1
|
Ma X, Zhang W, Chen Y, Hu Q, Wang Z, Jiang T, Zeng Y, Efferth T. Paeoniflorin inhibited GSDMD to alleviate ANIT-induced cholestasis via pyroptosis signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156021. [PMID: 39255724 DOI: 10.1016/j.phymed.2024.156021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Cholestasis (CT) is a group of disorders caused by impaired production, secretion or excretion of bile. This may result in the deposition of bile components in the blood and liver, which in turn causes damage to liver cells and other tissues. If untreated, CT can progress to severe complications, including cirrhosis, liver failure, and potentially life-threatening conditions. OBJECTIVE This research was intended to elucidate the function and mechanism of Paeoniflorin (PF) in ameliorating ANIT-induced pyroptosis in CT. METHODS CT models were established in SD rats and HepG2 cells through ANIT treatment. Histological examination was conducted using haematoxylin and eosin (HE) staining to assess the histopathological alterations in the liver. Network pharmacology was employed to identify potential PF targets in CT treatment. To evaluate pyroptosis levels, various methods were used, including serum biochemical analysis, Enzyme-Linked Immunosorbent Assay (ELISA), immunofluorescence (IF), immunohistochemistry (IHC), Western blotting, transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The HuProt™ 20K Chip was utilized to pinpoint potential PF-binding targets. PF's direct mechanisms in CT treatment were explored using molecular docking (MD), molecular dynamics simulations (MDS), Cellular Thermal Shift Assay (CETSA), and Surface Plasmon Resonance (SPR). RESULTS PF administration was found to alleviate ANIT-induced liver pathology, enhance liver function markers, and improve cell viability. Network pharmacology and pyroptosis inhibitor studies suggested that PF might mitigate CT via the NLRP3-dependent pyroptosis pathway. This hypothesis was further supported by Western blotting, IF, and IHC analyses, which indicated PF's potential to inhibit NLRP3-dependent pyroptosis in CT. GSDMD was identified as a target through HuProt™ 20K Chip screening. The binding affinity of PF to GSDMD was validated through MD, MDS, CETSA, and SPR techniques. Additionally, the regulatory impact of GSDMD on downstream inflammatory pathways was confirmed by ELISA and IHC. CONCLUSION PF exhibited a hepatoprotective effect in ANIT-induced CT, primarily by targeting GSDMD, thereby suppressing ANIT-induced pyroptosis and the subsequent release of inflammatory mediators.
Collapse
Affiliation(s)
- Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zexin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
2
|
Fan Z, Liu J, Wang X, Yang S, Wang Q, Yan L, Zhang Y, Wu X. Paeoniae Radix Rubra: A Review of Ethnopharmacology, Phytochemistry, Pharmacological Activities, Therapeutic Mechanism for Blood Stasis Syndrome, and Quality Control. Chem Biodivers 2024; 21:e202401119. [PMID: 38850115 DOI: 10.1002/cbdv.202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.
Collapse
Affiliation(s)
- Zuowang Fan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Sanming Medical and Polytechnic Vocational College, Sanming, 365000, China
| | - Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Li Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
3
|
Li Y, Deng X, Hu Q, Chen Y, Zhang W, Qin X, Wei F, Lu X, Ma X, Zeng J, Efferth T. Paeonia lactiflora Pall. ameliorates acetaminophen-induced oxidative stress and apoptosis via inhibiting the PKC-ERK pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118107. [PMID: 38599475 DOI: 10.1016/j.jep.2024.118107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (PLP), a traditional Chinese medicine, is recognized for its antioxidative and anti-apoptotic properties. Despite its potential medicinal value, the mechanisms underlying its efficacy have been less explored, particularly in alleviating acute liver injury (ALI) caused by excessive intake of acetaminophen (APAP). AIM OF THE STUDY This study aims to elucidate the role and mechanisms of PLP in mitigating oxidative stress and apoptosis induced by APAP. MATERIALS AND METHODS C57BL/6 male mice were pre-treated with PLP for seven consecutive days, followed by the induction of ALI using APAP. Liver pathology was assessed using HE staining. Serum indicators, immunofluorescence (IF), immunohistochemical (IHC), and transmission electron microscopy were employed to evaluate levels of oxidative stress, ferroptosis and apoptosis. Differential expression proteins (DEPs) in the APAP-treated and PLP pre-treated groups were analyzed using quantitative proteomics. Subsequently, the potential mechanisms of PLP pre-treatment in treating ALI were validated using western blotting, molecular docking, molecular dynamics simulations, and surface plasmon resonance (SPR) analysis. RESULTS The UHPLC assay confirmed the presence of three compounds, i.e., albiflorin, paeoniflorin, and oxypaeoniflorin. Pre-treatment with PLP was observed to ameliorate liver tissue pathological damage through HE staining. Further confirmation of efficacy of PLP in alleviating APAP-induced liver injury and oxidative stress was established through liver function serum biochemical indicators, IF of reactive oxygen species (ROS) and IHC of glutathione peroxidase 4 (GPX4) detection. However, PLP did not demonstrate a significant effect in alleviating APAP-induced ferroptosis. Additionally, transmission electron microscopy and TUNEL staining indicated that PLP can mitigate hepatocyte apoptosis. PKC-ERK pathway was identified by proteomics, and subsequent molecular docking, molecular dynamics simulations, and SPR verified binding of the major components of PLP to ERK protein. Western blotting demonstrated that PLP suppressed protein kinase C (PKC) phosphorylation, blocking extracellular signal-regulated kinase (ERK) phosphorylation and inhibiting oxidative stress and cell apoptosis. CONCLUSION This study demonstrates that PLP possesses hepatoprotective abilities against APAP-induced ALI, primarily by inhibiting the PKC-ERK cascade to suppress oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xuhua Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Feng Wei
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
4
|
He S, Chen H, Yi Y, Hou D, Fu X, Xie J, Zhang J, Liu C, Ru X, Wang J. A novel bioinformatics strategy to uncover the active ingredients and molecular mechanisms of Bai Shao in the treatment of non-alcoholic fatty liver disease. Front Pharmacol 2024; 15:1406188. [PMID: 39005933 PMCID: PMC11239447 DOI: 10.3389/fphar.2024.1406188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction: As a new discipline, network pharmacology has been widely used to disclose the material basis and mechanism of Traditional Chinese Medicine in recent years. However, numerous researches indicated that the material basis of TCMs identified based on network pharmacology was the mixtures of beneficial and harmful substances rather than the real material basis. In this work, taking the anti-NAFLD (non-alcoholic fatty liver disease) effect of Bai Shao (BS) as a case, we attempted to propose a novel bioinformatics strategy to uncover the material basis and mechanism of TCMs in a precise manner. Methods: In our previous studies, we have done a lot work to explore TCM-induced hepatoprotection. Here, by integrating our previous studies, we developed a novel computational pharmacology method to identify hepatoprotective ingredients from TCMs. Then the developed method was used to discover the material basis and mechanism of Bai Shao against Non-alcoholic fatty liver disease by combining with the techniques of molecular network, microarray data analysis, molecular docking, and molecular dynamics simulation. Finally, literature verification method was utilized to validate the findings. Results: A total of 12 ingredients were found to be associated with the anti-NAFLD effect of BS, including monoterpene glucosides, flavonoids, triterpenes, and phenolic acids. Further analysis found that IL1-β, IL6, and JUN would be the key targets. Interestingly, molecular docking and molecular dynamics simulation analysis showed that there indeed existed strong and stable binding affinity between the active ingredients and the key targets. In addition, a total of 23 NAFLD-related KEGG pathways were enriched. The major biological processes involved by these pathways including inflammation, apoptosis, lipid metabolism, and glucose metabolism. Of note, there was a great deal of evidence available in the literature to support the findings mentioned above, indicating that our method was reliable. Discussion: In summary, the contributions of this work can be summarized as two aspects as follows. Firstly, we systematically elucidated the material basis and mechanism of BS against NAFLD from multiple perspectives. These findings further enhanced the theoretical foundation of BS on NAFLD. Secondly, a novel computational pharmacology research strategy was proposed, which would assist network pharmacology to uncover the scientific connotation TCMs in a more precise manner.
