1
|
Costa JP, Jesus S, Colaço M, Duarte A, Soares E, Borges O. Endotoxin contamination of nanoparticle formulations: A concern in vaccine adjuvant mechanistic studies. Vaccine 2023; 41:3481-3485. [PMID: 37121804 DOI: 10.1016/j.vaccine.2023.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/02/2023]
Abstract
The increasing awareness of endotoxin contamination has raised important questions during the study of the mechanism of action of the vaccine adjuvants. The endotoxins or lipopolysaccharides (LPS) can contaminate vaccine formulations contributing to result misinterpretations of the in vitro and in vivo studies. In this short communication, we considered the suitability of the Limulus amebocyte lysate (LAL) assay to quantify chitosan (Chit) nanoparticle (NP) endotoxin contamination to use them in a comparative in vitro immunotoxicology study using both LPS-free (LF) and non-LF Chit NPs. It was shown that chit NPs had a masking effect on endotoxin levels, hampering a reliable conclusion about the effect of their contamination. Neither non-LF nor LF Chit NPs induced the production of ROS in RAW 264.7 cells or IL-6 and TNF-α in PBMCs. The lack of effect of non-LF NPs was not expected and likely due to the NPs masking effect, more evident for higher deacetylation degree Chit. Overall, to prevent questionable results, nanomaterials should be produced under endotoxin-free conditions.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra Jesus
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Mariana Colaço
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alana Duarte
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Edna Soares
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
2
|
Reay SL, Jackson EL, Salthouse D, Ferreira AM, Hilkens CMU, Novakovic K. Effective Endotoxin Removal from Chitosan That Preserves Chemical Structure and Improves Compatibility with Immune Cells. Polymers (Basel) 2023; 15:polym15071592. [PMID: 37050208 PMCID: PMC10096541 DOI: 10.3390/polym15071592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Chitosan is one of the most researched biopolymers for healthcare applications, however, being a naturally derived polymer, it is susceptible to endotoxin contamination, which elicits pro-inflammatory responses, skewing chitosan's performance and leading to inaccurate conclusions. It is therefore critical that endotoxins are quantified and removed for in vivo use. Here, heat and mild NaOH treatment are investigated as facile endotoxin removal methods from chitosan. Both treatments effectively removed endotoxin to below the FDA limit for medical devices (<0.5 EU/mL). However, in co-culture with peripheral blood mononuclear cells (PBMCs), only NaOH-treated chitosan prevented TNF-α production. While endotoxin removal is the principal task, the preservation of chitosan's structure is vital for the synthesis and lysozyme degradation of chitosan-based hydrogels. The chemical properties of NaOH-treated chitosan (by FTIR-ATR) were significantly similar to its native composition, whereas the heat-treated chitosan evidenced macroscopic chemical and physical changes associated with the Maillard reaction, deeming this treatment unsuitable for further applications. Degradation studies conducted with lysozyme demonstrated that the degradation rates of native and NaOH-treated chitosan-genipin hydrogels were similar. In vitro co-culture studies showed that NaOH hydrogels did not negatively affect the cell viability of monocyte-derived dendritic cells (moDCs), nor induce phenotypical maturation or pro-inflammatory cytokine release.
