1
|
Padial-Molina M, Gonzalez-Perez G, Martin-Morales N, Sanchez-Fernandez E, O'Valle F, Galindo-Moreno P. Periostin in the relation between periodontal disease and atherosclerotic coronary artery disease: A pilot randomized clinical study. J Periodontal Res 2024; 59:446-457. [PMID: 38140743 DOI: 10.1111/jre.13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVE The aim of this study was to analyze the effects of periodontal treatment on markers of atherosclerotic coronary artery disease and circulating levels of periostin. BACKGROUND Periostin is necessary for periodontal stability, but it is highly present in atherosclerotic plaques. Treatment of periodontal disease, with low levels of local periostin, is thought to reduce systemic levels of periostin. Thus, this may contribute to cardiovascular health. METHODS A pilot randomized controlled clinical trial was designed to include patients with severe periodontal disease and history of atherosclerotic coronary artery disease. Samples of gingival crevicular fluid (GCF) and serum were collected before and after periodontal treatment by periodontal surgery or non-surgical therapy. The levels of several markers of inflammation and cardiovascular damage were evaluated including CRP, IFN-γ, IL-1ß, IL-10, MIP-1α, periostin, and TNF-α in GCF and CRP, Fibrinogen, IFN-γ, IL-1ß, IL-6, IL-10, L-Selectin, MIP-1α, Periostin, TNF-α, and vWF in serum. RESULTS A total of 22 patients with an average of 56 years old were recruited for participating in this study. Twenty of them were male. Most of them (82%) had suffered an acute myocardial event and underwent surgery for placing 1, 2, or 3 stents in the coronary arteries more than 6 months ago but less than 1 year. The treatment of periodontal disease resulted in an overall improvement of all periodontal parameters. Regarding the evaluation of GCF and serum, a significant increase of periostin in the GCF was observed after periodontal surgery. In contrast, although other markers in GCF and serum improved, no significant correlations were found. CONCLUSION Treatment of periodontal disease through periodontal surgery induces a local and transient increase in the levels of periostin in the gingival crevicular fluid. The effects on systemic markers of inflammation and cardiovascular function have not been confirmed.
Collapse
Affiliation(s)
- Miguel Padial-Molina
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Gloria Gonzalez-Perez
- PhD Program in Clinical Medicine and Public Health, University of Granada, Granada, Spain
| | - Natividad Martin-Morales
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- PhD Program in Biomedicine, University of Granada, Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
| | - Elena Sanchez-Fernandez
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Francisco O'Valle
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Department of Pathology, School of Medicine, University of Granada, Granada, Spain
- Institute of Biopathology and Regenerative Medicine (IBIMER, CIBM), University of Granada, Granada, Spain
| | - Pablo Galindo-Moreno
- Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| |
Collapse
|
2
|
Hirkane PS, Verma UP, Verma AK, Singh P. Exploring the Relation Between Interstitial Lung Diseases and Chronic Periodontitis: A Systematic Review. Cureus 2024; 16:e53157. [PMID: 38420070 PMCID: PMC10901193 DOI: 10.7759/cureus.53157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The objective of this systematic review is to determine the association between interstitial lung diseases and chronic periodontitis from various aspects such as microbial, biomarker, genetic, and environmental levels. A systematic review was carried out from 2000 to 2021 following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations including studies searched in PubMed-Medline, Google Scholar, and Cochrane databases. A total of more than 100 articles were obtained in the initial screening process. Out of these 42 studies fulfilled the inclusion criteria and were included in the study. According to the extracted data, there is mounting evidence suggesting the association between these two diseases. Our systematic review raises the prospect of a connection between chronic periodontitis and interstitial lung diseases, within the limitations of the studies we included.