Collapse
Affiliation(s)
- Shuaibing He
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Hantao Chen
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Yanfeng Yi
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, Huzhou, China
| | - Diandong Hou
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xuyan Fu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Jinlu Xie
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Zhang
- XinJiang Institute of Chinese Materia Medica and Ethnodrug, Urumqi, China
| | - Chongbin Liu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Xiaochen Ru
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, School of Medicine, Huzhou Central Hospital, Huzhou University, Huzhou, China
- Key Laboratory for Precise Prevention and Control of Major Chronic Diseases, Huzhou University, Huzhou, China
| | - Juan Wang
- School of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, China
| |
Collapse
|
5
|
Zhang W, Wu H, Luo S, Lu X, Tan X, Wen L, Ma X, Efferth T. Molecular insights into experimental models and therapeutics for cholestasis. Biomed Pharmacother 2024; 174:116594. [PMID: 38615607 DOI: 10.1016/j.biopha.2024.116594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Cholestatic liver disease (CLD) is a range of conditions caused by the accumulation of bile acids (BAs) or disruptions in bile flow, which can harm the liver and bile ducts. To investigate its pathogenesis and treatment, it is essential to establish and assess experimental models of cholestasis, which have significant clinical value. However, owing to the complex pathogenesis of cholestasis, a single modelling method can merely reflect one or a few pathological mechanisms, and each method has its adaptability and limitations. We summarize the existing experimental models of cholestasis, including animal models, gene-knockout models, cell models, and organoid models. We also describe the main types of cholestatic disease simulated clinically. This review provides an overview of targeted therapy used for treating cholestasis based on the current research status of cholestasis models. In addition, we discuss the respective advantages and disadvantages of different models of cholestasis to help establish experimental models that resemble clinical disease conditions. In sum, this review not only outlines the current research with cholestasis models but also projects prospects for clinical treatment, thereby bridging basic research and practical therapeutic applications.
Collapse
Affiliation(s)
- Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiman Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaohua Lu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
6
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
7
|
Gao Q, Li G, Zu Y, Xu Y, Wang C, Xiang D, He W, Shang T, Cheng X, Liu D, Zhang C. Ginsenoside Rg1 alleviates ANIT-induced cholestatic liver injury by inhibiting hepatic inflammation and oxidative stress via SIRT1 activation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117089. [PMID: 37634749 DOI: 10.1016/j.jep.2023.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginseng (Panax ginseng C. A. Mey) is a common traditional Chinese medicine used for anti-inflammation, treating colitis, type 2 diabetes, diarrhea, and recovering hepatobiliary function. Ginsenosides, the main active components isolated from ginseng, possess liver and gallbladder diseases therapeutic potential. AIMS OF THE STUDY Cholestatic liver injury (CLI) is a liver disease induced by intrahepatic accumulation of toxic bile acids and currently lacks clinically effective drugs. Our previous study found that ginsenosides alleviated CLI by activating sirtuin 1 (SIRT1), but the effective ingredients and the underlying mechanism have not been clarified. This study aimed to identify an effective ingredient with the most significant activation effect on SIRT1 from the five major monomer saponins of ginsenosides: Rb1, Rd, Rg1, 20s-Rg3, and Rc further explore its protective effects on CLI, and elaborate its underlying mechanism. MATERIALS AND METHODS Discovery Studio 3.0 was used to conduct molecular docking between monomer saponins and SIRT1, and further detect the influence of monomer saponins on SIRT1 activity in vitro. Finally, it was determined that Rg1 had the most significant stimulative effect on SIRT1, and the hepatoprotective activity of Rg1 in CLI was explored in vivo. Wild-type mice were intragastrically α-naphthylisothiocyanate (ANIT) to establish an experimental model of intrahepatic cholestasis and Rg1 intervention, and then liver injury and cholestasis related indexes were detected. In addition, Liver-specific SIRT1 gene knockout (SIRT1-/-) mice were administered with ANIT and/or Rg1 to further investigate the mechanism of action of Rg1. RESULTS The results of molecular docking and in vitro experiments showed that all the five ginsenoside monomers could bind to the active site of SIRT1 and promote SIRT1 activity in HepG2 cells. Among them, Rg1 exhibited the most significant stimulation of SIRT1 activity in cholestasis. Besides, it could ameliorate ANIT-induced inflammation and oxidative stress in HepG2 cells. Therefore, we investigated the hepatoprotective effect and mechanism of Rg1 on CLI. Results showed that Rg1 reversed the ANIT-induced increase in biochemical parameters, improved liver pathological injury, and decreased liver lipid accumulation, reactive oxygen species and pro-inflammatory factor levels. Mechanistically, Rg1 induced SIRT1 expression, followed by promoted the activity of Nrf2 and suppressed the activation of NF-κB. Interestingly, the hepatoprotective effect of Rg1 was blocked in SIRT1-/- mice. CONCLUSION Rg1 mitigated ANIT-induced CLI via upregulating SIRT1 expression, and our results suggested that Rg1 is a candidate compound for treating CLI.
Collapse
Affiliation(s)
- Qianyan Gao
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yue Zu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Congyi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianze Shang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Cheng
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital Affiliated Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Wang Y, Tan N, Su R, Liu Z, Hu N, Dong Q. Exploring the Potential Mechanisms of Action of Gentiana Veitchiorum Hemsl. Extract in the Treatment of Cholestasis using UPLC-MS/MS, Systematic Network Pharmacology, and Molecular Docking. Comb Chem High Throughput Screen 2024; 27:1948-1968. [PMID: 38357941 DOI: 10.2174/0113862073275657231210055250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 02/16/2024]
Abstract
INTRODUCTION Gentiana veitchiorum Hemsl. (GV) has a long history in Tibetan medicine for treating hepatobiliary disease cholestasis. However, the mechanisms mediating its efficacy in treating cholestasis have yet to be determined. AIM To elucidate the mechanisms of action of GV in the treatment of cholestasis, an integrated approach combining ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis with network pharmacology was established. MATERIALS AND METHODS A comprehensive analysis of the chemical composition of GV was achieved by UPLC-MS/MS. Subsequently, a network pharmacology method that integrated target prediction, a protein-protein interaction (PPI) network, gene set enrichment analysis, and a component- target-pathway network was established, and finally, molecular docking and experiments in vitro were conducted to verify the predicted results. RESULTS Twenty compounds that were extracted from GV were identified by UPLC-MS/MS analysis. Core proteins such as AKT1, TNF, and IL6 were obtained through screening in the Network pharmacology PPI network. The Kyoto Encyclopedia of the Genome (KEGG) pathway predicted that GV could treat cholestasis by acting on signaling pathways such as TNF/IL-17 / PI3K-Akt. Network pharmacology suggested that GV might exert a therapeutic effect on cholestasis by regulating the expression levels of inflammatory mediators, and the results were further confirmed by the subsequent construction of an LPS-induced RAW 264.7 cell model. CONCLUSIONS In this study, UPLC-MS/MS analysis, network pharmacology, and experiment validation were used to explore potential mechanisms of action of GV in the treatment of cholestasis.