Collapse
Affiliation(s)
- Sophie L Reay
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Emma L Jackson
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Daniel Salthouse
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Catharien M U Hilkens
- Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Katarina Novakovic
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Portela LCPN, Cahú TB, Bezerra TS, Santos DKDDN, Sousa GF, Portela RWS, Melo CML, Bezerra RDS. Biocompatibility and immunostimulatory properties of fish collagen and shrimp chitosan towards peripheral blood mononuclear cells (PBMCs). Int J Biol Macromol 2022; 210:282-291. [PMID: 35533847 DOI: 10.1016/j.ijbiomac.2022.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
Several naturally occurring biopolymers are commercially produced from livestock and farmed animals processing wastes, including aquatic organisms. These wastes are considered valuable coproducts of fishery processing industry, from which biopolymers may be recovered and exploited for their bioactive potential. The aim of this work was to prepare polymeric films from collagen and chitosan solutions, extracted from fishery discards, and investigate the cytotoxicity and immunomodulatory activity towards human peripheral blood mononuclear cells (PBMCs). PBMCs were isolated from healthy donors and treated with Chitosan, Collagen, Chitosan+Collagen solutions and Chitosan+Collagen film in order to measure the changes in cell viability, cytosolic calcium concentration ([Ca2+]cyt), mitochondrial membrane potential (ΔΨm), reactive oxygen species (ROS) levels, differentiation and activation of T CD8+ and CD4+ lymphocytes, and cytokine production. Results showed that collagen and chitosan preparations did not show cytotoxic effect, while cellular IL-6, IL-10, and TNF-α release was observed. Chitosan and collagen were able to promote non-cytotoxic PBMCs activation through cytosolic and mitochondrial ROS production. There was a noteworthy phenotyping of lymphocytes T CD8+ and CD4+ counting and an increase of [Ca2+] cyt and ΔΨm levels. These results suggest that chitosan/collagen-based biomaterials produce immunostimulatory effects on PBMC with potential to biomedical approaches.
Collapse
Affiliation(s)
- Lidiane Cristina Pinho Nascimento Portela
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Thiago Barbosa Cahú
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Thaís Santos Bezerra
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Dayane Kelly Dias do Nascimento Santos
- Laboratório de Análises Imunológicas e Antitumorais (LAIA), Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - Georon Ferreira Sousa
- Laboratório de Análises Imunológicas e Antitumorais (LAIA), Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - Rogério William Santos Portela
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil
| | - Cristiane Moutinho Lagos Melo
- Laboratório de Análises Imunológicas e Antitumorais (LAIA), Departamento de Antibióticos, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901 Recife, Pernambuco, Brazil
| | - Ranilson de Souza Bezerra
- Laboratório de Enzimologia (LABENZ), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-910 Recife, Pernambuco, Brazil.
| |
Collapse
|
4
|
A Novel Method of Endotoxins Removal from Chitosan Hydrogel as a Potential Bioink Component Obtained by CO2 Saturation. Int J Mol Sci 2022; 23:ijms23105505. [PMID: 35628316 PMCID: PMC9143515 DOI: 10.3390/ijms23105505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
The article presents a new approach in the purification of chitosan (CS) hydrogel in order to remove a significant amount of endotoxins without changing its molecular weight and viscosity. Two variants of the method used to purify CS hydrogels from endotoxins were investigated using the PyroGene rFC Enzymatic Cascade assay kit. The effect of the CS purification method was assessed in terms of changes in the dynamic viscosity of its hydrogels, the molecular weight of the polymer, microbiological purity after refrigerated storage and cytotoxicity against L929 cells based on the ISO 10993-5:2009(E) standard. The proposed purification method 1 (M1) allows for the removal of significant amounts of endotoxins: 87.9–97.6% in relation to their initial concentration in the CS hydrogel without affecting the solution viscosity. Moreover, the final solutions were sterile and microbiologically stable during storage. The M1 purification method did not change the morphology of the L929 cells.
Collapse
|
5
|
Mei Z, Huang X, Zhang H, Cheng D, Xu X, Fang M, Hu J, Liu Y, Liang Y, Mei Y. Chitin derivatives ameliorate DSS-induced ulcerative colitis by changing gut microbiota and restoring intestinal barrier function. Int J Biol Macromol 2022; 202:375-387. [PMID: 35063480 DOI: 10.1016/j.ijbiomac.2022.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023]
Abstract
Chitin derivatives (CDs), including chitosan (CS), chitooligosaccharides (COS), and glucosamine (GlcN), were administrated in dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) mice. UC symptoms such as body weight loss, reduced food intake, and increased disease activity index were relieved (except GlcNL group). CDs (except GlcNL) exerted a strong protective effect on colon length and colonic structure. Treatment with CDs (except GlcNL) increased IL-10 level, reduced levels of IL-1β, IL-6, TNF-α, myeloperoxidase, and inducible nitric oxide synthase, and enhanced expression of tight junction proteins significantly. CDs (except GlcNL) significantly upregulated IκB-α level, and downregulated p65 and p38 phosphory lation and TLR-4 mRNA transcription level, indicating inhibition of TRL-4/NF-κB/MAPK signaling pathway activity. CD treatments increased relative abundance of gut microbiota, modulated its composition, and increased the concentrations of SCFAs. Our findings indicate that CDs exert an ameliorative effect on UC by change of gut microbiota composition and restoration of intestinal barrier function.
