1
|
Roberts WR, Ruck EC, Downey KM, Pinseel E, Alverson AJ. Resolving Marine-Freshwater Transitions by Diatoms Through a Fog of Gene Tree Discordance. Syst Biol 2023; 72:984-997. [PMID: 37335140 DOI: 10.1093/sysbio/syad038] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023] Open
Abstract
Despite the obstacles facing marine colonists, most lineages of aquatic organisms have colonized and diversified in freshwaters repeatedly. These transitions can trigger rapid morphological or physiological change and, on longer timescales, lead to increased rates of speciation and extinction. Diatoms are a lineage of ancestrally marine microalgae that have diversified throughout freshwater habitats worldwide. We generated a phylogenomic data set of genomes and transcriptomes for 59 diatom taxa to resolve freshwater transitions in one lineage, the Thalassiosirales. Although most parts of the species tree were consistently resolved with strong support, we had difficulties resolving a Paleocene radiation, which affected the placement of one freshwater lineage. This and other parts of the tree were characterized by high levels of gene tree discordance caused by incomplete lineage sorting and low phylogenetic signal. Despite differences in species trees inferred from concatenation versus summary methods and codons versus amino acids, traditional methods of ancestral state reconstruction supported six transitions into freshwaters, two of which led to subsequent species diversification. Evidence from gene trees, protein alignments, and diatom life history together suggest that habitat transitions were largely the product of homoplasy rather than hemiplasy, a condition where transitions occur on branches in gene trees not shared with the species tree. Nevertheless, we identified a set of putatively hemiplasious genes, many of which have been associated with shifts to low salinity, indicating that hemiplasy played a small but potentially important role in freshwater adaptation. Accounting for differences in evolutionary outcomes, in which some taxa became locked into freshwaters while others were able to return to the ocean or become salinity generalists, might help further distinguish different sources of adaptive mutation in freshwater diatoms.
Collapse
Affiliation(s)
- Wade R Roberts
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, 1 University of Arkansas, Fayetteville, AR, 72701, USA
| |
Collapse
|
2
|
Casey A, Dolan L. Genes encoding cytochrome P450 monooxygenases and glutathione S-transferases associated with herbicide resistance evolved before the origin of land plants. PLoS One 2023; 18:e0273594. [PMID: 36800395 PMCID: PMC9937507 DOI: 10.1371/journal.pone.0273594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Cytochrome P450 (CYP) monooxygenases and glutathione S-transferases (GST) are enzymes that catalyse chemical modifications of a range of organic compounds. Herbicide resistance has been associated with higher levels of CYP and GST gene expression in some herbicide-resistant weed populations compared to sensitive populations of the same species. By comparing the protein sequences of 9 representative species of the Archaeplastida-the lineage which includes red algae, glaucophyte algae, chlorophyte algae, and streptophytes-and generating phylogenetic trees, we identified the CYP and GST proteins that existed in the common ancestor of the Archaeplastida. All CYP clans and all but one land plant GST classes present in land plants evolved before the divergence of streptophyte algae and land plants from their last common ancestor. We also demonstrate that there are more genes encoding CYP and GST proteins in land plants than in algae. The larger numbers of genes among land plants largely results from gene duplications in CYP clans 71, 72, and 85 and in the GST phi and tau classes [1,2]. Enzymes that either metabolise herbicides or confer herbicide resistance belong to CYP clans 71 and 72 and the GST phi and tau classes. Most CYP proteins that have been shown to confer herbicide resistance are members of the CYP81 family from clan 71. These results demonstrate that the clan and class diversity in extant plant CYP and GST proteins had evolved before the divergence of land plants and streptophyte algae from a last common ancestor estimated to be between 515 and 474 million years ago. Then, early in embryophyte evolution during the Palaeozoic, gene duplication in four of the twelve CYP clans, and in two of the fourteen GST classes, led to the large numbers of CYP and GST proteins found in extant land plants. It is among the genes of CYP clans 71 and 72 and GST classes phi and tau that alleles conferring herbicide resistance evolved in the last fifty years.
Collapse
Affiliation(s)
- Alexandra Casey
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Plant Sciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Courtecuisse E, Marchetti E, Oxborough K, Hunter PD, Spyrakos E, Tilstone GH, Simis SGH. Optimising Multispectral Active Fluorescence to Distinguish the Photosynthetic Variability of Cyanobacteria and Algae. SENSORS (BASEL, SWITZERLAND) 2023; 23:461. [PMID: 36617057 PMCID: PMC9823434 DOI: 10.3390/s23010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
This study assesses the ability of a new active fluorometer, the LabSTAF, to diagnostically assess the physiology of freshwater cyanobacteria in a reservoir exhibiting annual blooms. Specifically, we analyse the correlation of relative cyanobacteria abundance with photosynthetic parameters derived from fluorescence light curves (FLCs) obtained using several combinations of excitation wavebands, photosystem II (PSII) excitation spectra and the emission ratio of 730 over 685 nm (Fo(730/685)) using excitation protocols with varying degrees of sensitivity to cyanobacteria and algae. FLCs using blue excitation (B) and green−orange−red (GOR) excitation wavebands capture physiology parameters of algae and cyanobacteria, respectively. The green−orange (GO) protocol, expected to have the best diagnostic properties for cyanobacteria, did not guarantee PSII saturation. PSII excitation spectra showed distinct response from cyanobacteria and algae, depending on spectral optimisation of the light dose. Fo(730/685), obtained using a combination of GOR excitation wavebands, Fo(GOR, 730/685), showed a significant correlation with the relative abundance of cyanobacteria (linear regression, p-value < 0.01, adjusted R2 = 0.42). We recommend using, in parallel, Fo(GOR, 730/685), PSII excitation spectra (appropriately optimised for cyanobacteria versus algae), and physiological parameters derived from the FLCs obtained with GOR and B protocols to assess the physiology of cyanobacteria and to ultimately predict their growth. Higher intensity LEDs (G and O) should be considered to reach PSII saturation to further increase diagnostic sensitivity to the cyanobacteria component of the community.