Collapse
Affiliation(s)
- Yue Wang
- Medical College of Qinghai University, Xining, 810016, China
| | - Nixia Tan
- Medical College of Qinghai University, Xining, 810016, China
| | - Rong Su
- Medical College of Qinghai University, Xining, 810016, China
| | - Zhenhua Liu
- Medical College of Qinghai University, Xining, 810016, China
| | - Na Hu
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| | - Qi Dong
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai, China
| |
Collapse
|
9
|
Meng H, Zhou J, Wang M, Zheng M, Xing Y, Wang Y. SARS-CoV-2 Papain-like Protease Negatively Regulates the NLRP3 Inflammasome Pathway and Pyroptosis by Reducing the Oligomerization and Ubiquitination of ASC. Microorganisms 2023; 11:2799. [PMID: 38004809 PMCID: PMC10673202 DOI: 10.3390/microorganisms11112799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
The interaction of viruses with hosts is complex, especially so with the antiviral immune systems of hosts, and the underlying mechanisms remain perplexing. Infection with SARS-CoV-2 may result in cytokine syndrome in the later stages, reflecting the activation of the antiviral immune response. However, viruses also encode molecules to negatively regulate the antiviral immune systems of hosts to achieve immune evasion and benefit viral replication during the early stage of infection. It has been observed that the papain-like protease (PLP) encoded by coronavirus could negatively regulate the host's IFNβ innate immunity. In this study, we first found that eight inflammasome-related genes were downregulated in CD14+ monocytes from COVID-19 patients. Subsequently, we observed that SARS-CoV-2 PLP negatively regulated the NLRP3 inflammasome pathway, inhibited the secretion of IL-1β, and decreased the caspase-1-mediated pyroptosis of human monocytes. The mechanisms for this may arise because PLP coimmunoprecipitates with ASC, reduces ASC ubiquitination, and inhibits ASC oligomerization and the formation of ASC specks. These findings suggest that PLP may inhibit strong immune defenses and provide the maximum advantage for viral replication. This research may allow us to better understand the flex function of CoV-encoding proteases and provide a new perspective on the innate immune responses against SARS-CoV-2 and other viruses.
Collapse
Affiliation(s)
- Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Jianglin Zhou
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Mingyu Wang
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
| | - Yaling Xing
- Bioinformatics Center of Academy of Military Medicine Science, Beijing 100850, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Chaoyang District, Beijing 100015, China
| |
Collapse
|
10
|
Zhou Z, Wang Y, Sun S, Zhang K, Wang L, Zhao H, Zhang Y. Paeonia lactiflora Pall. Polysaccharide alleviates depression in CUMS mice by inhibiting the NLRP3/ASC/Caspase-1 signaling pathway and affecting the composition of their intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2023:116716. [PMID: 37295570 DOI: 10.1016/j.jep.2023.116716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeonia lactiflora Pall. (PL) has been commonly used to de-stressing the liver and relieve depression in traditional Chinese medicine for over a thousand years. Recently, it has been widely used in studies on anti-depressant, anti-inflammatory and regulation of intestinal flora. However, the polysaccharide component has received less attention than the saponin component of PL. AIM OF THE STUDY This study aimed to elucidate the effects of Paeonia lactiflora polysaccharide (PLP) on depressive behavior in mice in a chronic unpredictable mild stress (CUMS) model and its possible action mechanisms. MATERIALS AND METHODS A model of chronic depression induced by the CUMS approach. Behavioral experiments were used to assess the success of the CUMS model and the therapeutic impact of PLP. Then the extent of damage to the colonic mucosa was assessed by H&E staining; the extent of neuronal damage was assessed by Nissler staining. Inflammatory factor expression was assessed at different sites in the mouse by enzyme-linked immunoassay (Elisa). The alterations of fecal microflora were detected by 16S rRNA gene sequencing. In the colonic tissues, NLRP3, ASC and Caspase-1 mRNA and protein levels detected by quantitative real-time PCR (qRT-PCR) and Western blot(WB). RUSULTS PLP can improve depressive behavior in CUMS mice, and colonic mucosal and neuronal damage. Elisa assay showed that PLP could reduce interleukin-1β (IL-1β), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) levels, and increase 5-Hydroxytryptamine(5-HT) levels in CUMS mice. 16S sequencing analysis showed that PLP could regulate the intestinal flora of CUMS mice and increase their species richness. In addition, PLP significantly inhibited NLRP3/ASC/Caspase-1 signalling pathways activation in the colonic tissues of CUMS mice. CONCLUSIONS PLP modulates depression-related intestinal ecological dysregulation, increases species richness, and inhibits inflammatory factors levels and NLRP3 inflammasome activation to reduce colonic mucosal and neurons damage, thereby improving depression-like behavior and neurotransmitter release in CUMS mice.
Collapse
Affiliation(s)
- Zijun Zhou
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Shiqing Sun
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Kai Zhang
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China
| | - Lihong Wang
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, 154007, Jiamusi, China
| | - Hong Zhao
- Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, 154007, Jiamusi, China.
| | - Yu Zhang
- College of Pharmacy, Medicinal Chemistry Laboratory, Jiamusi University, 154007, Jiamusi, China.
| |
Collapse
|
11
|
Khayat MT, Mohammad KA, Mohamed GA, El-Agamy DS, Elsaed WM, Ibrahim SRM. γ-Mangostin abrogates AINT-induced cholestatic liver injury: Impact on Nrf2/NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD signalling. Life Sci 2023; 322:121663. [PMID: 37023956 DOI: 10.1016/j.lfs.2023.121663] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023]
Abstract
γ-Mangostin (γ-MN) is one of the abundant xanthones separated from Garcinia mangostana (Clusiaceae) pericarps that has been reported to have varied bioactivities such as neuroprotective, cytotoxic, antihyperglycemic, antioxidant, and anti-inflammation. Yet, its effect on cholestatic liver damage (CLI) has not been investigated. This study explored the protective activity of γ-MN against alpha-naphthyl isothiocyanate (ANIT)-induced CLI in mice. The results showed that γ-MN protected against ANIT-induced CLI as indicated by reduced serum levels of hepatic injury parameters (e.g., ALT, AST, γ-GT, ALP, LDH, bilirubin, and total bile acids). ANIT-induced pathological lesions were improved in γ-MN pre-treated groups. γ-MN exerted potent antioxidant effects as it lowered the parameters of lipid peroxidation (4-HNE, PC, and MDA) and intensified the content and activity of antioxidants (TAC, GSH, GSH-Px, GST, and SOD) in the hepatic tissue. Furthermore, γ-MN enhanced the signalling of Nrf2/HO-1 as it augmented the mRNA expression of Nrf2/downstream genes (HO-1/GCLc/NQO1/SOD). The binding capacity and the immuno-expression of Nrf2 were also increased. γ-MN showed anti-inflammatory capacity as it suppressed the activation of NF-κB signalling, it decreased mRNA expression and levels of NF-κB/TNF-α/IL-6 and the immuno-expression of NF-κB/TNF-α. In addition, γ-MN inhibited the activation of NLRP3 inflammasome as it lowered the mRNA expression of NLRP3/caspase-1/IL-1β along with their levels as well as the immuno-expression of caspase-1/IL-1β. γ-MN also reduced the level of the pyroptotic parameter GSDMD. Collectively, this study demonstrated the potent hepatoprotective potential of γ-MN against CLI which was linked to its ability to potentiate Nrf2/HO-1 and to offset NF-κB/NLRP3/Caspase-1/IL-1β/GSDMD. Hence, γ-MN may be suggested as a new candidate for cholestatic patients.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Khadijah A Mohammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
12
|
Wei C, Qiu J, Wu Y, Chen Z, Yu Z, Huang Z, Yang K, Hu H, Liu F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115550. [PMID: 35863612 DOI: 10.1016/j.jep.2022.115550] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver disease (CLD) is mainly characterized by cholestasis. If not treated, it will deteriorate to cholestatic hepatitis, liver fibrosis, liver cirrhosis, and even liver failure. CLD has a high clinical incidence, and limited treatment with single therapy. In the long-term clinical exploration, traditional Chinese medicine (TCM) has been corroborated with unique therapeutic effects on the CLD process. AIM OF THIS REVIEW This paper summarizes the effective single and compound TCMs for the treatment of CLD. According to 4 important clinical stages of CLD: cholestasis, hepatitis, liver fibrosis, liver cirrhosis, pharmacological effects and mechanisms of 5 typical TCM examples are reviewed, aims to provide basis for clinical drug selection in different processes of CLD. MATERIALS AND METHODS Relevant scientific articles regarding therapeutic effects of TCM for the CLD were collected from different databases. We collated three single herbs including Artemisia scoparia Waldst. et Kit. or Artemisia capillaris Thunb. (Artemisiae Scopariae Herba, Yin Chen in Chinese), Paeonia lactiflora Pall. or Paeonia veitchii Lynch. (Paeoniae radix rubra, Chi Shao in Chinese), Poria cocos (Schw.) Wolf (Poria, Fu Ling in Chinese), and two compound herbs of Huang Qi Decoction (HQD) and Yin Chen Hao Decoction (YCHD) to studied and analyzed. RESULTS We proposed five promising TCMs treatments for the important developmental stages of CLD. Among them, Yin Chen is an essential medicine for protecting liver and gallbladder, and its TCM prescription is also a promising strategy for cholestasis. Based on clinical evidence, high-dose application of Chi Shao is a clinical special treatment of cholestasis hepatitis. Fu Ling can regulate immune cells and increase antibody levels in serum, which is expected to be an emerging therapy to prevent cholestatic liver fibrosis to cirrhosis. HQD can be used as routine clinical medicine for liver fibrosis. In addition, YCHD can exert better comprehensive advantages with multiple components, can treat the whole course of CLD and prevent it from developing to the end-stage. CONCLUSION Yin Chen, Chi Shao, Fu Ling, HQD and YCHD have shown good clinical efficacy in controlling the development of CLD. Clinically, it is easier to curb the development of CLD by adopting graded diagnosis and treatment measures. We suggest that CLD should be risk stratified in clinical treatment to ensure personalized treatment for patients, so as to slow down the development of the disease.
