these emerging contaminants. Therefore, the development of high-performance adsorbents is crucial for environmental remediation. This research utilizes molecular simulation to explore the potential of novel modified metal-organic frameworks (MOFs) in pharmaceutical pollutant removal, paving the way for the design of efficient wastewater treatment strategies. Utilizing UIO-66, a robust MOF, as the base material, we developed UIO-66 functionalized with chitosan (CHI) and oxidized chitosan (OCHI). These modified MOFs' physical and chemical properties were first investigated through various characterization techniques. Subsequently, molecular dynamics simulation (MDS) and Monte Carlo simulation (MCS) were employed to elucidate the adsorption mechanisms of rosuvastatin (ROSU) and simvastatin (SIMV), two prevalent pharmaceutical pollutants, onto these nanostructures. MCS calculations demonstrated a significant enhancement in the adsorption energy by incorporating CHI and OCHI into UIO-66. This increased ROSU from -14,522 to -16,459 kcal/mol and SIMV from -17,652 to -21,207 kcal/mol. Moreover, MDS reveals ROSU rejection rates in neat UIO-66 to be at 40%, rising to 60 and 70% with CHI and OCHI. Accumulation rates increase from 4 Å in UIO-66 to 6 and 9 Å in UIO-CHI and UIO-OCHI. Concentration analysis shows SIMV rejection surges from 50 to 90%, with accumulation rates increasing from 6 to 11 Å with CHI and OCHI in UIO-66. Functionalizing UIO-66 with CHI and OCHI significantly enhanced the adsorption capacity and selectivity for ROSU and SIMV. Abundant hydroxyl and amino groups facilitated strong interactions, improving performance over that of unmodified UIO-66. Surface functionalization plays a vital role in customizing the MOFs for pharmaceutical pollutant removal. These insights guide next-gen adsorbent development, offering high efficiency and selectivity for wastewater treatment.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Ali Vaziri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Reza Jahanmardi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Mehdi Moayed Mohseni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, P.O. Box 14515-775, Tehran 1477893855, Iran
| | - Hossein Ali Khonakdar
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, P.O. Box 14965-115, Tehran 14977-13115, Iran
| |
Collapse
|
9
|
Malik A, Khan T, Siddique MUM, Faruk A, Sood AK, Bhat ZR. HSPiP, Computational, and Thermodynamic Model-Based Optimized Solvents for Subcutaneous Delivery of Tolterodine Tartrate and GastroPlus-Based In Vivo Prediction in Humans: Part I. AAPS PharmSciTech 2024; 25:93. [PMID: 38693316 DOI: 10.1208/s12249-024-02800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 05/03/2024] Open
Abstract
Tolterodine tartrate (TOTA) is associated with adverse effect, high hepatic access, varied bioavailability, slight aqueous solubility, and short half-life after oral delivery. Hansen solubility parameters (HSP, HSPiP program), experimental solubility (T = 298.2 to 318.2 K and p = 0.1 MPa), computational (van't Hoff and Apelblat models), and thermodynamic models were used to the select solvent(s). HSPiP predicted PEG400 as the most suitable co-solvent based on HSP values (δd = 17.88, δp = 4.0, and δh = 8.8 of PEG400) and comparable to the drug (δd = 17.6, δp = 2.4, and δh = 4.6 of TOTA). The experimental mole fraction solubility of TOTA was maximum (xe = 0.0852) in PEG400 confirming the best fit of the prediction. The observed highest solubility was attributed to the δp and δh interacting forces. The activity coefficient (ϒi) was found to be increased with temperature. The higher values of r2 (linear regression coefficient) and low RMSD (root mean square deviation) indicated a good correlation between the generated "xe" data for crystalline TOTA and the explored models (modified Apelblat and van't Hoff models). TOTA solubility in "PEG400 + water mixture" was endothermic and entropy-driven. IR (immediate release product) formulation can be tailored using 60% PEG400 in buffer solution for 2 mg of TOTA in 0.25 mL (dosing volume). The isotonic binary solution was associated with a pH of 7.2 suitable for sub-Q delivery. The approach would be a promising alternative with ease of delivery to children and aged patients.
Collapse
Affiliation(s)
- Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tasneem Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, 110062, India.
| | - Mohd Usman Mohd Siddique
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy Dhule, Dhule, MH, 424001, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Srinagar - Garhwal, 246174, Uttarakhand, India
| | - Ashwani Kumar Sood
- Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
| | - Zahid Rafiq Bhat
- Department of Molecular and Cellular Oncology, MD Anderson Cancer Centre, Houston, Texas, USA
| |
Collapse
|
10
|
Patel KG, Maynard RK, Ferguson LS, Broich ML, Bledsoe JC, Wood CC, Crane GH, Bramhall JA, Rust JM, Williams-Rhaesa A, Locklin JJ. Experimentally Determined Hansen Solubility Parameters of Biobased and Biodegradable Polyesters. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:2386-2393. [PMID: 38362530 PMCID: PMC10865435 DOI: 10.1021/acssuschemeng.3c07284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Hansen solubility parameters (HSP) of 15 commercially relevant biobased and biodegradable polyesters were experimentally determined by applying a novel approach to the classic solubility study method. In this approach, the extent of swelling in polymer films was determined using a simple equation based on the mass difference between swollen and nonswollen film samples to obtain normalized solvent uptake (N). Using N and HSPiP software, highly accurate HSP values were obtained for all 15 polyesters. Qualitative evaluation of the HSP values was conducted by predicting the miscibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-co-HHx, 7 mol % HHx) and poly(lactic acid) (PLA) with a novel lignin-based plasticizer (ethyl 3-(4-ethoxy-3-methoxyphenyl)propanoate, EP) with a relative energy difference (RED) less than 0.4. Additionally, an HSP-predicted plasticizer (di(2-ethylhexyl) adipate, DA) with a larger RED (>0.7) was used to demonstrate the effects of less-miscible additives. Plasticized samples were analyzed by differential scanning calorimetry and polarized optical microscopy (POM) to determine the Tg depression, with EP showing linear Tg depression up to 50% plasticizer loading, whereas DA shows minimal Tg depression past 10% loading. Further analysis by POM reveals that the DA phase separates from both polymers at loadings as low as 2.5% (PHB-co-HHx, 7 mol % HHx) and 5% (PLA), while the EP phase separates at a much higher loading of 50% (PHB-co-HHx, 7 mol% HHx) and 30% (PLA).