Collapse
Affiliation(s)
| | - Elias Marchetti
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Kevin Oxborough
- Chelsea Technologies Ltd., 55 Central Avenue West Molesey, Surrey KT8 2QZ, UK
| | - Peter D. Hunter
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Evangelos Spyrakos
- Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | | | |
Collapse
|
4
|
Pinseel E, Nakov T, Van den Berge K, Downey KM, Judy KJ, Kourtchenko O, Kremp A, Ruck EC, Sjöqvist C, Töpel M, Godhe A, Alverson AJ. Strain-specific transcriptional responses overshadow salinity effects in a marine diatom sampled along the Baltic Sea salinity cline. THE ISME JOURNAL 2022; 16:1776-1787. [PMID: 35383290 PMCID: PMC9213524 DOI: 10.1038/s41396-022-01230-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 05/01/2023]
Abstract
The salinity gradient separating marine and freshwater environments represents a major ecological divide for microbiota, yet the mechanisms by which marine microbes have adapted to and ultimately diversified in freshwater environments are poorly understood. Here, we take advantage of a natural evolutionary experiment: the colonization of the brackish Baltic Sea by the ancestrally marine diatom Skeletonema marinoi. To understand how diatoms respond to low salinity, we characterized transcriptomic responses of acclimated S. marinoi grown in a common garden. Our experiment included eight strains from source populations spanning the Baltic Sea salinity cline. Gene expression analysis revealed that low salinities induced changes in the cellular metabolism of S. marinoi, including upregulation of photosynthesis and storage compound biosynthesis, increased nutrient demand, and a complex response to oxidative stress. However, the strain effect overshadowed the salinity effect, as strains differed significantly in their response, both regarding the strength and the strategy (direction of gene expression) of their response. The high degree of intraspecific variation in gene expression observed here highlights an important but often overlooked source of biological variation associated with how diatoms respond to environmental change.
Collapse
Affiliation(s)
- Eveline Pinseel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| | - Teofil Nakov
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Koen Van den Berge
- Department of Statistics, University of California, Berkeley, CA, USA
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium
| | - Kala M Downey
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Kathryn J Judy
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Olga Kourtchenko
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anke Kremp
- Leibniz-Institute for Baltic Sea Research Warnemünde, Rostock, Germany
| | - Elizabeth C Ruck
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Åbo, Finland
| | - Mats Töpel
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
5
|
Courtecuisse E, Oxborough K, Tilstone GH, Spyrakos E, Hunter PD, Simis SGH. Determination of optical markers of cyanobacterial physiology from fluorescence kinetics. JOURNAL OF PLANKTON RESEARCH 2022; 44:365-385. [PMID: 35664085 PMCID: PMC9155245 DOI: 10.1093/plankt/fbac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Compared to other methods to monitor and detect cyanobacteria in phytoplankton populations, fluorometry gives rapid, robust and reproducible results and can be used in situ. Fluorometers capable of providing biomass estimates and physiological information are not commonly optimized to target cyanobacteria. This study provides a detailed overview of the fluorescence kinetics of algal and cyanobacterial cultures to determine optimal optical configurations to target fluorescence mechanisms that are either common to all phytoplankton or diagnostic to cyanobacteria. We confirm that fluorescence excitation channels targeting both phycocyanin and chlorophyll a associated to the Photosystem II are required to induce the fluorescence responses of cyanobacteria. In addition, emission channels centered at 660, 685 and 730 nm allow better differentiation of the fluorescence response between algal and cyanobacterial cultures. Blue-green actinic light does not yield a robust fluorescence response in the cyanobacterial cultures and broadband actinic light should be preferred to assess the relation between ambient light and photosynthesis. Significant variability was observed in the fluorescence response from cyanobacteria to the intensity and duration of actinic light exposure, which needs to be taken into consideration in field measurements.
Collapse
Affiliation(s)
| | - Kevin Oxborough
- Chelsea Technologies Ltd, 55 Central Avenue West Molesey, Surrey KT8 2QZ, UK
| | - Gavin H Tilstone
- EOSA, Plymouth Marine Laboratory, Prospect Place, PL1 3DH Plymouth, Devon, UK
| | | | | | - Stefan G H Simis
- EOSA, Plymouth Marine Laboratory, Prospect Place, PL1 3DH Plymouth, Devon, UK
| |
Collapse
|
6
|
González-Miguéns R, Soler-Zamora C, Useros F, Nogal-Prata S, Berney C, Blanco-Rotea A, Carrasco-Braganza MI, de Salvador-Velasco D, Guillén-Oterino A, Tenorio-Rodríguez D, Velázquez D, Heger TJ, Sanmartín I, Lara E. Cyphoderia ampulla (Cyphoderiidae: Rhizaria), a tale of freshwater sailors. The causes and consequences of ecological transitions through the salinity barrier in a family of benthic protists. Mol Ecol 2022; 31:2644-2663. [PMID: 35262986 PMCID: PMC9311665 DOI: 10.1111/mec.16424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 11/29/2022]
Abstract
The salinity barrier that separates marine and freshwater biomes is probably the most important division in biodiversity on Earth. Those organisms that successfully performed this transition had access to new ecosystems while undergoing changes in selective pressure, which often led to major shifts in diversification rates. While these transitions have been extensively investigated in animals, the tempo, mode, and outcome of crossing the salinity barrier have been scarcely studied in other eukaryotes. Here, we reconstructed the evolutionary history of the species complex Cyphoderia ampulla (Euglyphida: Cercozoa: Rhizaria) based on DNA sequences from the nuclear SSU rRNA gene and the mitochondrial cytochrome oxidase subunit I gene, obtained from publicly available environmental DNA data (GeneBank, EukBank) and isolated organisms. A tree calibrated with euglyphid fossils showed that four independent transitions towards freshwater systems occurred from the Mid Miocene onwards, coincident with important fluctuations in sea level. Ancestral trait reconstructions indicated that the whole family Cyphoderiidae had a marine origin and suggest that ancestors of the freshwater forms were euryhaline and lived in environments with fluctuating salinity. Diversification rates did not show any obvious increase concomitant with ecological transitions, but morphometric analyses indicated that species increased in size and homogenized their morphology after colonizing the new environments. This suggests adaptation to changes in selective pressure exerted by life in freshwater sediments.