Collapse
Affiliation(s)
- Chunlei Wei
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Jing Qiu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Fang Liu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| |
Collapse
|
13
|
Xu JJ, Xu F, Wang W, Wang PP, Xian J, Han X, Shang MY, Liu GX, Wang X, Cai SQ. Paeoniae Radix Rubra can enhance fatty acid β-oxidation and alleviate gut microbiota disorder in α-naphthyl isothiocyanate induced cholestatic model rats. Front Pharmacol 2022; 13:1002922. [DOI: 10.3389/fphar.2022.1002922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is the most destructive pathological manifestation of liver disease and available treatments are very limited. Paeoniae Radix Rubra (PRR) is an important traditional Chinese drug used to treat cholestasis. This study combined targeted metabonomics, PCR array analysis, and 16S rRNA sequencing analysis to further clarify the mechanisms of PRR in the treatment of cholestasis. PRR conspicuously reversed the elevation of fatty acids (FFA 14:0 and other 14 fatty acids) and the decrease of organic acids (pyruvic acid and citric acid) in a cholestatic model induced by α-naphthyl isothiocyanate (ANIT). Eight elevated amino acids (L-proline, etc.) and five elevated secondary bile acids (taurohyodeoxycholic acid, etc.) in model rats were also reduced by PRR. Pathway analysis revealed that PRR significantly alleviated eight pathways (β-alanine metabolism). Furthermore, we found that PRR significantly reversed the decrease of Cpt1a, Hadha, Ppara, and Slc25a20 (four genes relevant to fatty acid β-oxidation) mRNAs caused by ANIT, and PRR conspicuously decreased nine acylcarnitines (the forms of fatty acids into mitochondria for β-oxidation) that increased in model rats. These results indicate that PRR could enhance fatty acid β-oxidation, which may be the way for PRR to reduce the levels of 15 fatty acids in the serum of model rats. 16S rRNA sequencing analysis revealed that PRR alleviated gut microbiota disorders in model rats, including upregulating four genera (Coprococcus, Lactobacillus, etc.) and downregulating four genera (Bacteroides, Escherichia, etc.). As the relative abundance of these eight genera was significantly correlated with the levels of the five secondary bile acids (deoxycholic acid, taurolithocholic acid, etc.) reduced by PRR, and Bacteroides and Escherichia were reported to promote the production of secondary bile acid, we inferred that the downregulation of PRR on five secondary bile acids in model rats was inseparable from gut microbiota. Thus, the gut microbiota also might be a potential pharmacological target for the anticholestatic activity of PRR. In conclusion, we consider that the mechanisms of PRR in treating cholestasis include enhancing fatty acid β-oxidation and alleviating gut microbiota disorders.
Collapse
|
14
|
Tang D, Wang RY, Sun KW, Wu Y, Ding L, Mo Y. Network pharmacology-based prediction of active compounds in the Wenyang Jiedu Huayu formula acting on acute-on-chronic liver failure with experimental support in vitro and in vivo. Front Pharmacol 2022; 13:1003479. [PMID: 36339606 PMCID: PMC9631206 DOI: 10.3389/fphar.2022.1003479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Acute-on-chronic liver failure (ACLF) is characterized by undermined liver function, massive necrosis/apoptosis of hepatocytes, and hepatic inflammatory cell recruitment, leading to multiorgan failure. Traditional Chinese medicine (TCM) has been widely applied in clinical and experimental studies of ACLF. In this study, 23 compounds with 6,386 drug targets were obtained from Wenyang Jiedu Huayu (WYJDHY), and 8,096 genes were identified as ACLF disease targets, among which 3,132 were overlapping co-targets. Expression profile analysis identified 105 DEGs among the co-targets, which were associated with biological activities such as lymphocyte activation, immune response regulation, and pathways such as Th17 cell differentiation and NF-κB signaling. After PPI analysis and network construction, atractylenolide I (AT-1) has been identified as the hub active ingredient of the WYJDHY formula. LPS stimulation inhibited rat hepatocytes’ BRL 3A cell viability, promoted cell apoptosis, increased the levels of ALT, AST, IL-6, and VCAM-1 within the culture medium, and activated NF-κB signaling, whereas AT-1 treatment significantly attenuated LPS-induced toxicity on BRL 3A cells. Furthermore, the NF-κB signaling inhibitor PDTC exerted effects on LPS-stimulated BRL 3A cells similar to those of AT-1, and the combination of PDTC and AT-1 further attenuated LPS-induced toxicity on BRL 3A cells. In vivo, AT-1 alone or with PDTC improved the symptoms and local inflammation in ACLF model rats. In conclusion, 23 active ingredients of six herbs in the WYJDHY formula were retrieved, and 105 co-targets were differentially expressed in ACLF. AT-1 exerts protective effects on LPS-stimulated hepatocytes and ACLF rats, possibly by inhibiting the NF-κB pathway.
Collapse
Affiliation(s)
- Dan Tang
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Ruo-Yu Wang
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Ke-Wei Sun
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
- *Correspondence: Ke-Wei Sun,
| | - Yunan Wu
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Lin Ding
- Department of Hepatology, The First Hospital of Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Yang Mo
- Academic Affairs Office, Hunan University of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
15
|
The Renshen Chishao Decoction Could Ameliorate the Acute Lung Injury but Could Not Reduce the Neutrophil Extracellular Traps Formation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7784148. [PMID: 36072401 PMCID: PMC9444383 DOI: 10.1155/2022/7784148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/18/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022]
Abstract
The acute lung injury (ALI) causes severe pulmonary diseases, leading to a high mortality rate. The Renshen and Chishao have protective and anti-inflammatory effects against the ALI. To explore the protective effects of the Renshen Chishao (RC) decoction against the ALI, we established the lipopolysaccharide-indued ALI model and randomly divided the mice into seven groups: control group, ALI group, high-dose RC group, middle-dose RC group, low-dose RC group, middle-dose RC group + CXCR2 antagonist group, and ALI + CXCR2 antagonist group. We estimated the lung injury by the hematoxylin and eosin staining, the neutrophil extracellular traps (NETs) formations by the immunofluorescence colocalization and enzyme-linked immunosorbent assay (ELISA), and the CXCR2/CXCL2 pathway by the flow cytometry, ELISA, and real-time polymerase chain reaction. We conducted the high-throughput sequencing and enrichment analyses to explore the potential mechanisms. The results showed that the RC decoction pathologically ameliorated the lipopolysaccharide-induced lung injury and inflammatory response but failed to reduce the circulating and lung tissue NETs formation and the blood neutrophil percent. The high-dose RC decoction increased the plasma CXCL2 level, but the RC decoction had no effects on the neutrophilic CXCR2 levels. Under the inhibition of the CXCR2, the middle-dose RC decoction still decreased the lung injury score but as yet had unobvious influence on the NETs formation. Other potential mechanisms of the RC decoction against the ALI involved the pathways of ribosome and coronavirus disease 2019 (COVID-19); the target genes of inflammatory factors, such as Ccl17, Cxcl17, Cd163, Cxcr5, and Il31ra, and lncRNAs; and the regulations of the respiratory cilia. In conclusion, the RC decoction pathologically ameliorated the lipopolysaccharide-induced lung inflammatory injury via upregulating the CXCL2/CXCR2 pathway but could not reduce the circulating or lung tissue NETs formation.