Collapse
Affiliation(s)
- Kush G. Patel
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, 597 D.W. Brooks Dr., Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Ryan K. Maynard
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Lawrence S. Ferguson
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Michael L. Broich
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, 597 D.W. Brooks Dr., Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Joshua C. Bledsoe
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Caitlin C. Wood
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Grant H. Crane
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Jessica A. Bramhall
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Jonathan M. Rust
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Amanda Williams-Rhaesa
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| | - Jason J. Locklin
- School
of Chemical, Materials, and Biomedical Engineering, College of Engineering, University of Georgia, 597 D.W. Brooks Dr., Athens, Georgia 30602, United States
- Department
of Chemistry, Franklin College of Arts and Sciences, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States
- New
Materials Institute, University of Georgia, 220 Riverbend R., Athens, Georgia 30602, United States
| |
Collapse
|
11
|
Sygusch J, Duempelmann R, Meyer R, Adamska K, Strzemiecka B, Enke D, Rudolph M, Brendlé E. Reproducibility of inverse gas chromatography under infinite dilution: Results and interpretations of an interlaboratory study. J Chromatogr A 2024; 1714:464526. [PMID: 38071876 DOI: 10.1016/j.chroma.2023.464526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/03/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024]
Abstract
Over the last years, inverse gas chromatography (IGC) proved to be a versatile and sensitive analytical technique for physicochemical properties. However, the comparability of results obtained by different users and devices remains a topic for debate. This is the first time, an interlaboratory study using different types of IGC instruments is reported. Eight organizations with different IGC devices defined a common lab measurement protocol to analyse two standard materials, silica and lactose. All data was collected in a standard result form and has been treated identically with the objective to identify experimentally observed differences and not potentially different data treatments. The calculated values of the dispersive surface energy vary quite significantly (silica: 22 mJ/m2 - 34 mJ/m2, lactose 37 mJ/m2 - 51 mJ/m2) and so do the ISP values and retention volumes for both materials. This points towards significant and seemingly undiscovered differences in the operation of the instruments and the obtained underlying primary data, even under the premise of standard conditions. Variations are independent of the instrument type and uncertainties in flow rates or the injected quantities of probe molecules may be potential factors for the differences. This interlaboratory study demonstrates that the IGC is a very sensitive analytical tool, which detects minor changes, but it also shows that for a proper comparison, the measurement conditions have to be checked with great care. A publicly available standard protocol and material, for which this study can be seen as a starting point, is still needed to judge on the measurements and the resulting parameters more objectively.
Collapse
Affiliation(s)
- Johanna Sygusch
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, Freiberg 09599, Germany.
| | | | - Ralf Meyer
- Leipzig University, Institute of Chemical Technology, Linnéstr. 3, 04103 Leipzig, Germany
| | - Katarzyna Adamska
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Beata Strzemiecka
- Poznan University of Technology, Institute of Chemical Technology and Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
| | - Dirk Enke
- Leipzig University, Institute of Chemical Technology, Linnéstr. 3, 04103 Leipzig, Germany
| | - Martin Rudolph
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, Freiberg 09599, Germany
| | - Eric Brendlé
- Adscientis SARL, Parc Secoia, 1 rue Alfred Kastler, 68310 Wittelsheim, France
| |
Collapse
|
12
|
Tripathi D, B H MP, Sahoo J, Kumari J. Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:79-99. [PMID: 38062659 DOI: 10.2174/0126673878271641231201065151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 08/30/2024]
Abstract
Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.
Collapse
Affiliation(s)
- Devika Tripathi
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| | - Manjunatha Prabhu B H
- Department of Food Protection and Infestation Control, CSIR-CFTRI, Central Food Technological Research Institute, Mysore, India
| | - Jagannath Sahoo
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, NIMMS, Mumbai, India
| | - Jyoti Kumari
- Pranveer Singh Institute of Technology (Pharmacy), Uttar Pradesh, Kanpur, India
| |
Collapse
|
13
|
Nyamba I, Jennotte O, Sombie CB, Lechanteur A, Sacre PY, Djande A, Semde R, Evrard B. Preformulation study for the selection of a suitable polymer for the development of ellagic acid-based solid dispersion using hot-melt extrusion. Int J Pharm 2023:123088. [PMID: 37257795 DOI: 10.1016/j.ijpharm.2023.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Ellagic acid is one of the most studied polyphenolic compounds due to its numerous promising therapeutic properties. However, this therapeutic potential remains difficult to exploit owing to its low solubility and low permeability, resulting in low oral bioavailability. In order to allow an effective therapeutic application of EA, it is therefore necessary to develop strategies that sufficiently enhance its solubility, dissolution rate and bioavailability. For this purpose, solid dispersions based on pre-selected polymers such as Eudragit® EPO, Soluplus® and Kollidon® VA 64, with 5% w/w ellagic acid loading were prepared by hot extrusion and characterized by X-ray diffraction, FTIR spectroscopy and in vitro dissolution tests in order to select the most suitable polymer for future investigations. The results showed that Eudragit® EPO was the most promising polymer for ellagic acid solid dispersions development because its extrudates allowed to obtain a solution supersaturated in ellagic acid that was stable for at least 90 min. Moreover, the resulting apparent solubility was 20 times higher than the actual solubility of ellagic acid. The extrudates also showed a high dissolution rate of ellagic acid (96.25% in 15 min), compared to the corresponding physical mixture (6.52% in 15 min) or the pure drug (1.56% in 15 min). Furthermore, increasing the loading rate of ellagic acid up to 12% in extrudates based on this polymer did not negatively influence its release profile through dissolution tests.