Collapse
Affiliation(s)
| | - Umesh P Verma
- Periodontology, King George's Medical University, Lucknow, IND
| | - Ajay K Verma
- Respiratory Medicine, King George's Medical University, Lucknow, IND
| | - Pooja Singh
- Periodontology, King George's Medical University, Lucknow, IND
| |
Collapse
|
3
|
Santhosh VC, Karishma, Khader AA, Ramachandra V, Singh R, Shetty BK, Nimbalkar VK. Effect of periostin in peri-implant sulcular fluid and gingival crevicular fluid: A comparative study. Ann Afr Med 2023; 22:465-469. [PMID: 38358147 PMCID: PMC10775932 DOI: 10.4103/aam.aam_171_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 02/16/2024] Open
Abstract
Background Various similarities have been observed between gingival crevicular fluid (GCF) and peri-implant sulcular fluid (PISF). This has resulted in research that has evaluated similar biological fluid markers that are similar to those present within the gingival sulcus. These biomarkers have high sensitivity and are a reliable biological tool when compared to clinical and/or radiographic examination and aid in diagnosis as well as monitoring the progression of periodontal disease surrounding teeth as well as the implants. Aim The study aimed to compare the effectiveness of periostin in peri-implant sulcular and gingival crevicular fluids. Materials and Methods This experimental prospective in vitro analysis was done following clearance by the institutional ethical committee. A total of 100 patients were selected. They were categorized into two groups: (I) Group A patients had peri-implant disease (n = 50), whereas (II) Group B patients had periodontitis (n = 50). Clinical loss of attachment score was noted in six sites around natural teeth and four sites around the implants. Presterilized filter paper strips were inserted within the sulcus/pocket till pressure was felt for 60 s. Periostin concentration levels in GCF and PISF samples were measured by the enzyme-linked immunosorbent assay technique. Statistical analysis of data collected was performed using Shapiro-Wilk statistical tool for normally distributed numerical data. . Results Mean ± standard deviation concentration of periostin in gingival crevicular fluid from periodontitis cases was recorded as 20.15 ± 2.76 ng/30sn, whereas in PISF was 19.23 ± 1.89 ng/30sn. On statistical analysis, no statistically significant differences were seen after comparing the concentration of periostin in periodontitis as well as peri-implantitis groups (P > 0.05). Conclusion The present study analyzed periostin levels in gingival crevicular fluid obtained from patients diagnosed with periodontitis and sulcular fluid obtained from the sulcus around implants. Early biological markers or indicators of inflammation should be studied to determine the prognosis of treatment apart from the clinical assessment for the patient's benefit.
Collapse
Affiliation(s)
- V. C. Santhosh
- Department of Periodontics, KMCT Dental College, Manassery, Mukkam, Calicut, Kerala, India
| | - Karishma
- Department of Dentistry, AIIMS, Patna, Bihar, India
| | - Anas Abdul Khader
- Department of Preventive Dentistry, College of Dentistry in ArRass, Qassim University, Kingdom of Saudi Arabia
| | - Varun Ramachandra
- Department of Oral and Maxillofacial Surgery, Manubhai Patel Dental College, Vadodara, Gujarat, India
| | - Rohit Singh
- Department of Prosthodontics Crown Bridge and Implantology, Patna Dental College and Hospital, Patna, Bihar, India
| | - B Kaushik Shetty
- Department of Orthodontics and Dentofacial Orthopedics, Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Mangalore, Karnataka, India
| | | |
Collapse
|
4
|
Abdolalian F, Bayani M, Afzali S, Nakhostin A, Almasi-Hashiani A. Periostin level in gingival crevicular fluid in periodontal disease: a systematic review and meta-analysis. BMC Oral Health 2023; 23:284. [PMID: 37173720 PMCID: PMC10182628 DOI: 10.1186/s12903-023-03031-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Periostin, a secreted adhesion molecule, is a matricellular protein secreted most in periodontal ligament and periosteum. Periostin is also needed for integrity and maturation of periodontal tissue. This meta-analysis was conducted to compare the gingival crevicular fluid (GCF) periostin levels in subjects having periodontal disease and healthy periodontium. METHODS In this meta-analysis, three international database including PubMed, Scopus and Web of Science were searched and 207 studies retrieved. Also, the Google Scholar was searched to find more related studies (two studies were found). To assess the risk of bias of included studies, the Newcastle-Ottawa assessment scale adapted for case-control was used. Finally, required data was extracted and included into analysis. All statistical analysis were done using Stata software. RESULTS Eight studies were included in this meta-analysis. Results showed that GCF periostin level is significant lower in chronic periodontitis group compare to healthy people (the standardized mean difference (SMD) = -3.15, 95% CI = -4.45, -1.85, p < 0.001). The syntheses of studies shown a significant decrease in the periostin level of chronic periodontitis patients compared to the gingivitis patients (SMD = -1.50, 95%CI = -2.52, -0.49, P = 0.003), while the mean level of periostin between the gingivitis patients and healthy group has no significant difference (SMD = -0.88, 95%CI = -2.14, 0.38, P = 0.173). CONCLUSION The mean concentration of GCF periostin in people with chronic periodontitis significantly decreased compared to people with gingivitis and also compared to healthy people, while no significant difference was observed between the two groups with gingivitis and healthy people. Therefore, this marker may be used as a diagnostic criterion for the disease, which requires further studies.