Collapse
|
16
|
Li X, Hou R, Qin X, Wu Y, Wu X, Tian J, Gao X, Du G, Zhou Y. Synergistic neuroprotective effect of saikosaponin A and albiflorin on corticosterone-induced apoptosis in PC12 cells via regulation of metabolic disorders and neuroinflammation. Mol Biol Rep 2022; 49:8801-8813. [PMID: 36002654 DOI: 10.1007/s11033-022-07730-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Saikosaponin A (SSA) and albiflorin (AF) are major bioactive compounds of Radix Bupleuri and Radix Paeoniae alba respectively, which possess antidepressant effects in pharmacological experiments. However, whether SSA and AF have synergistic neuroprotective effects and the synergistic mechanisms are still unknown. METHODS AND RESULTS The corticosterone-induced PC12 cells apoptosis model was employed to assess the neuroprotective effects of SSA and AF, and the synergistic effect was analyzed using three mathematical models. Meanwhile, cell metabolomics was used to detect the effects on metabolite regulation of SSA and AF. Furthermore, the key metabolites, metabolic enzymes, and cellular markers were verified by ELISA and Western blotting. The results showed that the combination of SSA and AF has a synergistic neuroprotective effect. Besides, the combination could regulate more metabolites than a single agent and possessed a stronger adjustment effect on metabolites. The TCA cycle was regulated by SSA and AF via improving mitochondrial function. The purine metabolism was regulated by SSA via inhibition xanthine oxidase activity and the glutamate metabolism was regulated by AF via inhibition glutaminase activity. Moreover, the oxidative stress induced by the purine metabolism was attenuated by SSA via a reduction in the ROS level. Additionally, the inflammation induced by the oxidative stress was attenuated by the SSA and AF via inhibition of the NLRP3 protein expression. CONCLUSIONS This study for the first time demonstrated the synergistic neuroprotective effects of SSA and AF, and the synergistic mechanisms were involved in metabolic disorders regulation and neuroinflammation inhibition.
Collapse
Affiliation(s)
- Xiao Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Ruihong Hou
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China.
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China.
| | - Yanfei Wu
- Department of Traditional Chinese Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xingkang Wu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Junsheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| | - Guanhua Du
- Institute of Material Medical, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuzhi Zhou
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
- Shanxi Key Laboratory of Active Constituents Research and Utilization of TCM, Shanxi University, Taiyuan, China
| |
Collapse
|
17
|
Xu JJ, Xu F, Wang W, Zhang YF, Hao BQ, Shang MY, Liu GX, Li YL, Yang SB, Wang X, Cai SQ. Elucidation of the Mechanisms and Effective Substances of Paeoniae Radix Rubra Against Toxic Heat and Blood Stasis Syndrome With a Stage-Oriented Strategy. Front Pharmacol 2022; 13:842839. [PMID: 35308239 PMCID: PMC8931751 DOI: 10.3389/fphar.2022.842839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
In the clinical practice of traditional Chinese medicine, toxic heat and blood stasis syndrome (THBSS) is a common syndrome observed in various critical diseases. Paeoniae Radix Rubra (PRR) has known therapeutic effects on THBSS. However, its pharmacodynamic mechanisms and effective substances in the treatment of THBSS still need further elucidation. Our previous study indicated that THBSS had three stages of progression, and the abnormal biochemical indices of each stage were different. Therefore, this study aimed to elucidate the pharmacodynamic mechanisms and effective substances of PRR for the treatment of THBSS with a stage-oriented strategy. Specifically, research was performed separately in two stable stages of THBSS: the excessive heat and little blood stasis (EHLBS) and blood stasis (BS) stages. THBSS model rats, at different time periods after syndrome initiation (first 5 h for EHLBS and 24 h later for BS), were used to conduct the two-stage investigation. Targeted metabonomics analysis was performed to elucidate the pharmacodynamic mechanisms of PRR in the treatment of EHLBS or BS. Based on the relationship between the individual differences in blood drug concentrations and pharmacodynamic effects, partial least squares regression analysis was employed to screen for the effective substances from the original constituents and metabolites of PRR. We found that PRR could upregulate primary bile acid biosynthesis, glycerophospholipid metabolism, ether lipid metabolism, and five amino acid metabolic pathways (e.g., arginine and proline metabolism) to treat EHLBS. Meanwhile, PRR alleviated BS by upregulating primary bile acid biosynthesis and downregulating glycerophospholipid metabolism. But PRR had no obvious effects on ether lipid metabolism and amino acid metabolism in this stage. In total, 17 and 9 potential effective substances were found in the EHLBS and BS stages, respectively, among which there were only five common compounds between the two stages. To our knowledge, sixteen compounds were regarded as potential effective substances of PRR for the first time. Therefore, the pharmacodynamic mechanisms and effective substances of PRR in the treatment of EHLBS and BS were partly different. Overall, this stage-oriented strategy provides a new way to study the pharmacodynamic mechanisms and effective substances of traditional Chinese drugs.
Collapse
Affiliation(s)
- Jing-Jing Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Feng Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- *Correspondence: Feng Xu, ; Shao-Qing Cai,
| | - Wei Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yi-Fan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Bei-Quan Hao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ming-Ying Shang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Guang-Xue Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yao-Li Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shu-Bin Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Shao-Qing Cai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- *Correspondence: Feng Xu, ; Shao-Qing Cai,
| |
Collapse
|
18
|
Zheng X, Yin M, Chu S, Yang M, Yang Z, Zhu Y, Huang L, Peng H. Comparative Elucidation of Age, Diameter, and "Pockmarks" in Roots of Paeonia lactiflora Pall. (Shaoyao) by Qualitative and Quantitative Methods. FRONTIERS IN PLANT SCIENCE 2022; 12:802196. [PMID: 35154191 PMCID: PMC8826210 DOI: 10.3389/fpls.2021.802196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Paeonia lactiflora Pall. is a world-famous ornamental plant, whose roots have been used as an important traditional Chinese medicine, Shaoyao, to treat diseases for more than 1,000 years. Because of the excellent curative effect of Shaoyao, its quality has attracted wide attention, however, there is a lack of comprehensive research on the different influencing factors of quality of Shaoyao. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q/TOF-MS) and high-performance liquid chromatography with diode-array detection (HPLC-DAD) were utilized to systematically analyze the Shaoyao of different ages, diameters and roots with "pockmarks." 60 metabolites were detected and identified from Shaoyao using the UPLC-Q/TOF-MS, of which 20 potential quality markers of dissected roots with and without "pockmarks" were selected for the first time using the orthogonal partial least squares discriminant analysis (OPLS-DA) and the variable importance for projection (VIP) plot. Then, a selective and accurate HPLC-DAD quantitative assay has been developed for the simultaneous determination of 11 bioactive components in Shaoyao. The results showed that the total content of five monoterpene glycosides including oxypaeoniflorin, albiflorin, paeoniflorin, lactiflorin, and benzoylpaeoniflorin and six phenols including gallic acid, catechin, methyl gallate, ethyl gallate, apiopaeonoside and benzoic acid in the 3-year-old Shaoyao was higher than that of 4-year-old and 5-year-old Shaoyao. In Shaoyao of the same age, the total content of five monoterpene glycosides and six phenols decreased with an increase in diameter. In addition, regardless of whether it is a whole or a divided root, the contents of five monoterpene glycosides and six phenols in Shaoyao with "pockmarks" were higher than those of Shaoyao without "pockmarks." In summary, this work has explored several factors that might affect the quality of Shaoyao, and provide a guide for more comprehensive quality evaluation in its further production, processing, and rational utilization.