Collapse
Affiliation(s)
- Isaïe Nyamba
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium); Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso).
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Charles B Sombie
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| | - Pierre-Yves Sacre
- Laboratory of Pharmaceutical Analytical Chemistry, Department of Pharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liege, 4000 Liege, Belgium
| | - Abdoulaye Djande
- Department of Chemistry, Laboratory of Molecular Chemistry and Materials, Research Team: Organic Chemistry and Phytochemistry, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Rasmané Semde
- Laboratory of Drug Development, Center of training, research and expertise in pharmaceutical sciences (CFOREM), Doctoral School of Sciences and Health, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03 (Burkina Faso)
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), Université de Liège, 4000 Liège (Belgium)
| |
Collapse
|
14
|
Umezawa M, Ueya Y, Ichihashi K, Dung DTK, Soga K. Controlling Molecular Dye Encapsulation in the Hydrophobic Core of Core-Shell Nanoparticles for In Vivo Imaging. BIOMEDICAL MATERIALS & DEVICES (NEW YORK, N.Y.) 2023; 1:1-13. [PMID: 37363140 PMCID: PMC10081311 DOI: 10.1007/s44174-023-00073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/20/2023] [Indexed: 06/28/2023]
Abstract
Polymeric nanoparticles with a hydrophobic core are valuable biomedical materials with potential applications in in vivo imaging and drug delivery. These materials are effective at protecting vulnerable molecules, enabling them to serve their functions in hydrophilic physiological environments; however, strategies that allow the chemical composition and molecular weight of polymers to be tuned, forming nanoparticles to control the functional molecules, are lacking. In this article, we review strategies for designing core-shell nanoparticles that enable the effective and stable encapsulation of functional molecules for biomedical applications. IR-1061, which changes its optical properties in response to the microenvironment are useful for in vitro screening of the in vivo stability of polymeric nanoparticles. An in vitro screening test can be performed by dispersing IR-1061-encapsulated polymer nanoparticles in water, saline, buffer solution, aqueous protein solution, etc., and measuring the absorption spectral changes. Through the screening, the effects of the polarity, molecular weight, and the chiral structure of polymers consisting of polymer nanoparticles on their stability have been revealed. Based on the findings presented here, more methodologies for the effective application of various biomolecules and macromolecules with complex high-dimensional structures are expected to be developed.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Yuichi Ueya
- Tsukuba Research Laboratories, JSR Corporation, 25 Miyukigaoka, Tsukuba, Ibaraki 305-0841 Japan
| | - Kotoe Ichihashi
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Doan Thi Kim Dung
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| | - Kohei Soga
- Department of Materials Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika, Tokyo 125-8585 Japan
| |
Collapse
|
15
|
Liu M, Higashi K, Ueda K, Moribe K. Supersaturation maintenance of carvedilol and chlorthalidone by cyclodextrin derivatives: Pronounced crystallization inhibition ability of methylated cyclodextrin. Int J Pharm 2023; 637:122876. [PMID: 36963642 DOI: 10.1016/j.ijpharm.2023.122876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Cyclodextrin (CD) is used to solubilize poorly water-soluble drugs by inclusion complex formation. In this study, we investigated the effect of CD derivatives on stabilizing the supersaturation by inhibiting the crystallization of two poorly water-soluble drugs, carvedilol (CVD) and chlorthalidone (CLT). The phase solubility test showed that β-CD and γ-CD derivatives enhanced the solubility of CVD to a greater extent, whereas the solubility of CLT was enhanced more by β-CD derivatives. The solubilization efficacy of CD derivatives was dependent on the size fitness between the drug molecule and the CD cavity. In the drug crystallization induction time measurement, the same initial drug supersaturation ratio (S) was employed in all the CD solutions, and the methylated CD derivatives greatly outperformed unmethylated CD derivatives in stabilizing the supersaturation of both CVD and CLT. The crystallization inhibition strength of CD derivatives was strongly affected by the CD derivative substituent. Moreover, the calculated logarithm of octanol/water partition coefficients (log P) of CD derivatives showed a good correlation with drug crystallization inhibition ability. Thus, the high hydrophobicity of methylated CD plays an essential role in inhibiting crystallization. These findings can provide a valuable guide for selecting appropriate stabilizing agents for drug-supersaturation formulations.