Collapse
Affiliation(s)
| | - Carmen Soler-Zamora
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Fernando Useros
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Sandra Nogal-Prata
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Cédric Berney
- Université de la Sorbonne CNRS, Station Biologique de Roscoff, UMR 7144, ECOMAP, 29680, Roscoff, France.,Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 10, Paris, France
| | - Andrés Blanco-Rotea
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - María Isabel Carrasco-Braganza
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - David de Salvador-Velasco
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - Antonio Guillén-Oterino
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - Daniel Tenorio-Rodríguez
- Estación Biológica Internacional Duero-Douro, (EUROPARQUES-EBI), Buque hidrográfico Helios-Cousteau en el Lago de Sanabria, 49632, Ribadelago, Castilla y León, Spain
| | - David Velázquez
- Dpt. of Biology, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Thierry J Heger
- Soil Science and Environment Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260, Nyon, Switzerland
| | - Isabel Sanmartín
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| | - Enrique Lara
- Real Jardín Botánico de Madrid (RJB-CSIC), Plaza Murillo 2, 28014, Madrid, Spain
| |
Collapse
|
7
|
Kwantes M, Wichard T. The APAF1_C/WD40 repeat domain-encoding gene from the sea lettuce Ulva mutabilis sheds light on the evolution of NB-ARC domain-containing proteins in green plants. PLANTA 2022; 255:76. [PMID: 35235070 PMCID: PMC8891106 DOI: 10.1007/s00425-022-03851-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/07/2022] [Indexed: 06/02/2023]
Abstract
We advance Ulva's genetic tractability and highlight its value as a model organism by characterizing its APAF1_C/WD40 domain-encoding gene, which belongs to a family that bears homology to R genes. The multicellular chlorophyte alga Ulva mutabilis (Ulvophyceae, Ulvales) is native to coastal ecosystems worldwide and attracts both high socio-economic and scientific interest. To further understand the genetic mechanisms that guide its biology, we present a protocol, based on adapter ligation-mediated PCR, for retrieving flanking sequences in U. mutabilis vector-insertion mutants. In the created insertional library, we identified a null mutant with an insertion in an apoptotic protease activating factor 1 helical domain (APAF1_C)/WD40 repeat domain-encoding gene. Protein domain architecture analysis combined with phylogenetic analysis revealed that this gene is a member of a subfamily that arose early in the evolution of green plants (Viridiplantae) through the acquisition of a gene that also encoded N-terminal nucleotide-binding adaptor shared by APAF-1, certain R-gene products and CED-4 (NB-ARC) and winged helix-like (WH-like) DNA-binding domains. Although phenotypic analysis revealed no mutant phenotype, gene expression levels in control plants correlated to the presence of bacterial symbionts, which U. mutabilis requires for proper morphogenesis. In addition, our analysis led to the discovery of a putative Ulva nucleotide-binding site and leucine-rich repeat (NBS-LRR) Resistance protein (R-protein), and we discuss how the emergence of these R proteins in green plants may be linked to the evolution of the APAF1_C/WD40 protein subfamily.
Collapse
Affiliation(s)
- Michiel Kwantes
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany.
| | - Thomas Wichard
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstr. 8, 07743, Jena, Germany.
- Jena School for Microbial Communication, 07743, Jena, Germany.
| |
Collapse
|
8
|
Lee WK, Ho CL. Ecological and evolutionary diversification of sulphated polysaccharides in diverse photosynthetic lineages: A review. Carbohydr Polym 2022; 277:118764. [PMID: 34893214 DOI: 10.1016/j.carbpol.2021.118764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/02/2022]
Abstract
Sulphated polysaccharides (SPs) are carbohydrate macromolecules with sulphate esters that are found among marine algae, seagrasses, mangroves and some terrestrial plants. The sulphate concentration in the ocean (28 mM) since ancient time could have driven the production of SPs in marine algae. SPs have a gelatinous property that can protect marine algae against desiccation and salinity stress. Agar and carrageenan are red algal SPs that are widely used as gelling agents in the food and pharmaceutical industries. The information on the SPs from freshwater and land plants are limited. In this review, we reviewed the taxonomic distribution and composition of SPs in different photosynthetic lineages, and explored the association of SP production in these diversified photosynthetic organisms with evolution history and environmental stresses. We also reviewed the genes/proteins involved in SP biosynthesis. Insights into SP biosynthetic machinery may shed light on the evolution that accompanied adaptation to life on earth.
Collapse
Affiliation(s)
- Wei-Kang Lee
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM-Serdang, Selangor, Malaysia; Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia.
| | - Chai-Ling Ho
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, UPM-Serdang, Selangor, Malaysia.
| |
Collapse
|
9
|
Kolicka M, Dabert M, Olszanowski Z, Dabert J. Sweet or salty? The origin of freshwater gastrotrichs (Gastrotricha, Chaetonotida) revealed by molecular phylogenetic analysis. Cladistics 2021; 36:458-480. [PMID: 34618974 DOI: 10.1111/cla.12424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Chaetonotidae is the most diverse and widely distributed family of the order Chaetonotida (Gastrotricha) and includes both marine and freshwater species. Although the family is regarded as a sister taxon to the exclusively marine Xenotrichulidae, the type of environment, marine or freshwater, where Chaetonotidae originated is still not known. Here, we reconstructed the phylogeny of the family based on molecular sequence data and mapped both morphological and ecological characters to determine the ancestral environment of the first members of the family. Our results revealed that the freshwater genus Bifidochaetus is the earliest branching lineage in the paraphyletic Chaetonotidae (encompassing Dasydytidae and Neogosseidae). Moreover, we reconstructed Lepidochaetus-Cephalionotus clade as a monophyletic sister group to the remaining chaetonotids, which supports Kisielewski's morphological based hypothesis concerning undifferentiated type of body scales as a most primary character in Chaetonotidae. We also found that reversals to marine habitats occurred independently in different Chaetonotidae lineages, thus marine species in the genera Heterolepidoderma, Halichaetonotus, Aspidiophorus and subgenera Chaetonotus (Schizochaetonotus) or Chaetonotus (Marinochaetus) should be assumed as having secondarily invaded the marine environment. Character mapping revealed a series of synapomorphies that define the clade that includes Chaetonotidae (with Dasydytidae and Neogosseidae), the most important of which may be those linked to reproduction.