Collapse
Affiliation(s)
- Fatemeh Abdolalian
- Department of Periodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Mojtaba Bayani
- Department of Periodontics, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Afzali
- Student Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Afrooz Nakhostin
- Department of Restorative Dentistry, School of Dentistry, Arak University of Medical Sciences, Arak, Iran
| | - Amir Almasi-Hashiani
- Department of Epidemiology, School of Health, Arak University of Medical Sciences, Arak, Iran.
- Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
5
|
Aghamir SMK, Amiri M, Panahi G, Khatami F, Dehghani S, Moosavi MS. Salivary and serum periostin in kidney transplant recipients. PLoS One 2023; 18:e0285256. [PMID: 37130146 PMCID: PMC10153693 DOI: 10.1371/journal.pone.0285256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023] Open
Abstract
INTRODUCTION End-stage renal disease (ESRD) treatment includes dialysis and kidney transplantation. Transplant rejection is a major barrier to transplant success. One of the markers mentioned in previous studies on renal function in patients with renal failure for various reasons is periostin (POSTN). The expression of POSTN correlates with interstitial fibrosis and reduced renal function. One of the limitations in this regard is the effect of oral lesions on the POSTN level. This study was conducted aimed to measure the relationship between salivary and serum POSTN and renal function in patients with a history of a kidney transplant, taking into account all the conditions affecting POSTN. METHODS In this study, serum and saliva samples were taken from 23 transplant patients with normal function (NF) and 29 transplant patients with graft failure (GF). At least one year had passed since the transplant. Before sampling, a complete oral examination was performed. Salivary and serum POSTN was examined by ELISA. The results were analyzed by SPSS software. RESULTS The POSTN level in the serum of the NF group (191.00 ± 33.42) was higher than GF patients (178.71 ± 25.68), but the difference was not significant (P = 0.30). Salivary POSTN in NF patients (2.76 ± 0.35) was significantly higher than GF patients (2.44 ± 0.60) (P = 0.01). CONCLUSIONS The superiority of saliva as a diagnostic fluid includes ease of collection and storage, and non-invasiveness, all of which can lead to the replacement of blood with this bio-fluid. The significant results of salivary POSTN may be due to the lack of serum disturbing factors. Saliva is an ultra-filtered fluid from serum and therefore there are fewer proteins and polysaccharides attached to biomarkers in saliva and the accuracy of measuring these biomarkers in the saliva is more valuable than serum.
Collapse
Affiliation(s)
| | - Mahrokh Amiri
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khatami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sanaz Dehghani
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Organ Procurement Unit, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdieh-Sadat Moosavi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
The Multiple Roles of Periostin in Non-Neoplastic Disease. Cells 2022; 12:cells12010050. [PMID: 36611844 PMCID: PMC9818388 DOI: 10.3390/cells12010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periostin, identified as a matricellular protein and an ECM protein, plays a central role in non-neoplastic diseases. Periostin and its variants have been considered to be normally involved in the progression of most non-neoplastic diseases, including brain injury, ocular diseases, chronic rhinosinusitis, allergic rhinitis, dental diseases, atopic dermatitis, scleroderma, eosinophilic esophagitis, asthma, cardiovascular diseases, lung diseases, liver diseases, chronic kidney diseases, inflammatory bowel disease, and osteoarthrosis. Periostin interacts with protein receptors and transduces signals primarily through the PI3K/Akt and FAK two channels as well as other pathways to elicit tissue remodeling, fibrosis, inflammation, wound healing, repair, angiogenesis, tissue regeneration, bone formation, barrier, and vascular calcification. This review comprehensively integrates the multiple roles of periostin and its variants in non-neoplastic diseases, proposes the utility of periostin as a biological biomarker, and provides potential drug-developing strategies for targeting periostin.