Collapse
Affiliation(s)
- Mengyao Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
16
|
Kim P, Lee IS, Kim JY, Lee MJ, Choi GJ. Amorphous solid dispersions of tegoprazan and three different polymers: In vitro/in vivo evaluation of physicochemical properties. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
17
|
Jørgensen JR, Mohr W, Rischer M, Sauer A, Mistry S, Müllertz A, Rades T. Stability and intrinsic dissolution of vacuum compression molded amorphous solid dispersions of efavirenz. Int J Pharm 2023; 632:122564. [PMID: 36586638 DOI: 10.1016/j.ijpharm.2022.122564] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022]
Abstract
In this study, the stability and intrinsic dissolution of vacuum compression molded (VCM) amorphous solid dispersions (ASDs) of efavirenz (EFV) were investigated in relation to its solubility limits in seven polymers determined by the melting point depression (MPD) method. The extrapolated solubility limits of EFV at 22 °C ranged from 3 to 68% (w/w) with PVOH being the only polymer suggesting immiscibility with EFV according to both MPD and Hansen solubility parameters (HSPs). All ASDs with EFV loadings below or close to their calculated solubility limit did not show any signs of crystallization upon conditioning for 7 months at either 22 or 37 °C and 23 or 75% relative humidity. However, all ASDs with EFV loading above the solubility limit crystallized at high humidity, while the ASDs with cellulose derived carrier polymers proved kinetically stable at low humidity over 7 months. While the EFV intrinsic dissolution rates from the VCM ASDs were partly depending on the polymer dissolution rate, no correlation was observed between EFV matrix crystallization and its miscibility in the polymer. Altogether, the observations of the study underline the importance of combining preformulation miscibility determination and dissolution studies to rationally decide on both stability and viability of ASD formulations.
Collapse
Affiliation(s)
- Jacob Rune Jørgensen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Wolfgang Mohr
- Losan Pharma GmbH, Otto-Hahn-Str. 13, 79395 Neuenburg, Germany
| | | | - Andreas Sauer
- SE Tylose GmbH & Co. KG, Kasteler Str. 45, 65203 Wiesbaden, Germany
| | - Shilpa Mistry
- Harke Pharma GmbH, Xantener Str. 1, 45479 Mülheim a. d. Ruhr, Germany
| | - Anette Müllertz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Bioneer:FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| |
Collapse
|
18
|
Salahshoori I, Mohseni A, Namayandeh Jorabchi M, Ghasemi S, Afshar M, Wohlrab S. Study of modified PVDF membranes with high-capacity adsorption features using Quantum mechanics, Monte Carlo, and Molecular Dynamics Simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Supercritical solvent impregnation of sodium valproate nanoparticles on polymers: Characterization and optimization of the operational parameters. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Alzahrani A, Nyavanandi D, Mandati P, Adel Ali Youssef A, Narala S, Bandari S, Repka M. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation. Int J Pharm 2022; 624:121951. [PMID: 35753536 DOI: 10.1016/j.ijpharm.2022.121951] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
Amorphous solid dispersions (ASDs) have gained attention as a formulation strategy in recent years, with the potential to improve the apparent solubility and, hence, the oral bioavailability of poorly soluble drugs. The process of formulating ASDs is commonly faced with challenges owing to the intrinsic physical and chemical instability of the initial amorphous form and the long-term physical stability of drug formulations. Numerous research publications on hot-melt extrusion (HME) technology have demonstrated that it is the most efficient approach for manufacturing reasonably stable ASDs. The HME technique has been established as a faster scale-up production strategy for formulation evaluation and has the potential to minimize the time to market. Thermodynamic evaluation and theoretical predictions of drug-polymer solubility and miscibility may assist to reduce the product development cost by HME. This review article highlights robust and established prediction theories and experimental approaches for the selection of polymeric carriers for the development of hot melt extrusion based stable amorphous solid dispersions (ASDs). In addition, this review makes a significant contribution to the literature as a pilot guide for ASD assessment, as well as to confirm the drug-polymer compatibility and physical stability of HME-based formulations.
Collapse
Affiliation(s)
- Abdullah Alzahrani
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmacy, East Jeddah Hospital, Ministry of Health, Jeddah 22253, Saudi Arabia
| | - Dinesh Nyavanandi
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Preethi Mandati
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Ahmed Adel Ali Youssef
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Sagar Narala
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677
| | - Michael Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
21
|
Lazić A, Radovanović L, Gak Simić K, Rogan J, Janjić G, Trišović N, Đorđević I. Unravelling conformational and crystal packing preferences of cyclohexane-5-spirohydantoin derivatives incorporating a halogenated benzoyl group. CrystEngComm 2022. [DOI: 10.1039/d2ce00376g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conformational and supramolecular diversity of spirohydantoins have been investigated.
Collapse
Affiliation(s)
- Anita Lazić
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Lidija Radovanović
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Kristina Gak Simić
- Innovation Centre of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Jelena Rogan
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Goran Janjić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11001 Belgrade, Serbia
| | - Nemanja Trišović
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Ivana Đorđević
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Njegoševa 12, 11001 Belgrade, Serbia
| |
Collapse
|
22
|
Bongiardina NJ, Sinha J, Bowman CN. Flory–Huggins Parameters for Thiol-ene Networks Using Hansen Solubility Parameters. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicholas J. Bongiardina
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309-0596 United States
| | - Jasmine Sinha
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| | - Christopher N. Bowman
- Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309-0596 United States
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
23
|
Dharani S, Sediri K, Cook P, Arunagiri R, Khan MA, Rahman Z. Preparation and Characterization of Stable Amorphous Glassy Solution of BCS II and IV Drugs. AAPS PharmSciTech 2021; 23:35. [PMID: 34950995 DOI: 10.1208/s12249-021-02198-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
The focus of the present investigation was to develop amorphous glassy solutions (AGSs) of BCS Class II and IV drugs using sucrose acetate isobutyrate (SAIB). The drugs studied were rifaximin (RFX), dasatinib (DST), aripiprazole (APZ), dolutegravir (DLT), cyclosporine (CYS), itraconazole (ITZ), tacrolimus (TAC), sirolimus (SRL), aprepitant (APT), and carbamazepine (CBZ). AGSs were prepared by dissolving known quantity of the drug in the SAIB at 120 (TAC and APZ), 140 (CYS) or 150 oC (RFX, DST, DLT, ITZ, SRL, APT, and CBZ). They were characterized visually and by NIR, NIR hyperspectroscopy (NIR-H), and XRPD. Stability were determined by exposing open vials to 40 oC/75% RH for a week. AGSs behave like a glassy solid at room temperature and liquified above 60 oC. The solubility of APT, DLT, SRL, APZ, RFX, CBZ, TAC and CYS in SAIB was 0.4±0.0, 1.7±0.4, 1.9±0.0, 21.6±2.6, 36.4±0.9, 76.5±4.0, 115.1±2.3, and 239.0±12.6 mg/g, respectively. NIR, NIR-H, and XRPD data indicated the amorphous nature of the AGSs. Furthermore, AGSs were stable against devitrification on exposure to high temperature and humidity. In summary, SAIB can be employed to develop stable AGSs of poorly soluble drugs to increase dissolution, and oral bioavailability with the addition of hydrophilic excipients.