Collapse
Affiliation(s)
- Zewen Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xingxi Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Heng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Danyi Cheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xin Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingyue Fang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jutuan Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yangyang Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuxia Mei
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Chen J, Zhou Z, Zheng C, Liu Y, Hao R, Ji X, Xi Q, Shen J, Li Z. Chitosan oligosaccharide regulates AMPK and STAT1 pathways synergistically to mediate PD-L1 expression for cancer chemoimmunotherapy. Carbohydr Polym 2022; 277:118869. [PMID: 34893274 DOI: 10.1016/j.carbpol.2021.118869] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
After regular chemotherapy, the expression of programmed cell death ligand 1 (PD-L1) in almost all kinds of cancers is significantly increased, leading to reduced efficacy of T cell mediated immune killing in tumors. To solve this, a lot of PD-L1 antibodies were produced and used, but their high cost and serious toxic side effects still limit its usage. Recently, small molecule compounds that could effectively regulate PD-L1 expression possess the edges to solve the problems of PD-L1 antibodies. Chitosan oligosaccharide (COS), a biomaterial derived from the N-deacetylation product of chitin, has a broad spectrum of biological activities in treating tumors. However, the mechanism of its anti-cancer effect is still not well understood. Here, for the first time, we clearly identified that COS could inhibit the upregulated PD-L1 expression induced by interferon γ (IFN-γ) in various tumors via the AMPK activation and STAT1 inhibition. Besides, COS itself significantly restricted the growth of CT26 tumors by enhancing the T cell infiltration in tumors. Furthermore, we observed that combining COS with Gemcitabine (GEM), one of the typical chemotherapeutic drugs, leaded to a more remarkable tumor remission. Therefore, it was demonstrated that COS could be used as a useful way to improve the efficacy of existing chemotherapies by effective PD-L1 downregulation.
Collapse
Affiliation(s)
- Jiashe Chen
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Zaigang Zhou
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Chunjuan Zheng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruiqi Hao
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiaolin Ji
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qiaoer Xi
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China.
| | - Zhiming Li
- Department of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
7
|
Improvement in phenotype homeostasis of macrophages by chitosan nanoparticles and subsequent impacts on liver injury and tumor treatment. Carbohydr Polym 2022; 277:118891. [PMID: 34893293 DOI: 10.1016/j.carbpol.2021.118891] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022]
Abstract
When organic polymer-based drug nanocarriers become concentrated in macrophages, their influence on macrophage polarization has been rarely reported. This study prepared chitosan-based nanoparticles (CNs, 181.5 nm, +14.83 mV) and detected their impacts on macrophage reprogram. RT-PCR results showed in M1-like RAW264.7 cells (Mφ1), CNs decreased CD86 and iNOS expressions by 53.8% and 57.1%, and increased Arg-1 and IL-10 by 642.9% and 102.1%; in M2-like cells (Mφ2), CNs reduced Arg-1 and MR expressions by 70.7% and 93.0%, but increased CD86, iNOS and TNF-α by 290.4%, 86.2% and 728.6%; these results, consistent with cytokine secretions and surface CD86/CD206 expressions, showed CNs polarized Mφ1 and Mφ2 toward opposite type so as to improve the macrophage polarization homeostasis. In CCl4-induced mouse liver injury model, CNs reduced the hepatic Mφ1/Mφ2 ratio from 1.1 (model group) to 0.3, and then reduced the serum AST and ALT level by 42.3% and 39.0%; in mouse model of hepatocellular carcinoma, CNs decreased the number of CD163-positive cells and increased CD86-positive ones in tumor, and subsequently inhibited the tumor growth and metastasis. This study suggests CNs can improve the phenotype homeostasis of macrophages and subsequently promote the treatment of certain diseases such as liver injury and tumor.