Collapse
Affiliation(s)
- Małgorzata Kolicka
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Miroslawa Dabert
- Molecular Biology Techniques Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Ziemowit Olszanowski
- Department of Animal Taxonomy and Ecology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| | - Jacek Dabert
- Department of Animal Morphology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, Poznań, 61-614, Poland
| |
Collapse
|
10
|
Xing Q, Bi G, Cao M, Belcour A, Aite M, Mo Z, Mao Y. Comparative Transcriptome Analysis Provides Insights into Response of Ulva compressa to Fluctuating Salinity Conditions. JOURNAL OF PHYCOLOGY 2021; 57:1295-1308. [PMID: 33715182 DOI: 10.1111/jpy.13167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Ulva compressa, a green tide-forming species, can adapt to hypo-salinity conditions, such as estuaries and brackish lakes. To understand the underlying molecular mechanisms of hypo-salinity stress tolerance, transcriptome-wide gene expression profiles in U. compressa were created using digital gene expression profiles. The RNA-seq data were analyzed based on the comparison of differently expressed genes involved in specific pathways under hypo-salinity and recovery conditions. The up-regulation of genes in photosynthesis and glycolysis pathways may contribute to the recovery of photosynthesis and energy metabolism, which could provide sufficient energy for the tolerance under long-term hyposaline stress. Multiple strategies, such as ion transportation and osmolytes metabolism, were performed to maintain the osmotic homeostasis. Additionally, several long noncoding RNA were differently expressed during the stress, which could play important roles in the osmotolerance. Our work will serve as an essential foundation for the understanding of the tolerance mechanism of U. compressa under the fluctuating salinity conditions.
Collapse
Affiliation(s)
- Qikun Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique deRoscoff (SBR), CNRS, Sorbonne Université, 29680, Roscoff, France
| | - Guiqi Bi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- Agricultural Synthetic Biology Center, Chinese Academy of Agricultural Sciences, Agricultural Genomes Institute at Shenzhen, Shenzhen, 518120, China
| | - Min Cao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Arnaud Belcour
- Inria, CNRS, IRISA, Equipe Dyliss, Univ Rennes, Rennes, France
| | - Méziane Aite
- Inria, CNRS, IRISA, Equipe Dyliss, Univ Rennes, Rennes, France
| | - Zhaolan Mo
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yunxiang Mao
- MOE Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources, College of Fisheries and Life Science, Hainan Tropical Ocean University, Sanya, 572022, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
11
|
Patel AK, Singhania RR, Awasthi MK, Varjani S, Bhatia SK, Tsai ML, Hsieh SL, Chen CW, Dong CD. Emerging prospects of macro- and microalgae as prebiotic. Microb Cell Fact 2021; 20:112. [PMID: 34090444 PMCID: PMC8180151 DOI: 10.1186/s12934-021-01601-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022] Open
Abstract
Macro- and microalgae-based foods are becoming popular due to their high nutritious value. The algal biomass is enriched with polysaccharides, protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals. However, the most promising fraction is polysaccharides (PS) or their derivatives (as dietary fibers) which are not entirely fermented by colonic bacteria hence act as potential prebiotic. Primarily, algae become famous as prominent protein sources. Recently, these are widely adopted as functional food (e.g., desserts, dairy products, oil-derivatives, pastas etc.) or animal feed (for poultry, cattle, fish etc.). Besides prebiotic and balanced amino acids source, algae derived compounds implied as therapeutics due to comprising bioactive properties to elicit immunomodulatory, antioxidative, anticancerous, anticoagulant, hepato-protective, and antihypertensive responses. Despite the above potentials, broader research determinations are inevitable to explore these algal compounds until microalgae become a business reality for broader and specific applications in all health domains. However, scale up of algal bioprocess remains a major challenge until commercial affordability is accomplished which can be possible by discovering their hidden potentials and increasing their value and application prospects. This review provides an overview of the significance of algae consumption for several health benefits in humans and animals mainly as prebiotics, however their functional food and animal feed potential are briefly covered. Moreover, their potential to develop an algal-based food industry to meet the people's requirements not only as a sustainable food solution with several health benefits but also as therapeutics is inevitable.
Collapse
Affiliation(s)
- Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, People's Republic of China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan.
| |
Collapse
|
12
|
Li X, Hou Z, Xu C, Shi X, Yang L, Lewis LA, Zhong B. Large Phylogenomic Data sets Reveal Deep Relationships and Trait Evolution in Chlorophyte Green Algae. Genome Biol Evol 2021; 13:6265471. [PMID: 33950183 PMCID: PMC8271138 DOI: 10.1093/gbe/evab101] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/01/2022] Open
Abstract
The chlorophyte green algae (Chlorophyta) are species-rich ancient groups ubiquitous in various habitats with high cytological diversity, ranging from microscopic to macroscopic organisms. However, the deep phylogeny within core Chlorophyta remains unresolved, in part due to the relatively sparse taxon and gene sampling in previous studies. Here we contribute new transcriptomic data and reconstruct phylogenetic relationships of core Chlorophyta based on four large data sets up to 2,698 genes of 70 species, representing 80% of extant orders. The impacts of outgroup choice, missing data, bootstrap-support cutoffs, and model misspecification in phylogenetic inference of core Chlorophyta are examined. The species tree topologies of core Chlorophyta from different analyses are highly congruent, with strong supports at many relationships (e.g., the Bryopsidales and the Scotinosphaerales-Dasycladales clade). The monophyly of Chlorophyceae and of Trebouxiophyceae as well as the uncertain placement of Chlorodendrophyceae and Pedinophyceae corroborate results from previous studies. The reconstruction of ancestral scenarios illustrates the evolution of the freshwater-sea and microscopic–macroscopic transition in the Ulvophyceae, and the transformation of unicellular→colonial→multicellular in the chlorophyte green algae. In addition, we provided new evidence that serine is encoded by both canonical codons and noncanonical TAG code in Scotinosphaerales, and stop-to-sense codon reassignment in the Ulvophyceae has originated independently at least three times. Our robust phylogenetic framework of core Chlorophyta unveils the evolutionary history of phycoplast, cyto-morphology, and noncanonical genetic codes in chlorophyte green algae.