Collapse
Affiliation(s)
- Xiaowen Zheng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Minzhen Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Mei Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengyang Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | | | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
- Research Unit of DAO-DI Herbs, Chinese Academy of Medical Sciences, 2019RU57, Beijing, China
| |
Collapse
|
19
|
Fu K, Wang C, Ma C, Zhou H, Li Y. The Potential Application of Chinese Medicine in Liver Diseases: A New Opportunity. Front Pharmacol 2021; 12:771459. [PMID: 34803712 PMCID: PMC8600187 DOI: 10.3389/fphar.2021.771459] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Liver diseases have been a common challenge for people all over the world, which threatens the quality of life and safety of hundreds of millions of patients. China is a major country with liver diseases. Metabolic associated fatty liver disease, hepatitis B virus and alcoholic liver disease are the three most common liver diseases in our country, and the number of patients with liver cancer is increasing. Therefore, finding effective drugs to treat liver disease has become an urgent task. Chinese medicine (CM) has the advantages of low cost, high safety, and various biological activities, which is an important factor for the prevention and treatment of liver diseases. This review systematically summarizes the potential of CM in the treatment of liver diseases, showing that CM can alleviate liver diseases by regulating lipid metabolism, bile acid metabolism, immune function, and gut microbiota, as well as exerting anti-liver injury, anti-oxidation, and anti-hepatitis virus effects. Among them, Keap1/Nrf2, TGF-β/SMADS, p38 MAPK, NF-κB/IκBα, NF-κB-NLRP3, PI3K/Akt, TLR4-MyD88-NF-κB and IL-6/STAT3 signaling pathways are mainly involved. In conclusion, CM is very likely to be a potential candidate for liver disease treatment based on modern phytochemistry, pharmacology, and genomeproteomics, which needs more clinical trials to further clarify its importance in the treatment of liver diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Kim JH, Kim M, Hong S, Kim EY, Lee H, Jung HS, Sohn Y. Albiflorin Promotes Osteoblast Differentiation and Healing of Rat Femoral Fractures Through Enhancing BMP-2/Smad and Wnt/β-Catenin Signaling. Front Pharmacol 2021; 12:690113. [PMID: 34349649 PMCID: PMC8327266 DOI: 10.3389/fphar.2021.690113] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Fracture healing is related to osteogenic differentiation and mineralization. Recently, due to the unwanted side effects and clinical limitations of existing treatments, various natural product-based chemical studies have been actively conducted. Albiflorin is a major ingredient in Paeonia lactiflora, and this study investigated its ability to promote osteogenic differentiation and fracture healing. To demonstrate the effects of albiflorin on osteoblast differentiation and calcified nodules, alizarin red S staining and von Kossa staining were used in MC3T3-E1 cells. In addition, BMP-2/Smad and Wnt/β-catenin mechanisms known as osteoblast differentiation mechanisms were analyzed through RT-PCR and western blot. To investigate the effects of albiflorin on fracture healing, fractures were induced using a chainsaw in the femur of Sprague Dawley rats, and then albiflorin was intraperitoneally administered. After 1, 2, and 3 weeks, bone microstructure was analyzed using micro-CT. In addition, histological analysis was performed by staining the fractured tissue, and the expression of osteogenic markers in serum was measured. The results demonstrated that albiflorin promoted osteoblastogenesis and the expression of RUNX2 by activating BMP-2/Smad and Wnt/β-catenin signaling in MC3T3-E1 cells. In addition, albiflorin upregulated the expression of various osteogenic genes, such as alkaline phosphatase, OCN, bone sialoprotein, OPN, and OSN. In the femur fracture model, micro-CT analysis showed that albiflorin played a positive role in the formation of callus in the early stage of fracture recovery, and histological examination proved to induce the expression of osteogenic genes in femur tissue. In addition, the expression of bone-related genes in serum was also increased. This suggests that albiflorin promotes osteogenesis, bone calcification and bone formation, thereby promoting the healing of fractures in rats.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Minsun Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - SooYeon Hong
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Eun-Young Kim
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyangsook Lee
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyuk-Sang Jung
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Youngjoo Sohn
- Department of Anatomy, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
21
|
Wang M, Liu F, Yao Y, Zhang Q, Lu Z, Zhang R, Liu C, Lin C, Zhu C. Network pharmacology-based mechanism prediction and pharmacological validation of Xiaoyan Lidan formula on attenuating alpha-naphthylisothiocyanate induced cholestatic hepatic injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113816. [PMID: 33444723 DOI: 10.1016/j.jep.2021.113816] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The well-known Chinese prescription, Xiaoyan Lidan Formula (XYLDF), possesses efficiency of heat-clearing, dampness-eliminating and jaundice-removing. It has long been used clinically for the treatment of hepatobiliary diseases due to intrahepatic cholestasis (IHC). However, the mechanism of XYLDF for its therapeutic effects remains elusive. AIM OF THE STUDY The study aimed to explore the potential targets for liver protective mechanism of XYLDF based on network pharmacology and experimental assays in ANIT-induced cholestatic hepatic injury (CHI) in rats. MATERIALS AND METHODS On the basis of the 29 serum migrant compounds of XYLDF elucidated by UPLC-TOF-MS/MS, a network pharmacology approach was applied for the mechanism prediction. Systematic networks were constructed to identify potential molecular targets, biological processes, and signaling pathways. And the interactions between significantly potential targets and active compounds were simulated by molecular docking. For the mechanism validation, an ANIT-induced rat model was used to evaluate the effects of XYLDF on CHI according to serum biochemistry, bile flow rates, histopathological examination, and the gene and protein expression including enzymes related to synthesis, export, and import of bile acid in liver and ileum, and those of inflammatory cytokines, analyzed by RT-qPCR and WB. RESULTS The results of network pharmacology research indicated TNF (TNF-α), RELA (NF-κB), NR1H4 (FXR), and ICAM1 (ICAM-1) to be the important potential targets of XYLDF for cholestatic liver injury, which are related to bile metabolism and NF-κB-mediated inflammatory signaling. And the molecular docking had pre-validated the prediction of network pharmacology, as the core active compounds of XYLDF had shown strong simulation binding affinity with FXR, followed by NF-κB, TNF-α, and ICAM-1. Meanwhile, the effects of XYLDF after oral administration on ANIT-induced CHI in rats exhibited the decreased levels of transaminases (ALT and AST), TBA, and TBIL in serum, raised bile flow rates, and markedly improved hepatic histopathology. Furthermore, consistent to the above targets prediction and molecular docking, XYLDF significantly up-regulated the expression of FXR, SHP, BSEP, and MRP2, and down-regulated CYP7A1 and NTCP in liver, and promoted expression of IBABP and OSTα/β in ileum, suggesting the activation of FXR-mediated pathway referring to bile acid synthesis, transportation, and reabsorption. Moreover, the lower levels of TNF-α in plasma and liver, as well as the reduced hepatic gene and protein expression of NF-κB, TNF-α, and ICAM-1 after XYLDF treatment revealed the suppression of NF-κB-mediated inflammatory signaling pathway, as evidenced by the inhibition of nuclear translocation of NF-κB. CONCLUSIONS XYLDF exhibited an ameliorative liver protective effect on ANIT-induced cholestatic hepatic injury. The present study has confirmed its mechanism as activating the FXR-regulated bile acid pathway and inhibiting inflammation via the NF-κB signaling pathway.