Collapse
|
24
|
New Insights on Solvent Implications in the Design of Materials Based on Cellulose Derivatives Using Experimental and Theoretical Approaches. MATERIALS 2021; 14:ma14216627. [PMID: 34772151 PMCID: PMC8587067 DOI: 10.3390/ma14216627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/29/2021] [Indexed: 01/03/2023]
Abstract
The current paper presents a strategic way to design and develop materials with properties adapted for various applications from biomedicine to environmental applications. In this context, blends of (hydroxypropyl)methyl cellulose (HPMC) and poly(vinylpyrrolidone) (PVP) were obtained to create new materials that can modulate the membrane properties in various fields. Thus, to explore the possibility of using the HPMC/PVP system in practical applications, the solubility parameters in various solvents were initially evaluated using experimental and theoretical approaches. In this frame, the study is aimed at presenting the background and steps of preliminary studies to validate the blends behavior for targeted application before being designed. Subsequently, the analysis of the behavior in aqueous dilute solution of HPMC/PVP blend offers information about the conformational modifications and interactions manifested in system depending on the structural characteristics of polymers (hydrophilicity, flexibility), polymer mixtures composition, and used solvent. Given this background, based on experimental and theoretical studies, knowledge of hydrodynamic parameters and analysis of the optimal compositions of polymer mixtures are essential for establishing the behavior of obtained materials and validation for most suitable applications. Additionally, to guarantee the quality and functionality of these composite materials in the targeted applications, e.g., biomedical or environmental, the choice of a suitable solvent played an important role.
Collapse
|
25
|
Okubo K, Umezawa M, Soga K. Near Infrared Fluorescent Nanostructure Design for Organic/Inorganic Hybrid System. Biomedicines 2021; 9:1583. [PMID: 34829811 PMCID: PMC8615714 DOI: 10.3390/biomedicines9111583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Near infrared (NIR) light offers high transparency in biological tissue. Recent advances in NIR fluorophores including organic dyes and lanthanide-doped inorganic nanoparticles have realized the effective use of the NIR optical window for in vivo bioimaging and photodynamic therapy. The narrow energy level intervals used for electronic transition that involves NIR light, however, give rise to a need for guidelines for reducing heat emission in luminescence systems, especially in the development of organic/inorganic hybrid structures. This review presents an approach for employing the polarity and vibrational energy of ions and molecules that surround the luminescence centers for the development of such hybrid nanostructures. Multiphonon relaxation theory, formulated for dealing with heat release in ionic solids, is applied to describe the vibrational energy in organic or molecular systems, referred to as phonon in this review, and we conclude that surrounding the luminescence centers either with ions with low vibrational energy or molecules with small chemical polarity is the key to bright luminescence. NIR photoexcited phosphors and nanostructures in organic/inorganic mixed systems, designed based on the guidelines, for photodynamic therapy are reviewed.
Collapse
Affiliation(s)
- Kyohei Okubo
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo 125-8585, Japan; (M.U.); (K.S.)
| | | | | |
Collapse
|
26
|
Designing Safer Solvents to Replace Methylene Chloride for Liquid Chromatography Applications Using Thin-Layer Chromatography as a Screening Tool. SEPARATIONS 2021. [DOI: 10.3390/separations8100172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methylene chloride, commonly known as dichloromethane (DCM), is a widely used chemical for chromatography separation within the polymer, chemical, and pharmaceutical industries. With the ability to effectively solvate heterocyclic compounds, and properties including a low boiling point, high density, and low cost, DCM has become the solvent of choice for many different applications. However, DCM has high neurotoxicity and is carcinogenic, with exposure linked to damage to the brain and the central nervous system, even at low exposure levels. This research focuses on sustainability and works towards finding safer alternative solvents to replace DCM in pharmaceutical manufacturing. The research was conducted with three active pharmaceutical ingredients (API) widely used in the pharmaceutical industry: acetaminophen, aspirin, and ibuprofen. Thin-layer chromatography (TLC) was used to investigate if an alternative solvent or solvent blend could show comparable separation performance to DCM. The use of the Hansen Solubility Parameter (HSP) theory and solubility testing allowed for the identification of potential alternative solvents or solvent blends to replace DCM. HSP values for the three APIs were experimentally determined and used to identify safer solvents and blends that could potentially replace DCM. Safer solvents or binary solvent blends were down-selected based on their dissolution power, safety, and price. The down-selected solvents (e.g., ethyl acetate) and solvent blends were further evaluated using three chemical hazard classification approaches to find the best fitting nonhazardous replacement to DCM. Several safer solvent blends (e.g., mixtures composed of methyl acetate and ethyl acetate) with adequate TLC performance were identified. Results from this study are expected to provide guidance for identifying and evaluating safer solvents to separate APIs using chromatography.