Collapse
|
7
|
Liao C, Liang S, Wang Y, Zhong T, Liu X. Sclerostin is a promising therapeutic target for oral inflammation and regenerative dentistry. J Transl Med 2022; 20:221. [PMID: 35562828 PMCID: PMC9102262 DOI: 10.1186/s12967-022-03417-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/28/2022] [Indexed: 11/10/2022] Open
Abstract
Sclerostin is the protein product of the SOST gene and is known for its inhibitory effects on bone formation. The monoclonal antibody against sclerostin has been approved as a novel treatment method for osteoporosis. Oral health is one of the essential aspects of general human health. Hereditary bone dysplasia syndrome caused by sclerostin deficiency is often accompanied by some dental malformations, inspiring the therapeutic exploration of sclerostin in the oral and dental fields. Recent studies have found that sclerostin is expressed in several functional cell types in oral tissues, and the expression level of sclerostin is altered in pathological conditions. Sclerostin not only exerts similar negative outcomes on the formation of alveolar bone and bone-like tissues, including dentin and cementum, but also participates in the development of oral inflammatory diseases such as periodontitis, pulpitis, and peri-implantitis. This review aims to highlight related research progress of sclerostin in oral cavity, propose necessary further research in this field, and discuss its potential as a therapeutic target for dental indications and regenerative dentistry.
Collapse
Affiliation(s)
- Chufang Liao
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shanshan Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yining Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Prosthodontics, Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Zhong
- School of Stomatology, Jinan University, Guangzhou, China.,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China.,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiangning Liu
- School of Stomatology, Jinan University, Guangzhou, China. .,Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou, China. .,Department of Stomatology Medical Center, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Jiang Y, Yang P, Li C, Lu Y, Kou Y, Liu H, Guo J, Li M. Periostin regulates LPS-induced apoptosis via Nrf2/HO-1 pathway in periodontal ligament fibroblasts. Oral Dis 2022. [PMID: 35298860 DOI: 10.1111/odi.14189] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/19/2022] [Accepted: 03/09/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Periostin is important for the maintenance of periodontal tissue, but its role in periodontitis is controversial. This research investigated the effect of periostin in periodontitis and the underlying mechanism. DESIGN Mouse periodontitis models in vivo and inflammation model in vitro which were induced by Porphyromonas gingivalis lipopolysaccharide were established to evaluate periostin expression. Human periodontal ligament fibroblasts (PDLFs) were treated with lipopolysaccharide and N-acetylcysteine, fluorescence staining, flow cytometry, western blot, and qRT-PCR were used to detect reactive oxygen species (ROS), periostin expression, and apoptosis-related makers. The periostin gene was successfully transfected into PDLFs to verify the effect of periostin on apoptosis. Then, the Nrf2 inhibitor was added to clarify the mechanism. RESULTS Periostin expression decreased in the periodontal ligaments of mouse periodontitis models and lipopolysaccharide-induced PDLFs. Lipopolysaccharide promoted the activation of ROS and apoptosis in PDLFs, whereas N-acetylcysteine reversed this condition. Overexpression of periostin suppressed apoptosis of PDLFs and reversed the inhibitory effect of lipopolysaccharide on nuclear Nrf2 expression. Moreover, the Nrf2 inhibitor attenuated the protective effect of periostin on lipopolysaccharide-induced apoptosis. CONCLUSIONS Lipopolysaccharide induced apoptosis in PDLFs by inhibiting periostin expression and thus Nrf2/HO-1 pathway, indicating that periostin could be a potential therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Yujun Jiang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| | - Panpan Yang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| | - Congshan Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| | - Yupu Lu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| | - Yuying Kou
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| | - Hongrui Liu
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| | - Jie Guo
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, 250012, Shandong, China.,Center of Osteoporosis and Bone Mineral Research, Shandong University, 250012, Shandong, China
| |
Collapse
|
9
|
Nikoloudaki G. Functions of Matricellular Proteins in Dental Tissues and Their Emerging Roles in Orofacial Tissue Development, Maintenance, and Disease. Int J Mol Sci 2021; 22:ijms22126626. [PMID: 34205668 PMCID: PMC8235165 DOI: 10.3390/ijms22126626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 01/04/2023] Open
Abstract