Collapse
Affiliation(s)
- Xi Li
- College of Life Sciences, Nanjing Normal University, China
| | - Zheng Hou
- College of Life Sciences, Nanjing Normal University, China
| | - Chenjie Xu
- College of Life Sciences, Nanjing Normal University, China
| | - Xuan Shi
- College of Life Sciences, Nanjing Normal University, China
| | - Lingxiao Yang
- College of Life Sciences, Nanjing Normal University, China
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, China
| |
Collapse
|
13
|
Sulfated polysaccharides and its commercial applications in food industries-A review. Journal of Food Science and Technology 2020; 58:2453-2466. [PMID: 34194082 DOI: 10.1007/s13197-020-04837-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Polysaccharides a large chain of simple sugars covalently linked by glycosidic bonds which are obtained from living organisms and microbes commercially used in food and pharmaceutical industries. Marine macroalgae or seaweed is an unexploited natural source of polysaccharides, which contains many variant phytonutrients whose cells are enriched with sulfated polysaccharides which have been progressively read these days for their potential value in food and pharmaceutical applications. This review aims the exploration of these polysaccharides in food applications, with a focus on its types and biological properties in the view of food application.
Collapse
|
14
|
Dittami SM, Corre E, Brillet-Guéguen L, Lipinska AP, Pontoizeau N, Aite M, Avia K, Caron C, Cho CH, Collén J, Cormier A, Delage L, Doubleau S, Frioux C, Gobet A, González-Navarrete I, Groisillier A, Hervé C, Jollivet D, KleinJan H, Leblanc C, Liu X, Marie D, Markov GV, Minoche AE, Monsoor M, Pericard P, Perrineau MM, Peters AF, Siegel A, Siméon A, Trottier C, Yoon HS, Himmelbauer H, Boyen C, Tonon T. The genome of Ectocarpus subulatus - A highly stress-tolerant brown alga. Mar Genomics 2020; 52:100740. [PMID: 31937506 DOI: 10.1016/j.margen.2020.100740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/01/2020] [Indexed: 11/20/2022]
Abstract
Brown algae are multicellular photosynthetic stramenopiles that colonize marine rocky shores worldwide. Ectocarpus sp. Ec32 has been established as a genomic model for brown algae. Here we present the genome and metabolic network of the closely related species, Ectocarpus subulatus Kützing, which is characterized by high abiotic stress tolerance. Since their separation, both strains show new traces of viral sequences and the activity of large retrotransposons, which may also be related to the expansion of a family of chlorophyll-binding proteins. Further features suspected to contribute to stress tolerance include an expanded family of heat shock proteins, the reduction of genes involved in the production of halogenated defence compounds, and the presence of fewer cell wall polysaccharide-modifying enzymes. Overall, E. subulatus has mainly lost members of gene families down-regulated in low salinities, and conserved those that were up-regulated in the same condition. However, 96% of genes that differed between the two examined Ectocarpus species, as well as all genes under positive selection, were found to encode proteins of unknown function. This underlines the uniqueness of brown algal stress tolerance mechanisms as well as the significance of establishing E. subulatus as a comparative model for future functional studies.
Collapse
Affiliation(s)
- Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France.
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Loraine Brillet-Guéguen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Noé Pontoizeau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Meziane Aite
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Komlan Avia
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Université de Strasbourg, INRA, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Christophe Caron
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Chung Hyun Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Sylvie Doubleau
- IRD, UMR DIADE, 911 Avenue Agropolis, BP 64501, 34394 Montpellier, France
| | | | - Angélique Gobet
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Irene González-Navarrete
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Agnès Groisillier
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Cécile Hervé
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Didier Jollivet
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Hetty KleinJan
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Xi Liu
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Dominique Marie
- Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment (ADME), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - André E Minoche
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Misharl Monsoor
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Pierre Pericard
- CNRS, Sorbonne Université, FR2424, ABiMS platform, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Marie-Mathilde Perrineau
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Scottish Association for Marine Science, Scottish Marine Institute, Oban PA37 1QA, United Kingdom
| | | | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France
| | - Amandine Siméon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Camille Trottier
- Univ Rennes, Inria, CNRS, IRISA, 35000 Rennes, France; Laboratory of Digital Sciences of Nantes (LS2N) - University of Nantes, France
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heinz Himmelbauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, 1190 Vienna, Austria
| | - Catherine Boyen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
| | - Thierry Tonon
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France; Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
15
|
Harada R, Nomura T, Yamada K, Mochida K, Suzuki K. Genetic Engineering Strategies for Euglena gracilis and Its Industrial Contribution to Sustainable Development Goals: A Review. Front Bioeng Biotechnol 2020; 8:790. [PMID: 32760709 PMCID: PMC7371780 DOI: 10.3389/fbioe.2020.00790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022] Open
Abstract
The sustainable development goals (SDGs) adopted at the 2015 United Nations Summit are globally applicable goals designed to help countries realize a sustainable future. To achieve these SDGs, it is necessary to utilize renewable biological resources. In recent years, bioeconomy has been an attractive concept for achieving the SDGs. Microalgae are one of the biological resources that show promise in realizing the "5F"s (food, fiber, feed, fertilizer, and fuel). Among the microalgae, Euglena gracilis has the potential for achieving the "5F"s strategy owing to its unique features, such as production of paramylon, that are lacking in other microalgae. E. gracilis has already been produced on an industrial scale for use as an ingredient in functional foods and cosmetics. In recent years, genetic engineering methods for breeding E. gracilis have been researched and developed to achieve higher yields. In this article, we summarize how microalgae contribute toward achieving the SDGs. We focus on the contribution of E. gracilis to the bioeconomy, including its advantages in industrial use as well as its unique characteristics. In addition, we review genetic engineering-related research trends centered on E. gracilis, including a complete nuclear genome determination project, genome editing technology using the CRISPR-Cas9 system, and the development of a screening method for selecting useful strains. In particular, genome editing in E. gracilis could be a breakthrough for molecular breeding of industrially useful strains because of its high efficiency.