Collapse
|
27
|
Muljajew I, Chi M, Vollrath A, Weber C, Beringer-Siemers B, Stumpf S, Hoeppener S, Sierka M, Schubert US. A combined experimental and in silico approach to determine the compatibility of poly(ester amide)s and indomethacin in polymer nanoparticles. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Improvement efficiency of the of poly (ether-block-amide) -Cellulose acetate (Pebax-CA) blend by the addition of nanoparticles (MIL-53 and NH2-MIL-53): A molecular dynamics study. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02577-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Mutual Effects of Hydrogen Bonding and Polymer Hydrophobicity on Ibuprofen Crystal Inhibition in Solid Dispersions with Poly( N-vinyl pyrrolidone) and Poly(2-oxazolines). Pharmaceutics 2021; 13:pharmaceutics13050659. [PMID: 34064530 PMCID: PMC8148000 DOI: 10.3390/pharmaceutics13050659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Poly(N-vinyl pyrrolidone) (PVP), poly(2-methyl-2-oxazoline) (PMOZ), poly(2-ethyl-2-oxazoline) (PEOZ), poly(2-n-propyl-2-oxazoline) (PnPOZ), and poly(2-isopropyl-2-oxazoline) (PiPOZ) were used to prepare solid dispersions with ibuprofen (IB), a model poorly-water soluble drug. Dispersions, prepared by solvent evaporation, were investigated using powder X-ray diffractometry, differential scanning calorimetry, and FTIR spectroscopy; hydrogen bonds formed between IB and all polymers in solid dispersions. PMOZ, the most hydrophilic polymer, showed the poorest ability to reduce or inhibit the crystallinity of IB. In contrast, the more hydrophobic polymers PVP, PEOZ, PnPOZ, and PiPOZ provided greater but similar abilities to reduce IB crystallinity, despite the differing polymer hydrophobicity and that PiPOZ is semi-crystalline. These results indicate that crystallinity disruption is predominantly due to hydrogen bonding between the drug molecules and the polymer. However, carrier properties affected drug dissolution, where PnPOZ exhibited lower critical solution temperature that inhibited the release of IB, whereas drug release from other systems was consistent with the degree of ibuprofen crystallinity within the dispersions.
Collapse
|
30
|
Lu T, Reimonn G, Morose G, Yu E, Chen WT. Removing Acrylic Conformal Coating with Safer Solvents for Re-Manufacturing Electronics. Polymers (Basel) 2021; 13:937. [PMID: 33803712 PMCID: PMC8002995 DOI: 10.3390/polym13060937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/30/2022] Open
Abstract
Conformal coating is typically composed of polymeric film and is used to protect delicate electronic components such as printed-circuit boards. Without removing conformal coating, it would be difficult to repair these complicated electronics. Methylene chloride, also called dichloromethane (DCM), has a widespread usage in conformal coating stripper products. The high toxicity of DCM increases human health risk when workers are exposed to DCM during the conformal coating removal processes. Therefore, the replacement of DCM would be beneficial to greatly improve the overall safety profile for workers in the electronics and coating industries. This research identified and evaluated alternative chemicals for replacing DCM used in acrylic conformal coating stripping operations. The solubility of an acrylic conformal coating was measured and characterized using Hansen solubility parameters (HSP) theory. Coating dwell time tests using various solvent blends verified the accuracy of the created HSP solubility sphere. A data processing method was also developed to identify and screen potential alternative solvent blends in terms of safety, toxicity, and cost-effectiveness. The identified safer solvent blends were demonstrated to provide equivalent stripping performance as compared to DCM based coating strippers within an acceptable cost range. The results of this research will be of value to other types of conformal coatings, such as silicone and polyurethane, where DCM is commonly used in similar coating stripping operations. By safely removing conformal coating, delicate electronics would be available for re-manufacturing, enabling a circular economy.
Collapse
Affiliation(s)
- Taofeng Lu
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Gregory Reimonn
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Gregory Morose
- Toxics Use Reduction Institute, University of Massachusetts Lowell, Lowell, MA 01852, USA
| | - Evan Yu
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Wan-Ting Chen
- Department of Plastics Engineering, Francis College of Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
31
|
Kuentz M, Holm R, Kronseder C, Saal C, Griffin BT. Rational Selection of Bio-Enabling Oral Drug Formulations - A PEARRL Commentary. J Pharm Sci 2021; 110:1921-1930. [PMID: 33609523 DOI: 10.1016/j.xphs.2021.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/19/2022]
Abstract
New drug candidates often require bio-enabling formation technologies such as lipid-based formulations, solid dispersions, or nanosized drug formulations. Development of such more sophisticated delivery systems generally requires higher resource investment compared to a conventional oral dosage form, which might slow down clinical development. To achieve the biopharmaceutical objectives while enabling rapid cost effective development, it is imperative to identify a suitable formulation technique for a given drug candidate as early as possible. Hence many companies have developed internal decision trees based mostly on prior organizational experience, though they also contain some arbitrary elements. As part of the EU funded PEARRL project, a number of new decision trees are here proposed that reflect both the current scientific state of the art and a consensus among the industrial project partners. This commentary presents and discusses these, while also going beyond this classical expert approach with a pilot study using emerging machine learning, where the computer suggests formulation strategy based on the physicochemical and biopharmaceutical properties of a molecule. Current limitations are discussed and an outlook is provided for likely future developments in this emerging field of pharmaceutics.
Collapse
Affiliation(s)
- Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland.