Matricellular proteins (MCPs) are defined as extracellular matrix (ECM) associated proteins that are important regulators and integrators of microenvironmental signals, contributing to the dynamic nature of ECM signalling. There is a growing understanding of the role of matricellular proteins in cellular processes governing tissue development as well as in disease pathogenesis. In this review, the expression and functions of different MP family members (periostin, CCNs, TSPs, SIBLINGs and others) are presented, specifically in relation to craniofacial development and the maintenance of orofacial tissues, including bone, gingiva, oral mucosa, palate and the dental pulp. As will be discussed, each MP family member has been shown to have non-redundant roles in development, tissue homeostasis, wound healing, pathology and tumorigenesis of orofacial and dental tissues.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Schulich Dentistry Department, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada; ; Tel.: +1-519-661-2111 (ext. 81102)
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
10
|
Qian L, Shujuan G, Ping H, Li L, Weiwei S, Yafei W, Weidong T. Wnt5a up-regulates Periostin through CaMKII pathway to influence periodontal tissue destruction in early periodontitis. J Mol Histol 2021; 52:555-566. [PMID: 33904122 DOI: 10.1007/s10735-021-09975-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/15/2021] [Indexed: 02/05/2023]
Abstract
Periostin is essential for periodontal tissue integrity and homeostasis and also associated with periodontitis and periodontitis healing. This study aims to investigate the temporal and spatial expression of Periostin and Wnt5a/CaMKII in periodontitis and how the Wnt5a regulates Periostin through CaMKII signaling pathway in PDLCs in inflammatory environment. The experimental periodontitis mice were adopted to clarify the temporal and spatial expression of Wnt5a, CaMKII and Periostin during early periodontitis. And the Wnt5a, CaMKII and Periostin expression pattern and regulation mechanism in PDLCs were clarified in Porphyromonas gingivalis Lipopolysaccharide (P.g. LPS) induced inflammatory condition. Along with the periodontitis development, Wnt5a, CaMKII and Periostin significantly increased in periodontal ligament and partially increased in gingiva during 0 to 6 day (P < 0.05). They were involved in early periodontitis homeostasis especially in periodontal ligament tissue. Meanwhile, Wnt5a, CaMKII and Periostin were significantly decreased at 12 h (P < 0.05) and increased at 48 h (P < 0.05) in PDLCs after induced by P.g. LPS. Besides, Wnt5a significantly enhanced total CaMKII protein (P < 0.05), pCaMKII (P < 0.001) and Periostin (P < 0.001), and this could be blocked by CaMKII inhibitor KN93 (P < 0.05). In conclusions, in early periodontitis, Wnt5a/CaMKII and Periostin should be involved in maintaining periodontal homeostasis and Wnt5a could up-regulate Periostin via CaMKII pathway in inflammation, which would provide new clues for us to understand the pathogenesis of periodontitis and develop better therapeutic strategies.
Collapse
Affiliation(s)
- Liu Qian
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guo Shujuan
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Huang Ping
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liu Li
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shi Weiwei
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wu Yafei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tian Weidong
- Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Bayani M, Rezaei B, Anvari M, Vahed P. Evaluation of periostin levels in gingival crevicular fluid in association between coronary heart disease and chronic periodontitis. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.318941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Arslan R, Karsiyaka Hendek M, Kisa U, Olgun E. The effect of non-surgical periodontal treatment on gingival crevicular fluid periostin levels in patients with gingivitis and periodontitis. Oral Dis 2020; 27:1478-1486. [PMID: 33012041 DOI: 10.1111/odi.13664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of the study was to evaluate the effect of non-surgical periodontal treatment on gingival crevicular fluid (GCF) periostin levels in patients with gingivitis (G) and periodontitis (P). SUBJECTS AND METHODS A total of 90 subjects, 30 patients with P, 30 with G, and 30 periodontally healthy (H) subjects were included. Patients with periodontal disease received non-surgical periodontal treatment. GCF periostin levels were assessed at baseline, at the 6th week, and the 3rd month after treatment. RESULTS It was found that GCF periostin level was the lowest in the H group (89.31[47.12] pg/30 sec), followed by the G group (132.82[145.14] pg/30 sec), and the highest in the P group (207.75[189.45] pg/30 sec). These differences were statistically significant between H and the other groups (p < .001). After treatment, GCF periostin levels significantly decreased at the 6th week and the 3rd month in the G group, at the 3rd month in the P group compared to baseline values (p < .05). CONCLUSION The results of this study suggest that GCF periostin plays a role as a reliable biological marker in the pathogenesis of periodontal disease and non-surgical periodontal treatment is effective in decreasing GCF periostin levels.