Collapse
MESH Headings
- 1-Naphthylisothiocyanate/toxicity
- Animals
- Bile Acids and Salts/metabolism
- Chemical and Drug Induced Liver Injury/blood
- Chemical and Drug Induced Liver Injury/drug therapy
- Chemical and Drug Induced Liver Injury/pathology
- Cholestasis, Intrahepatic/blood
- Cholestasis, Intrahepatic/chemically induced
- Cholestasis, Intrahepatic/drug therapy
- Cholestasis, Intrahepatic/pathology
- Disease Models, Animal
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Inflammation/drug therapy
- Inflammation/metabolism
- Male
- Metabolic Networks and Pathways/drug effects
- Molecular Docking Simulation
- NF-kappa B/metabolism
- Protective Agents/pharmacology
- Protective Agents/therapeutic use
- Protein Interaction Maps/drug effects
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- Rats
Collapse
Affiliation(s)
- Meiqi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Fangle Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Yufeng Yao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Qiuyu Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Zenghui Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Runjing Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Changhui Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China
| | - Chaozhan Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| | - Chenchen Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No.232 Waihuandong Rd, Guangzhou Higher Education Mega Center, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Zou M, Wang A, Wei J, Cai H, Yu Z, Zhang L, Wang X. An insight into the mechanism and molecular basis of dysfunctional immune response involved in cholestasis. Int Immunopharmacol 2021; 92:107328. [PMID: 33412394 DOI: 10.1016/j.intimp.2020.107328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/12/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
Cholestasis is one of the most common clinical symptom of liver diseases. If patients do not receive effective treatment, cholestasis can evolve into liver fibrosis, cirrhosis and ultimately liver failure requiring liver transplantation. Currently, only ursodeoxycholic acid, obeticholic acid and bezafibrate are FDA-approved drugs, thereby requiring a breakthrough in new mechanisms and therapeutic development. Inflammation is one of the common complications of cholestasis. Hepatic accumulation of toxic hydrophobic bile acids is a highly immunogenic process involving both resident and immigrating immune cells. And the resulting inflammation may further aggravate hepatocyte injury. Though, great investigations have been made in the immune responses during cholestasis, the relationship between immune responses and cholestasis remains unclear. Moreover, scarce reviews summarize the immune responses during cholestasis and the efficacy of therapies on immune response. The main purpose of this paper is to review the existing literature on dysfunctional immune response during cholestasis and the effect of treatment on immune response which may provide an insight for researchers and drug development.
Collapse
Affiliation(s)
- Mengzhi Zou
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Aizhen Wang
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huaian 223002, PR China
| | - Jiajie Wei
- Department of Nursing, School of Medicine, Jiangsu University, Zhenjiang 212013, PR China
| | - Heng Cai
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zixun Yu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luyong Zhang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Xinzhi Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Sun S, Wang Y, Du Y, Sun Q, He L, Zhu E, Li J. Oxidative stress-mediated hepatotoxicity in rats induced by ethanol extracts of different parts of Chloranthus serratus. PHARMACEUTICAL BIOLOGY 2020; 58:1277-1289. [PMID: 33355514 PMCID: PMC7759245 DOI: 10.1080/13880209.2020.1859552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Chloranthus serratus (Thunb.) Roem. et Schult. (Chloranthaceae) is an herb widely used as a folk medicine treating inflammatory diseases, although it is toxic. OBJECTIVE To investigate hepatotoxicity and related mechanisms induced by ethanol extracts of different parts of C. serratus in rats. MATERIALS AND METHODS Sprague Dawley rats were divided into control (Con), ethanol extract of roots (ER), stems (ES), and leaves (EL) groups, and acute oral toxicity studies were conducted. The rats received doses of 4.14, 3.20, and 1.16 g/kg/d extracts for 14 days, respectively. Liver index, liver function and oxidative stress biomarkers, liver pathology, ultrastructure, TNF-α, ICAM-1, and Nrf2/HO-1 proteins expression levels were determined. RESULTS The LD50 of ER, ES, and EL were higher than 10.35, 8.05, and 2.90 g/kg/p.o., respectively. The liver indexes in the extract groups increased significantly. EL dramatically increased TP, GLB, AST, ALT, ALP, TBA, MDA, ICAM-1, and TNF-α levels (p < 0.01), and induced the most obvious pathological and ultrastructural changes. ES and EL obviously decreased the T-SOD, GSH, CAT, and CHOL levels. Nrf2 and HO-1 proteins expression was reduced significantly in ES (0.77 ± 0.06, 2.33 ± 0.20) and EL (0.23 ± 0.04, 2.14 ± 0.16) groups, and reduced slightly in ER (1.08 ± 0.10; 3.39 ± 0.21) group. DISCUSSION AND CONCLUSION ES and EL induce stronger hepatotoxicity than ER through oxidative stress and the Nrf2/HO-1 pathway, and the root is a better medicinal part, which provides a basis for clinical research, safe applications, and reasonable development of C. serratus.
Collapse
Affiliation(s)
- Shuping Sun
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
- Institute of Natural Daily Chemistry, Wannan Medical College, Wuhu, Anhui, China
- CONTACT Shuping Sun College of Pharmacy, Wannan Medical College, No. 22 Wenchang West Road, Higher Education Park, Wuhu, Anhui, China
| | - Yang Wang
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Yunyan Du
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Qi Sun
- College of Pharmacy, Heilongjiang University Of Chinese Medicine, Harbin, Heilongjiang, China
| | - Lijuan He
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Enze Zhu
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| | - Jiarong Li
- College of Pharmacy, Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
24
|
Gao X, Xu J, Liu H. Protective effects of catalpol on mitochondria of hepatocytes in cholestatic liver injury. Mol Med Rep 2020; 22:2424-2432. [PMID: 32705256 PMCID: PMC7411478 DOI: 10.3892/mmr.2020.11337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Cholestasis, which is caused by the obstruction of bile flow, can lead to rapid organ injury, cell apoptosis and necrosis of hepatocytes, and may eventually develop into fibrosis and cirrhosis. Oxidative stress and mitochondrial dysfunction are the key pathogenic signs of hepatic cholestasis. Catalpol has pharmacological activities, including antioxidative and anti-inflammatory effects, and may relieve mitochondrial damage and restore mitochondrial membrane potential. However, the potential roles and mechanisms of catalpol in cholestasis-induced liver injury are not clear. In the present study, liver function-related indexes were measured in the serum of mice by commercial kits. In addition, levels of serum inflammatory factors were detected by ELISA. Hematoxylin and eosin staining was performed to observe histopathological changes, and mitochondrial membrane potential was detected using JC-1 staining. Mitochondrial adenosine triphosphate (ATP), reactive oxygen species (ROS) and malondialdehyde levels were determined using a luciferase reporter kit, flow cytometry and a thiobarbituric acid reactive substance assay kit, respectively. Western blotting was performed to detect the expression levels of apoptosis-related proteins in liver tissues. The findings revealed that catalpol reduced liver damage caused by cholestasis, improved the mitochondrial membrane potential, and increased the ATP content and glutathione content of cholestasis model mice. Moreover, catalpol also reduced the ROS level, inhibited lipid peroxidation, and regulated oxidative stress and apoptotic protein expression. Thus, the present study preliminarily confirmed that catalpol can reduce liver injury in a mouse model of cholestasis through inhibiting oxidative stress and enhancing mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xingjuan Gao
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Jiaju Xu
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Hongbo Liu
- Department of Pediatrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
25
|