Collapse
|
8
|
Young ID, Nepogodiev SA, Black IM, Le Gall G, Wittmann A, Latousakis D, Visnapuu T, Azadi P, Field RA, Juge N, Kawasaki N. Lipopolysaccharide associated with β-2,6 fructan mediates TLR4-dependent immunomodulatory activity in vitro. Carbohydr Polym 2022; 277:118606. [PMID: 34893207 DOI: 10.1016/j.carbpol.2021.118606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Levan, a β-2,6 fructofuranose polymer produced by microbial species, has been reported for its immunomodulatory properties via interaction with toll-like receptor 4 (TLR4) which recognises lipopolysaccharide (LPS). However, the molecular mechanisms underlying these interactions remain elusive. Here, we investigated the immunomodulatory properties of levan using thoroughly-purified and characterised samples from Erwinia herbicola and other sources. E. herbicola levan was purified by gel-permeation chromatography and LPS was removed from the levan following a novel alkali treatment developed in this study. E. herbicola levan was then characterised by gas chromatography-mass spectrometry and NMR. We found that levan containing LPS, but not LPS-depleted levan, induced TLR4-mediated cytokine production by bone marrow-derived dendritic cells and/or activated TLR4 reporter cells. These data indicated that the immunomodulatory properties of the levan toward TLR4-expressing immune cells were mediated by the LPS. This work also demonstrates the importance of LPS removal when assessing the immunomodulatory activity of polysaccharides.
Collapse
Affiliation(s)
- Ian D Young
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Sergey A Nepogodiev
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ian M Black
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Gwenaelle Le Gall
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Alexandra Wittmann
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | | | - Triinu Visnapuu
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602, USA
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Norihito Kawasaki
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK.
| |
Collapse
|
9
|
Bhatt N, Brier-Jones J, Trosan D, Brinkley C, Pecoraro J, Smallwood J, Crofton A, Hudson S, Kirsch W, Stapelmann K, Shannon S. Depyrogenation using Plasmas: A Novel Approach for Endotoxin Deactivation Using a Dielectric Barrier Discharge at Atmospheric Pressure. PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2100089. [PMID: 34899113 PMCID: PMC8654132 DOI: 10.1002/ppap.202100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/28/2021] [Indexed: 06/14/2023]
Abstract
Developing a low-cost depyrogenation process is vital in extending medical applicability of polymers that can be used in medicine. We present an overview of the plasma-based depyrogenation literature and address the need to develop a non-thermal plasma-based depyrogenation process for delicate materials such as chitosan. We present a low-cost plasma apparatus to treat chitosan powder in hermetically sealed bags. We decouple the experiments into two; depyrogenation experiments for dried standard endotoxin on glass slides, and chitosan modifications analysis through FTIR spectroscopy. We demonstrate depyrogenation efficacy with up to a 4-log reduction in endotoxin levels and discuss minor changes observed in plasma-treated chitosan.