Collapse
Affiliation(s)
- Ryo Harada
- RIKEN Baton Zone Program, Yokohama, Japan
| | - Toshihisa Nomura
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Koji Yamada
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| | - Keiichi Mochida
- RIKEN Baton Zone Program, Yokohama, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kengo Suzuki
- RIKEN Baton Zone Program, Yokohama, Japan
- Euglena Co Ltd, Tokyo, Japan
| |
Collapse
|
16
|
Dittami SM, Peters AF, West JA, Cariou T, KleinJan H, Burgunter-Delamare B, Prechoux A, Egan S, Boyen C. Revisiting Australian Ectocarpus subulatus (Phaeophyceae) From the Hopkins River: Distribution, Abiotic Environment, and Associated Microbiota. JOURNAL OF PHYCOLOGY 2020; 56:719-729. [PMID: 31965565 DOI: 10.1111/jpy.12970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/07/2020] [Indexed: 05/24/2023]
Abstract
In 1995 a strain of Ectocarpus was isolated from Hopkins River Falls, Victoria, Australia, constituting one of few available freshwater or nearly freshwater brown algae, and the only one belonging to the genus Ectocarpus. It has since been used as a model to study acclimation and adaptation to low salinities and the role of its microbiota in these processes. To provide more background information on this model, we assessed if Ectocarpus was still present in the Hopkins river 22 years after the original finding, estimated its present distribution, described its abiotic environment, and determined its in situ microbial composition. We sampled for Ectocarpus at 15 sites along the Hopkins River as well as 10 neighboring sites and found individuals with ITS and cox1 sequences identical to the original isolate at three sites upstream of Hopkins River Falls. The salinity of the water at these sites ranged from 3.1 to 6.9, and it was rich in sulfate (1-5 mM). The diversity of bacteria associated with the algae in situ (1312 operational taxonomic units) was one order of magnitude higher than in previous studies of the original laboratory culture, and 95 alga-associated bacterial strains were isolated from algal filaments on site. In particular, species of Planctomycetes were abundant in situ but rare in laboratory cultures. Our results confirmed that Ectocarpus was still present in the Hopkins River, and the newly isolated algal and bacterial strains offer new possibilities to study the adaptation of Ectocarpus to low salinity and its interactions with its microbiome.
Collapse
Affiliation(s)
- Simon M Dittami
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, 29680, Roscoff, France
| | - Akira F Peters
- Bezhin Rosko, 40 Rue des Pêcheurs, 29250, Santec, France
| | - John A West
- Biosciences 2, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Thierry Cariou
- CNRS, FR2424, Station Biologique de Roscoff, Sorbonne Université, 29680, Roscoff, France
| | - Hetty KleinJan
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, 29680, Roscoff, France
| | - Bertille Burgunter-Delamare
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, 29680, Roscoff, France
| | - Aurélie Prechoux
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, 29680, Roscoff, France
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Catherine Boyen
- CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, Sorbonne Université, 29680, Roscoff, France
| |
Collapse
|
17
|
Holterman M, Schratzberger M, Helder J. Nematodes as evolutionary commuters between marine, freshwater and terrestrial habitats. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz107] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
Nematodes are the only major metazoan group which is persistently abundant and diverse across marine, freshwater and terrestrial ecosystems. This could be the result of a few major habitat transitions followed by extensive diversification, or numerous habitat transitions followed by moderate diversification. To pinpoint habitat transitions, we superposed nematode habitat associations on an available phylum-wide phylogenetic tree based on small subunit ribosomal DNA sequences (≈2730 SSU rDNA sequences covering ≈1750 nematode taxa). Our analysis revealed at least 30 major habitat transitions within the phylum Nematoda. These transitions as well as their directionality were unevenly spread over the 12 major clades. Most transitions reside in Clades 1–6, and these transitions are bidirectional. Members of Clades 8–12 showed five full transitions, and these took place exclusively from terrestrial to marine systems. We relate our results to the distinct secretory–excretory systems in Clades 1–6 and Clades 8–12, as well as to differences in water permeability of the nematode cuticle. Hence, the phylum Nematoda is characterized by a relatively large number of habitat transitions followed by moderate diversification. The identification of multiple habitat transitions at a low taxonomic level will facilitate future investigations into the mechanisms underlying this unusual ecological flexibility.
Collapse
Affiliation(s)
- Martijn Holterman
- Laboratory of Nematology, Wageningen University, Wageningen PB, The Netherlands
| | - Michaela Schratzberger
- Centre for Environment, Fisheries and Aquaculture Science, Lowestoft, UK
- Collaborative Centre for Sustainable Use of the Seas, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Wageningen PB, The Netherlands
| |
Collapse
|
18
|
Žerdoner Čalasan A, Kretschmann J, Gottschling M. They are young, and they are many: dating freshwater lineages in unicellular dinophytes. Environ Microbiol 2019; 21:4125-4135. [DOI: 10.1111/1462-2920.14766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/24/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Anže Žerdoner Čalasan
- Department Biologie/Chemie, Botanik Universität Osnabrück Barbarastr. 11, 49076 Osnabrück Germany
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| | - Juliane Kretschmann
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| | - Marc Gottschling
- Department Biologie Systematische Botanik und Mykologie, GeoBio‐Center, Ludwig‐Maximilians‐Universität München Menzinger Street. 67, 80638 Munich Germany
| |
Collapse
|
19
|
Greco M, Sáez CA, Contreras RA, Rodríguez-Rojas F, Bitonti MB, Brown MT. Cadmium and/or copper excess induce interdependent metal accumulation, DNA methylation, induction of metal chelators and antioxidant defences in the seagrass Zostera marina. CHEMOSPHERE 2019; 224:111-119. [PMID: 30818189 DOI: 10.1016/j.chemosphere.2019.02.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
In this investigation, we assessed the effects of Cu and/or Cd excess on physiological and metabolic processes of the widespread seagrass Zostera marina. Adult were exposed to low Cd and Cu (0.89 and 0.8 μM, respectively) and high Cd and Cu (8.9 and 2.4 μM, respectively) for 6 d at: Control conditions; low Cu; high Cu; low Cd; high Cd; low Cd and low Cu; and high Cd and high Cu. Photosynthetic performance decreased under single and combined treatments, although effects were more negative under Cu than Cd. Total Cu accumulation was higher than Cd, under single and combined treatments; however, their accumulation was generally lower when applied together, suggesting competition among them. Levels of glutathione (GSH) and phytochelatins (PCs) followed patterns similar to metal accumulation, with up to PC5, displaying adaptations in tolerance. A metallothionein (MET) gene showed upregulation only at high Cd, low Cu, and high Cu. The expression of the enzymes glutathione reductase (GR), ascorbate peroxidase (APX), and catalase (CAT) was greatest at high Cu, and at high Cd and Cu together; the highest expression was under Cu, alone and combined. Both metals induced upregulation of the DNA methyltransferases CMT3 and DRM2, with the highest expression at single Cu. The DNA demethylation ROS1 was overexpressed in treatments containing high Cu, suggesting epigenetic modifications. The results show that under copper and/or cadmium, Z. marina was still biologically viable; certainly based, at least in part, on the induction of metal chelators, antioxidant defences and methylation/demethylation pathways of gene regulation.