Tan YQ, Chen HW, Li J, Wu QJ. Efficacy, Chemical Constituents, and Pharmacological Actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front Pharmacol 2020; 11:1054. [PMID: 32754038 PMCID: PMC7365904 DOI: 10.3389/fphar.2020.01054] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Radix Paeoniae Rubra and Radix Paeoniae Alba are the different characteristic forms of Paeonia lactiflora Pall. They are widely used as traditional Chinese medicines in clinical practices. This study analyzes the development history, efficacy, chemical compositions, and pharmacological effects of Radix Paeoniae Rubra and Radix Paeoniae Alba, and explores the causes of the similarities and differences of these two amalgams. It provides a basis for the clinical application of these two Chinese medicinal materials, and lays a foundation for further study of the pharmacological effects and the quality identification of Paeonia lactiflora Pall as it applies to traditional Chinese medicine.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Heng-Wen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Juan Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
26
|
Ma X, Zhang W, Jiang Y, Wen J, Wei S, Zhao Y. Paeoniflorin, a Natural Product With Multiple Targets in Liver Diseases-A Mini Review. Front Pharmacol 2020; 11:531. [PMID: 32410996 PMCID: PMC7198866 DOI: 10.3389/fphar.2020.00531] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Paeoniflorin is derived from Paeonia suffruticosa Andr., Paeonia lactiflora Pall., or Paeonia veitchii Lynch and has been used in traditional medical applications for more than 2,000 years. Paeoniflorin is a monoterpenoid glycoside with various effects on liver diseases. Recent studies have revealed that paeoniflorin demonstrates a wide range of activities, including hepatic protection, cholestasis alleviation, liver fibrosis attenuation, nonalcoholic fatty liver disease prevention, and hepatocellular carcinoma inhibition involved in multiple pathways. Moreover, anti-inflammation, antioxidation, and immune regulation with the regulation of TLR4-NF-κB, ROCK/NF-κB, HO-1, mitochondria-dependent as well as HMGB1‐TLR4 signaling pathways are correlated with hepatic protection in liver injury and nonalcoholic fatty liver disease. Antioxidative mechanisms, anti-inflammation, and hepatic transporter regulation involved in NOX4, PI3K/Akt/Nrf2, NF‐κB, NTCP, BSEP, as well as MRP2 signals are mainly relevant to the anticholestatic effect of paeoniflorin. The inhibition of hepatic stellate cell activation and alleviation of extracellular matrix deposition via vast signals such as mTOR/HIF-1α, TGF-β1/Smads, and JAK2/STAT6 are primarily involved in the antifibrotic effect of paeoniflorin. The regulation of macrophages also contributes to the alleviation effect on liver fibrosis. In addition, the reduction of invasion, metastasis, and adhesion and the induction of apoptosis-related targets, including Bax, Bcl-2, and caspase-3, are related to its effect on hepatocellular carcinoma. The literature indicates that paeoniflorin might have potent efficacy in complex liver diseases and demonstrates the profound medicinal value of paeoniflorin.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Shizhang Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
27
|
Wang X, Wang G, Qu J, Yuan Z, Pan R, Li K. Calcipotriol Inhibits NLRP3 Signal Through YAP1 Activation to Alleviate Cholestatic Liver Injury and Fibrosis. Front Pharmacol 2020; 11:200. [PMID: 32296329 PMCID: PMC7136474 DOI: 10.3389/fphar.2020.00200] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestasis is common in multiple clinical circumstances. The NOD-like receptor protein 3 (NLRP3) inflammasome pathway has been demonstrated to play an important role in liver injury and fibrosis induced by cholestasis. We previously proved that MCC950, a selective NLRP3 inhibitor, alleviates liver fibrosis and injury in experimental liver cholestasis induced by bile-duct ligation (BDL) in mice. Herein, we investigate the role of calcipotriol, a potent vitamin D receptor agonist, in experimental liver cholestasis, test its therapeutic efficacy, and explore its potential protective mechanism. C57BL/6 mice were made to undergo BDL or fed the 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to establish two classic cholestatic models. Calcipotriol was administered intraperitoneally to these mice daily. Serum makers of liver damage and integrity, liver histological changes, levels of liver pro-fibrotic markers, bile acid synthetases and transporters were measured in vivo. The underlying mechanism by which calcipotriol alleviates cholestatic liver injury and fibrosis was further investigated. The results of the current study demonstrated that calcipotriol supplement significantly alleviate cholestatic liver injury and fibrosis. Moreover, calcipotriol supplement markedly inhibited NLRP3 inflammasome pathway activation to alleviate liver injury and fibrosis in vivo and inhibit hepatic stellate cell (HSC) activation in vitro. In addition, VDR agonist calcipotriol exert inhibitory effect on NLRP3 inflammasome activation through activating yes-associated protein 1 (YAP1). In conclusion, our findings proved that calcipotriol suppressed the NLRP3 signal by activating YAP1 to alleviate liver injury and retard fibrogenesis in cholestasis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guiyang Wang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Second Military Medical University, Shanghai, China
| | - Junwen Qu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruogu Pan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kewei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Zhang Z, Miao Y, Xu M, Cheng W, Yang C, She X, Geng Q, Zhang Q. TianJiu therapy for α-naphthyl isothiocyanate-induced intrahepatic cholestasis in rats treated with fresh Ranunculus sceleratus L. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112310. [PMID: 31629027 DOI: 10.1016/j.jep.2019.112310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 10/07/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE TianJiu (TJ) therapy, one type of cold moxibustion, applies to specific acupuncture points with herbal patches of hot nature, providing a constant irritant to the skin until the presence of hyperemia and blistering. Traditional and clinical reports suggest that TJ is an effective therapy for the treatment of jaundice with fresh Ranunculus sceleratus L. (RS), in which protoanemonin is one of the main irritant constituents. However, the therapeutic effect of TJ treatment with fresh RS against intrahepatic cholestasis has not been studied in animal experiments. AIM OF THE STUDY Present study was undertaken to investigate the effect of TJ treatment with fresh RS against intrahepatic cholestasis in rats and provide an experimental basis for the underlying mechanism of TJ therapy. MATERIALS AND METHODS Male intrahepatic cholestatic Sprague-Dawley rats induced by 2% α-naphthylisothiocyanate (ANIT, 80 mg/kg B.W.) were treated by TJ therapy with fresh RS. The levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (DBIL), total bilirubin (TBIL), total bile acid (TBA), hepatic malondialdehyde (MDA) and nitric monoxide (NO), as well as hepatic body ratio, bile flow and hepatic histopathological assay were measured and evaluated to investigate the therapeutic effect of TJ treatment with fresh RS. Phytochemical analysis of fresh and dried RS was performed by gas chromatography-mass spectrometer (GC-MS). RESULTS After TJ treatment with fresh RS, the abnormally elevated levels of serum AST, ALT, ALP, DBIL, TBIL and TBA, as well as hepatic MDA and NO at 108 h were reduced significantly (versus model group, P < 0.01). The hepatic body ratio, bile flow and hepatic pathological change of cholestatic rats at 108 h in TJ group were restored when compared with those of model group. Thirty-one compounds including lactones, flavonoids and phenolic acids were identified and determined by GC-MS analysis. The content of protoanemonin in fresh RS (9.49%) was about 25-fold higher than that in dried RS (0.38%). CONCLUSIONS TJ treatment with fresh RS exhibited good therapeutic effect on ANIT-induced intrahepatic cholestasis in rats, which may be due to the attenuated oxidative stress in the liver tissue. It is rational for the ancients to choose fresh RS as TJ herbal patches because of its abundant protoanemonin with the character of irritant. The qualitative and quantitative results of GC-MS analysis provided the chemical basis of TJ therapy with fresh RS, which can be regarded as a simple and efficient method for the treatment of cholestasis hepatitis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Yiru Miao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Min Xu
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Wenming Cheng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| | - Chuanyan Yang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Xiangjian She
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qianqian Geng
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qunlin Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|