Collapse
Affiliation(s)
- Naman Bhatt
- Department of Nuclear Engineering, North Carolina State University, North Carolina, USA
| | | | - Duncan Trosan
- Department of Nuclear Engineering, North Carolina State University, North Carolina, USA
| | - Cade Brinkley
- Department of Nuclear Engineering, North Carolina State University, North Carolina, USA
| | - Joshua Pecoraro
- Department of Nuclear Engineering, North Carolina State University, North Carolina, USA
| | - Jann Smallwood
- Neurosurgery Center for Research, Training, and Education, School of Medicine, Loma Linda University, California, USA
| | - Andrew Crofton
- Karamedica, Inc., North Carolina, USA
- Department of Anatomy, School of Medicine, Case Western Reserve University, Ohio, USA
| | - Samuel Hudson
- Karamedica, Inc., North Carolina, USA
- Wilson College of Textiles, North Carolina State University, North Carolina, USA
| | - Wolff Kirsch
- Karamedica, Inc., North Carolina, USA
- Neurosurgery Center for Research, Training, and Education, School of Medicine, Loma Linda University, California, USA
- Division of Biochemistry, School of Medicine, Loma Linda University, California, USA
| | - Katharina Stapelmann
- Department of Nuclear Engineering, North Carolina State University, North Carolina, USA
| | - Steven Shannon
- Department of Nuclear Engineering, North Carolina State University, North Carolina, USA
| |
Collapse
|
10
|
Hannon G, Prina-Mello A. Endotoxin contamination of engineered nanomaterials: Overcoming the hurdles associated with endotoxin testing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1738. [PMID: 34254460 DOI: 10.1002/wnan.1738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 12/30/2022]
Abstract
Nanomaterials are highly susceptible to endotoxin contamination due their large surface-to-volume ratios and endotoxins propensity to associate readily to hydrophobic and cationic surfaces. Additionally, the stability of endotoxin ensures it cannot be removed efficiently through conventional sterilization techniques such as autoclaving and ionizing radiation. In recent times, the true significance of this hurdle has come to light with multiple reports from the United States Nanotechnology Characterization Laboratory, in particular, along with our own experiences of endotoxin testing from multiple Horizon 2020-funded projects which highlight the importance of this issue for the clinical translation of nanomaterials. Herein, we provide an overview on the topic of endotoxin contamination of nanomaterials intended for biomedical applications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Gary Hannon
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Nanomedicine and Molecular Imaging Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, Dublin, Ireland.,Laboratory of Biological Characterization of Advanced Materials (LBCAM), Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.,Advanced Materials and Bioengineering Research (AMBER) Centre, CRANN institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
11
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|
12
|
Chitooligosaccharides inhibit tumor progression and induce autophagy through the activation of the p53/mTOR pathway in osteosarcoma. Carbohydr Polym 2021; 258:117596. [DOI: 10.1016/j.carbpol.2020.117596] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
|
13
|
Jesus S, Bernardi N, da Silva J, Colaço M, Panão Costa J, Fonte P, Borges O. Unravelling the Immunotoxicity of Polycaprolactone Nanoparticles-Effects of Polymer Molecular Weight, Hydrolysis, and Blends. Chem Res Toxicol 2020; 33:2819-2833. [PMID: 33050694 DOI: 10.1021/acs.chemrestox.0c00208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poly-ε-caprolactone (PCL) is a biodegradable polyester that has FDA and CE approval as a medical device. Nonetheless, the lack of toxicity exhibited by the polymer cannot be extrapolated to its nanomaterial conformation. Despite PCL-based NPs being widely studied in the biomedical field for their advantages as controlled drug delivery systems, little data describe PCL NPs' toxicity, particularly immunotoxicity. This work assessed different PCL-based delivery systems intended for protein delivery regarding their immunotoxicity and hemocompatibility. Two different molecular weight PCL polymers were used, as well as blends with chitosan and glucan. Results showed that the presence of NaOH during the production of PCL2 NPs and PCL2/glucan NPs induced PCL alkali hydrolysis, generating more reactive groups (carboxyl and hydroxyl) that contributed to an increased toxicity of the NPs (higher reduction in peripheral blood mononuclear cell viability and lower hemocompatibility). PCL2/glucan NPs showed an anti-inflammatory activity characterized by the inhibition of LPS stimulated nitric oxide (NO) and TNF-α. In conclusion, generalizations among different PCL NP delivery systems must be avoided, and immunotoxicity assessments should be performed in the early stage of product development to increase the clinical success of the nanomedicine.