Collapse
Affiliation(s)
- Maria Greco
- The Francis Crick Institute, London, United Kingdom; Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, Italy
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile; School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom.
| | - Rodrigo A Contreras
- Laboratory of Plant Physiology and Biotechnology, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile
| | - M Beatrice Bitonti
- Dipartimento di Biologia, Ecologia e Scienze della Terra, Università della Calabria, Arcavacata di Rende, Italy
| | - Murray T Brown
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom.
| |
Collapse
|
20
|
Camacho F, Macedo A, Malcata F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar Drugs 2019; 17:E312. [PMID: 31141887 PMCID: PMC6628611 DOI: 10.3390/md17060312] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022] Open
Abstract
Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides-hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Collapse
Affiliation(s)
- Franciele Camacho
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Angela Macedo
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- UNICES-ISMAI-University Institute of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal.
| | - Francisco Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
21
|
Zhang H, Yoshizawa S, Sun Y, Huang Y, Chu X, González JM, Pinhassi J, Luo H. Repeated evolutionary transitions of flavobacteria from marine to non-marine habitats. Environ Microbiol 2019; 21:648-666. [PMID: 30565818 DOI: 10.1111/1462-2920.14509] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 01/26/2023]
Abstract
The taxonomy of marine and non-marine organisms rarely overlap, but the mechanisms underlying this distinction are often unknown. Here, we predicted three major ocean-to-land transitions in the evolutionary history of Flavobacteriaceae, a family known for polysaccharide and peptide degradation. These unidirectional transitions were associated with repeated losses of marine signature genes and repeated gains of non-marine adaptive genes. This included various Na+ -dependent transporters, osmolyte transporters and glycoside hydrolases (GH) for sulfated polysaccharide utilization in marine descendants, and in non-marine descendants genes for utilizing the land plant material pectin and genes facilitating terrestrial host interactions. The K+ scavenging ATPase was repeatedly gained whereas the corresponding low-affinity transporter repeatedly lost upon transitions, reflecting K+ ions are less available to non-marine bacteria. Strikingly, the central metabolism Na+ -translocating NADH: quinone dehydrogenase gene was repeatedly gained in marine descendants, whereas the H+ -translocating counterpart was repeatedly gained in non-marine lineages. Furthermore, GH genes were depleted in isolates colonizing animal hosts but abundant in bacteria inhabiting other non-marine niches; thus relative abundances of GH versus peptidase genes among Flavobacteriaceae lineages were inconsistent with the marine versus non-marine dichotomy. We suggest that phylogenomic analyses can cast novel light on mechanisms explaining the distribution and ecology of key microbiome components.
Collapse
Affiliation(s)
- Hao Zhang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yongjie Huang
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiao Chu
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - José M González
- Department of Microbiology, University of La Laguna, La Laguna, ES-38200, Spain
| | - Jarone Pinhassi
- Centre for Ecology and Evolution in Microbial Model Systems - EEMiS, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
22
|
Markov GV, Girard J, Laudet V, Leblanc C. Hormonally active phytochemicals from macroalgae: A largely untapped source of ligands to deorphanize nuclear receptors in emerging marine animal models. Gen Comp Endocrinol 2018; 265:41-45. [PMID: 29908834 DOI: 10.1016/j.ygcen.2018.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/30/2018] [Accepted: 06/13/2018] [Indexed: 02/09/2023]
Abstract
Hormonally active phytochemicals (HAPs) are signaling molecules produced by plants that alter hormonal signaling in animals, due to consumption or environmental exposure. To date, HAPs have been investigated mainly in terrestrial ecosystems. To gain a full understanding of the origin and evolution of plant-animal interactions, it is necessary also to study these interactions in the marine environment, where the major photosynthetic lineages are very distant from the terrestrial plants. Here we focus on chemicals from red and brown macroalgae and point out their potential role as modulators of the endocrine system of aquatic animals through nuclear hormone receptors. We show that, regarding steroids and oxylipins, there are already some candidates available for further functional investigations of ligand-receptor interactions. Furthermore, several carotenoids, produced by cyanobacteria provide candidates that could be investigated with respect to their presence in macroalgae. Finally, regarding halogenated compounds, it is not clear yet which molecules could bridge the gap to explain the transition from lipid sensing to thyroid hormone high affinity binding among nuclear receptors.