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Turnhoutseweg 30, 2340 Beerse, Belgium; Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Christian Kronseder
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, CH 4132 Muttenz, Switzerland
| | - Christoph Saal
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Brendan T Griffin
- School of Pharmacy, University College Cork, College Road, Cork, T12 YN60, Ireland
| |
Collapse
|
32
|
Palamidi A, Kapourani A, Christodoulou E, Klonos PA, Kontogiannopoulos KN, Kyritsis A, Bikiaris DN, Barmpalexis P. Low Molecular Weight Oligomers of Poly(alkylene succinate) Polyesters as Plasticizers in Poly(vinyl alcohol) Based Pharmaceutical Applications. Polymers (Basel) 2021; 13:polym13010146. [PMID: 33401411 PMCID: PMC7795009 DOI: 10.3390/polym13010146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
The plasticizing effect of three low molecular weight oligomers of aliphatic poly(alkylene succinate) polyesters, namely poly(butylene succinate) (PBSu), poly(ethylene succinate) (PESu), and poly(propylene succinate) (PPSu), on partially hydrolyzed poly(vinyl alcohol) (PVA) used in melt-based pharmaceutical applications, was evaluated for the first time. Initially, the three aliphatic polyesters were prepared by the melt polycondensation process and characterized by differential scanning calorimetry (DSC), 1H NMR, intrinsic viscosity, and size exclusion chromatography (SEC). Subsequently, their effect on the thermophysical and physicochemical properties of PVA was thoroughly evaluated. According to the obtained results, PVA was completely miscible with all three polyesters, while PESu induced PVA’s thermal degradation, with the phenomenon starting from ~220 °C, in contrast to PBSu and PPSu, where a thermal profile similar to PVA was observed. Furthermore, molecular interactions between PVA and the prepared poly(alkylene succinate) polyesters were revealed by DSC, ATR-FTIR, and molecular dynamics simulations. Finally, melt flow index (MFI) measurements showed that, in contrast to PBSu, the use of PESu or PPSu significantly improved PVA’s melt flow properties. Hence, according to findings of the present work, only the use of low molecular weight PPSu is suitable in order to reduce processing temperature of PVA and improve its melt flow properties (plasticizing ability) without affecting its thermal decomposition.
Collapse
Affiliation(s)
- Artemis Palamidi
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Afroditi Kapourani
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Panagiotis A. Klonos
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Konstantinos N. Kontogiannopoulos
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
| | - Apostolos Kyritsis
- Department of Physics, Zografou Campus, National Technical University of Athens, 15780 Athens, Greece; (P.A.K.); (A.K.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.C.); (D.N.B.)
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (A.K.); (K.N.K.)
- Correspondence: ; Tel.: +30-2310-997629
| |
Collapse
|
33
|
Synergistic Computational Modeling Approaches as Team Players in the Game of Solubility Predictions. J Pharm Sci 2020; 110:22-34. [PMID: 33217423 DOI: 10.1016/j.xphs.2020.10.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/23/2022]
Abstract
Several approaches to predict and model drug solubility have been used in the drug discovery and development processes during the last decades. Each of these approaches have their own benefits and place, and are typically used as standalone approaches rather than in concert. The synergistic effects of these are often overlooked, partly due to the need of computational experts to perform the modeling and simulations as well as analyzing the data obtained. Here we provide our views on how these different approaches can be used to retrieve more information on drug solubility, ranging from multivariate data analysis over thermodynamic cycle modeling to molecular dynamics simulations. We are discussing aqueous solubility as well as solubility in more complex mixed solvents and media with colloidal structures present. We conclude that the field of computational pharmaceutics is in its early days but with a bright future ahead. However, education of computational formulators with broad knowledge of modeling and simulation approaches is imperative if computational pharmaceutics is to reach its full potential.
Collapse
|
34
|
Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. Int J Pharm 2020; 590:119884. [DOI: 10.1016/j.ijpharm.2020.119884] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023]
|
35
|
Slade L, Kweon M, Levine H. Exploration of the functionality of sugars in cake-baking, and effects on cake quality. Crit Rev Food Sci Nutr 2020; 61:283-311. [PMID: 32090597 DOI: 10.1080/10408398.2020.1729694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review paper describes our exploratory experimental studies on the functionality of sucrose and other sugars in cake-baking, and effects on cake quality. We have used the American Association of Cereal Chemists Method 10-90.01 as a base cake-baking method, and have applied Differential Scanning Calorimetry, Rapid Visco-Analyzer, and time-lapse photography analyses in experimental design studies of the effects of the following ingredient and formulation variables on cake quality (e.g. texture, color, moisture content) and other finished-product properties (e.g. shape, dimensions): (a) cake formula levels of sucrose and water, in terms of %Sucrose and Total Solvent; (b) concentration of sucrose or other sugars (e.g. xylose, ribose, fructose, glucose, maltose, polydextrose) vs. wheat flour starch gelatinization temperature and starch pasting during baking and gluten development during mixing; (c) unchlorinated flour vs. chlorinated flours (of varying pH); (d) cake formula %Sucrose and TS vs. cake color, shape, and dimensions; (e) cakes formulated with sucrose or other sugars (i.e. xylose, fructose, glucose), and variable %S and TS, and unchlorinated or chlorinated flour (pH 4.6), vs. cake color, shape, and dimensions.