Collapse
Affiliation(s)
- Sandra Jesus
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Natalia Bernardi
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Jessica da Silva
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Colaço
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Panão Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Pedro Fonte
- Center for Marine Sciences (CCMAR), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.,iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
14
|
Feng R, Yu F, Xu J, Hu X. Knowledge gaps in immune response and immunotherapy involving nanomaterials: Databases and artificial intelligence for material design. Biomaterials 2020; 266:120469. [PMID: 33120200 DOI: 10.1016/j.biomaterials.2020.120469] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 12/18/2022]
Abstract
Exploring the interactions between the immune system and nanomaterials (NMs) is critical for designing effective and safe NMs, but large knowledge gaps remain to be filled prior to clinical applications (e.g., immunotherapy). The lack of databases on interactions between the immune system and NMs affects the discovery of new NMs for immunotherapy. Complement activation and inhibition by NMs have been widely studied, but the general rules remain unclear. Biomimetic nanocoating to promote the clearance of NMs by the immune system is an alternative strategy for the immune response mediation of the biological corona. Immune response predictions based on NM properties can facilitate the design of NMs for immunotherapy, and artificial intelligences deserve much attention in the field. This review addresses the knowledge gaps regarding immune response and immunotherapy in relation to NMs, effective immunotherapy and material design without adverse immune responses.
Collapse
Affiliation(s)
- Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fubo Yu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jing Xu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
15
|
Zhang X, Yang H, Zheng J, Jiang N, Sun G, Bao X, Lin A, Liu H. Chitosan oligosaccharides attenuate loperamide-induced constipation through regulation of gut microbiota in mice. Carbohydr Polym 2020; 253:117218. [PMID: 33278982 DOI: 10.1016/j.carbpol.2020.117218] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
This study was designed to explore the improvement of chitosan oligosaccharides (COS) on constipation through regulation of gut microbiota. Here, we proved that COS treatment profoundly boosted intestinal motility, restrained inflammatory responses, improved water-electrolyte metabolism and prevented gut barrier damage in constipated mice induced by loperamide. By 16S rDNA gene sequencing, the disbalanced gut microbiota was observed in constipated mice, while COS treatment statistically reversed the abundance changes of several intestinal bacteria at either phylum, family and genus levels, which partly led to the balance in production of intestinal metabolites including bile acids, short-chain fatty acids and tryptophan catabolites. In addition, COS failed to relieve the constipation in mice with intestinal flora depletion, confirming the essentiality of gut microbiota in COS-initiated prevention against constipation. In summary, COS can ameliorate the development of loperamide-induced constipation in mice by remodeling the structure of gut microbial community.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430060, PR China; Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China
| | - Nan Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, PR China
| | - Guangjun Sun
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, PR China
| | - Xinkun Bao
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, PR China
| | - Aizhen Lin
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, PR China; Hubei Province Academy of Traditional Chinese Medicine, Wuhan, 430074, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, 430065, PR China; Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, PR China
| |
Collapse
|
16
|
Jesus S, Marques AP, Duarte A, Soares E, Costa JP, Colaço M, Schmutz M, Som C, Borchard G, Wick P, Borges O. Chitosan Nanoparticles: Shedding Light on Immunotoxicity and Hemocompatibility. Front Bioeng Biotechnol 2020; 8:100. [PMID: 32154232 PMCID: PMC7047933 DOI: 10.3389/fbioe.2020.00100] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) assumed an important role in the area of drug delivery. Despite the number of studies including NPs are growing over the last years, their side effects on the immune system are often ignored or omitted. One of the most studied polymers in the nano based drug delivery system field is chitosan (Chit). In the scientific literature, although the physicochemical properties [molecular weight (MW) or deacetylation degree (DDA)] of the chitosan, endotoxin contamination and