Collapse
Affiliation(s)
- Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Jean Girard
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Sorbonne Université, Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, 1 Avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| |
Collapse
|
23
|
Oscar MA, Barak S, Winters G. The Tropical Invasive Seagrass, Halophila stipulacea, Has a Superior Ability to Tolerate Dynamic Changes in Salinity Levels Compared to Its Freshwater Relative, Vallisneria americana. FRONTIERS IN PLANT SCIENCE 2018; 9:950. [PMID: 30022993 PMCID: PMC6040085 DOI: 10.3389/fpls.2018.00950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 06/12/2018] [Indexed: 05/30/2023]
Abstract
The tropical seagrass species, Halophila stipulacea, originated from the Indian Ocean and the Red Sea, subsequently invading the Mediterranean and has recently established itself in the Caribbean Sea. Due to its invasive nature, there is growing interest in understanding this species' capacity to adapt to new conditions. One approach to understanding the natural tolerance of a plant is to compare the tolerant species with a closely related non-tolerant species. We compared the physiological responses of H. stipulacea exposed to different salinities, with that of its nearest freshwater relative, Vallisneria americana. To achieve this goal, H. stipulacea and V. americana plants were grown in dedicated microcosms, and exposed to the following salt regimes: (i) H. stipulacea: control (40 PSU, practical salinity units), hyposalinity (25 PSU) and hypersalinity (60 PSU) for 3 weeks followed by a 4-week recovery phase (back to 40 PSU); (ii) V. americana: control (1 PSU), and hypersalinity (12 PSU) for 3 weeks, followed by a 4-week recovery phase (back to 1 PSU). In H. stipulacea, leaf number and chlorophyll content showed no significant differences between control plants and plants under hypo and hypersalinities, but a significant decrease in leaf area under hypersalinity was observed. In addition, compared with control plants, H. stipulacea plants exposed to hypo and hypersalinity were found to have reduced below-ground biomass and C/N ratios, suggesting changes in the allocation of resources in response to both stresses. There was no significant effect of hypo/hypersalinity on dark-adapted quantum yield of photosystem II (Fv/Fm) suggesting that H. stipulacea photochemistry is resilient to hypo/hypersalinity stress. In contrast to the seagrass, V. americana exposed to hypersalinity displayed significant decreases in above-ground biomass, shoot number, leaf number, blade length and Fv/Fm, followed by significant recoveries of all these parameters upon return of the plants to non-saline control conditions. These data suggest that H. stipulacea shows remarkable tolerance to both hypo and hypersalinity. Resilience to a relatively wide range of salinities may be one of the traits explaining the invasive nature of this species in the Mediterranean and Caribbean Seas.
Collapse
Affiliation(s)
- Michelle A. Oscar
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
- Dead-Sea & Arava Science Center, Neve Zohar, Israel
| | - Simon Barak
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | | |
Collapse
|
24
|
Abstract
500Ma ago the terrestrial habitat was a barren, unwelcoming place for species other than, for example, bacteria or fungi. Most probably, filamentous freshwater algae adapted to aerial conditions and eventually conquered land. Adaptation to a severely different habitat apparently included sturdy cell walls enabling an erect body plan as well as protection against abiotic stresses such as ultraviolet radiation, drought and varying temperature. To thrive on land, plants probably required more elaborate signaling pathways to react to diverse environmental conditions, and phytohormones to control developmental programs. Many such plant-typical features have been studied in flowering plants, but their evolutionary origins were long clouded. With the sequencing of a moss genome a decade ago, inference of ancestral land plant states using comparative genomics, phylogenomics and evolutionary developmental approaches began in earnest. In the past few years, the ever increasing availability of genomic and transcriptomic data of organisms representing the earliest common ancestors of the plant tree of life has much informed our understanding of the conquest of land by plants.
Collapse
Affiliation(s)
- Stefan A Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| |
Collapse
|
25
|
KleinJan H, Jeanthon C, Boyen C, Dittami SM. Exploring the Cultivable Ectocarpus Microbiome. Front Microbiol 2017; 8:2456. [PMID: 29312170 PMCID: PMC5732352 DOI: 10.3389/fmicb.2017.02456] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Coastal areas form the major habitat of brown macroalgae, photosynthetic multicellular eukaryotes that have great ecological value and industrial potential. Macroalgal growth, development, and physiology are influenced by the microbial community they accommodate. Studying the algal microbiome should thus increase our fundamental understanding of algal biology and may help to improve culturing efforts. Currently, a freshwater strain of the brown macroalga Ectocarpus subulatus is being developed as a model organism for brown macroalgal physiology and algal microbiome studies. It can grow in high and low salinities depending on which microbes it hosts. However, the molecular mechanisms involved in this process are still unclear. Cultivation of Ectocarpus-associated bacteria is the first step toward the development of a model system for in vitro functional studies of brown macroalgal–bacterial interactions during abiotic stress. The main aim of the present study is thus to provide an extensive collection of cultivable E. subulatus-associated bacteria. To meet the variety of metabolic demands of Ectocarpus-associated bacteria, several isolation techniques were applied, i.e., direct plating and dilution-to-extinction cultivation techniques, each with chemically defined and undefined bacterial growth media. Algal tissue and algal growth media were directly used as inoculum, or they were pretreated with antibiotics, by filtration, or by digestion of algal cell walls. In total, 388 isolates were identified falling into 33 genera (46 distinct strains), of which Halomonas (Gammaproteobacteria), Bosea (Alphaproteobacteria), and Limnobacter (Betaproteobacteria) were the most abundant. Comparisons with 16S rRNA gene metabarcoding data showed that culturability in this study was remarkably high (∼50%), although several cultivable strains were not detected or only present in extremely low abundance in the libraries. These undetected bacteria could be considered as part of the rare biosphere and they may form the basis for the temporal changes in the Ectocarpus microbiome.
Collapse
Affiliation(s)
- Hetty KleinJan
- Sorbonne Universités, CNRS-UPMC, Station Biologique de Roscoff, UMR8227, Integrative Biology of Marine Models, Roscoff, France
| | - Christian Jeanthon
- CNRS, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Roscoff, France.,Sorbonne Universités, UPMC Univ Paris 06, Station Biologique de Roscoff, UMR7144, Adaptation et Diversité en Milieu Marin, Roscoff, France
| | - Catherine Boyen
- Sorbonne Universités, CNRS-UPMC, Station Biologique de Roscoff, UMR8227, Integrative Biology of Marine Models, Roscoff, France
| | - Simon M Dittami
- Sorbonne Universités, CNRS-UPMC, Station Biologique de Roscoff, UMR8227, Integrative Biology of Marine Models, Roscoff, France
| |
Collapse
|