Collapse
Affiliation(s)
- Louise Slade
- Food Polymer Science Consultancy, Morris Plains, New Jersey, USA
| | - Meera Kweon
- Department of Food Science and Nutrition, Pusan National University, Busan, South Korea
| | - Harry Levine
- Food Polymer Science Consultancy, Morris Plains, New Jersey, USA
| |
Collapse
|
36
|
Ilie AR, Griffin BT, Kolakovic R, Vertzoni M, Kuentz M, Holm R. Supersaturated lipid-based drug delivery systems – exploring impact of lipid composition type and drug properties on supersaturability and physical stability. Drug Dev Ind Pharm 2020; 46:356-364. [DOI: 10.1080/03639045.2020.1721526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Alexandra-Roxana Ilie
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Ruzica Kolakovic
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Martin Kuentz
- University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse, Belgium
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
37
|
Tsakiridou G, Reppas C, Kuentz M, Kalantzi L. A Novel Rheological Method to Assess Drug-Polymer Interactions Regarding Miscibility and Crystallization of Drug in Amorphous Solid Dispersions for Oral Drug Delivery. Pharmaceutics 2019; 11:pharmaceutics11120625. [PMID: 31766731 PMCID: PMC6955678 DOI: 10.3390/pharmaceutics11120625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 01/18/2023] Open
Abstract
Solid dispersions provide a key technology to formulate poorly water-soluble drugs, and a main task of early development is appropriate selection of polymer. This study investigates the use of a novel rheology-based approach to evaluate miscibility and interactions of drugs with polymers regarding amorphous solid drug dispersions for oral administration. Tacrolimus was used as model drug and hydroxypropyl cellulose, ethylcellulose, Soluplus®, polyethyleneglycol 6000, Poloxamer-188 (Koliphor-188), and Eudragit® S100 were used as excipients. Solvent-based evaporation methods were used to prepare binary solid dispersions of drug and polymer. Data of the dilute solution viscosimetry were compared with in silico calculations of the Hansen solubility parameter (HSP), as well as phase separation/crystallization data obtained from X-ray diffraction and differential scanning calorimetry. HSP calculations in some cases led to false positive predictions of tacrolimus miscibility with the tested polymers. The novel rheology-based method provided valuable insights into drug-polymer interactions and likely miscibility with polymer. It is a rather fast, inexpensive, and robust analytical approach, which could be used complementary to in silico-based evaluation of polymers in early formulation development, especially in cases of rather large active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Georgia Tsakiridou
- Department of Scientific Affairs, Pharmathen S/A, 15125 Marousi, Greece;
- Department of Pharmaceutical Sciences, National and Kapodistrian University of Athens, 15784 Zografou, Greece;
| | - Christos Reppas
- Department of Pharmaceutical Sciences, National and Kapodistrian University of Athens, 15784 Zografou, Greece;
| | - Martin Kuentz
- Institute of Pharmaceutical Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland;
| | - Lida Kalantzi
- Department of Scientific Affairs, Pharmathen S/A, 15125 Marousi, Greece;
- Correspondence: ; Tel.: +30-210-66-04-300
| |
Collapse
|
38
|
Niederquell A, Dujovny G, Probst SE, Kuentz M. A Relative Permittivity Approach for Fast Drug Solubility Screening of Solvents and Excipients in Lipid-Based Delivery. J Pharm Sci 2019; 108:3457-3460. [PMID: 31255684 DOI: 10.1016/j.xphs.2019.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/07/2019] [Accepted: 06/07/2019] [Indexed: 11/18/2022]
Abstract
Drug solubility screening in solvents and lipids is central for the development of lipid-based formulations (LBFs), and any guidance to reduce the experimental workload would be highly desirable. Solubility parameters are interesting as they can be predicted in silico for a drug but they are hardly predictable for complex lipids. This paper uses a new approach to convert an in silico drug solubility parameter to an estimated relative permittivity, εr. Diverse solvents and lipid-based excipients were then experimentally tested for εr and solubility using fenofibrate as model. The typical excipients and solvents used in LBFs showed an εr range of about 2-24, and good solubility of fenofibrate was indeed evidenced in vicinity of its estimated relative permittivity 13.2 ± 2.7. Mixtures of promising excipients were studied subsequently, and the obtained εr was predictable based on the known values of the individual components. The novel permittivity approach has demonstrated its usefulness, it has much potential in early development for ranking of suitable excipients, and it gives an initial orientation to design formulations. Future research may clarify further opportunities and limits of the novel approach for LBFs.
Collapse
Affiliation(s)
- Andreas Niederquell
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
| | - Gabriela Dujovny
- Qualicaps(®) Europe, S.A.U., Avenida Monte Valdelatas 4, 28108 Alcobendas, Spain
| | | | - Martin Kuentz
- Institute of Pharma Technology, University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland.
| |
Collapse
|
39
|
Partial Solvation Parameters of Drugs as a New Thermodynamic Tool for Pharmaceutics. Pharmaceutics 2019; 11:pharmaceutics11010017. [PMID: 30621192 PMCID: PMC6359455 DOI: 10.3390/pharmaceutics11010017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 12/03/2022] Open
Abstract
Partial solvation parameters (PSP) have much in common with the Hansen solubility parameter or with a linear solvation energy relationship (LSER), but there are advantages based on the sound thermodynamic basis. It is, therefore, surprising that PSP has so far not been harnessed in pharmaceutics for the selection of excipients or property estimation of formulations and their components. This work introduces PSP calculation for drugs, where the raw data were obtained from inverse gas chromatography. It was shown that only a few probe gases were needed to get reasonable estimates of the drug PSPs. Interestingly, an alternative calculation of LSER parameters in silico did not reflect the experimentally obtained activity coefficients for all probe gases as well, which was attributed to the complexity of the drug structures. The experimental PSPs were proven to be helpful in predicting drug solubility in various solvents and the PSP framework allowed calculation of the different surface energy contributions. A specific benefit of PSP is that parameters can be readily converted to either classical solubility or LSER parameters. Therefore, PSP is not just about a new definition of solvatochromic parameters, but the underlying thermodynamics provides a unified approach, which holds much promise for broad applications in pharmaceutics.
Collapse
|