appropriate testing controls are rarely reported, they can strongly influence immunotoxicity results. The present work aimed to study the immunotoxicity of NPs produced with different DDA and MW Chit polymers and to benchmark it against the polymer itself. Chit NPs were prepared based on the ionic gelation of Chit with sodium tripolyphosphate (TPP). This method allowed the production of two different NPs: Chit 80% NPs (80% DDA) and Chit 93% NPs (93% DDA). In general, we found greater reduction in cell viability induced by Chit NPs than the respective Chit polymers when tested in vitro using human peripheral blood monocytes (PBMCs) or RAW 264.7 cell line. In addition, Chit 80% NPs were more cytotoxic for PBMCs, increased reactive oxygen species (ROS) production (above 156 μg/mL) in the RAW 264.7 cell line and interfered with the intrinsic pathway of coagulation (at 1 mg/mL) when compared to Chit 93% NPs. On the other hand, only Chit 93% NPs induced platelet aggregation (at 2 mg/mL). Although Chit NPs and Chit polymers did not stimulate the nitric oxide (NO) production in RAW 264.7 cells, they induced a decrease in lipopolysaccharide (LPS)-induced NO production at all tested concentrations. None of Chit NPs and polymers caused hemolysis, nor induced PBMCs to secrete TNF-α and IL-6 cytokines. From the obtained results we concluded that the DDA of the Chit polymer and the size of Chit NPs influence the in vitro immunotoxicity results. As the NPs are more cytotoxic than the corresponding polymers, one should be careful in the extrapolation of trends from the polymer to the NPs, and in the comparisons among delivery systems prepared with different DDA chitosans.
Collapse
Affiliation(s)
- Sandra Jesus
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Patrícia Marques
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Alana Duarte
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Edna Soares
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - João Panão Costa
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mariana Colaço
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Mélanie Schmutz
- Laboratory for Technology and Society, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Claudia Som
- Laboratory for Technology and Society, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa Swiss Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Olga Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Soares E, Groothuismink ZMA, Boonstra A, Borges O. Glucan Particles Are a Powerful Adjuvant for the HBsAg, Favoring Antiviral Immunity. Mol Pharm 2019; 16:1971-1981. [PMID: 30964694 DOI: 10.1021/acs.molpharmaceut.8b01322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The lack of vaccine adjuvants that are able to induce robust T cell responses fosters the search for more powerful options. Pathogen-like particles are a promising approach. The adjuvant activity of pathogen-like particles is highly influenced by size and surface composition. This study aimed to evaluate the adjuvant potential of two different β-glucan-based particles, blend chitosan/β-glucan particles (ChiGluPs), which are positively charged and have mean size of 1276 nm, and neutral yeast-derived glucan particles (GPs), with a mean size of 3 μm. Additionally, chitosan particles (ChiPs) were used to understand the effect of β-glucan addition (ChiGluPs). Mouse spleen cells responded through the production of either TNF-α or RANTES, following in vitro stimulation with particles containing either β-glucan (ChiGluPs and GPs) or chitosan (ChiGluPs and ChiPs). Human monocytes responded to all particles through TNF-α secretion. Subcutaneous vaccination of mice with the hepatitis B surface antigen (HBsAg) showed increased serum IgG for all particles compared to HBsAg alone (435-, 4500-, or 2500-fold increase for either ChiPs, ChiGluPs, or GPs). Interestingly, only GPs elicited the secretion of HBsAg-specific Th1, Th2, Th9, Th17, Th22, and Treg-related cytokines. This study demonstrates, for the first time, that GPs can have a significant role against the hepatitis B virus by favoring antiviral immunity.
Collapse
Affiliation(s)
- Edna Soares
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal.,Faculty of Pharmacy, Pólo das Ciências da Saúde Azinhaga de Santa Comba , University of Coimbra , 3000-548 Coimbra , Portugal
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology , Erasmus University Medical Center , 3015 GD Rotterdam , The Netherlands
| | - André Boonstra
- Department of Gastroenterology and Hepatology , Erasmus University Medical Center , 3015 GD Rotterdam , The Netherlands
| | - Olga Borges
- Center for Neuroscience and Cell Biology , University of Coimbra , 3004-517 Coimbra , Portugal.,Faculty of Pharmacy, Pólo das Ciências da Saúde Azinhaga de Santa Comba , University of Coimbra , 3000-548 Coimbra , Portugal
| |
Collapse
|