Collapse
Affiliation(s)
- Rana Arslan
- Oral and Dental Health Center, Yozgat, Turkey
| | | | - Ucler Kisa
- Department of Biochemistry, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ebru Olgun
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
13
|
Khurshid Z, Mali M, Adanir N, Zafar MS, Khan RS, Latif M. Periostin: Immunomodulatory Effects on Oral Diseases. Eur J Dent 2020; 14:462-466. [PMID: 32688410 PMCID: PMC7440953 DOI: 10.1055/s-0040-1714037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Periostin is a microcellular adapter protein. It plays a wide range of essential roles during the development and in immunomodulation. Periostin is a prominent contributor during the process of angiogenesis, tumorigenesis, and cardiac repair. It is expressed in periodontal ligaments, tendons, skin, adipose tissues, muscle, and bone. This is a protein-based biomolecule that has the diagnostic and monitoring capability and can potentially be used as a biomarker to detect physiological and pathological conditions. The aim of the present review was to explore the periostin morphology and associated structural features. Additionally, periostin’s immunomodulatory effects and associated biomarkers in context of oral diseases have been discussed.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Maria Mali
- Department of Orthodontics, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al Ahsa, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Madinah Al-Munawarah, Madinah, Saudi Arabia.,Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Rabia Sannam Khan
- Department of Bioengineering, Lancaster University, Lancaster, United Kingdom
| | - Muhammad Latif
- Centre for Genetics and Inherited Diseases, College of Medicine, Taibah University, Madinah Al-Munawarah, Madinah, Saudi Arabia
| |
Collapse
|
14
|
Sophia K, Suresh S, Sudhakar U, Abdul Cader S, Vardhini VM, Arunachalam LT, Jean SC. Comparative Evaluation of Serum and Gingival Crevicular Fluid Periostin Levels in Periodontal Health and Disease: A Biochemical Study. Cureus 2020; 12:e7218. [PMID: 32274276 PMCID: PMC7141796 DOI: 10.7759/cureus.7218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction Periostin, a secreted adhesion molecule, is a matricellular protein secreted most in periodontal ligament and periosteum. This periostin is needed for integrity and maturation of periodontal tissue. The present study was conducted to estimate and compare the gingival crevicular fluid and serum periostin levels in subjects having chronic periodontitis, gingivitis and healthy periodontium. Methods Ninety patients belonging to both sexes were categorized into three groups, 30 patients each as healthy periodontium (Group I), chronic gingivitis (Group II) and generalised chronic periodontitis (Group III). The clinical parameters included assessment of plaque index (PI), gingival index (GI), probing pocket depth (PPD) and clinical attachment level (CAL). Gingival crevicular fluid (GCF) and serum samples were collected and the enzyme-linked immunosorbent assay was used to estimate periostin levels. Results Periostin levels in GCF were comparatively low in the chronic periodontitis than in the gingivitis and healthy periodontium groups and the difference was statistically significant. No statistical difference was found for serum periostin levels among Group I, Group II and Group III. On comparison of clinical parameters, significant difference was noticed among the three groups. GCF periostin levels were correlated inversely with the clinical parameters in chronic periodontitis patients. Conclusion GCF periostin levels were gradually reduced with the increase in severity of periodontal disease. This novel biomarker has role in maintaining normal periodontal tissue function and may be used as a potential marker in periodontal disease activity evaluation.
Collapse
Affiliation(s)
- Khumukcham Sophia
- Periodontics, Jawaharlal Nehru Institute of Medical Sciences, Imphal, IND
| | - Snophia Suresh
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Uma Sudhakar
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Shaik Abdul Cader
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Varsha M Vardhini
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | | | - S Catherine Jean
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| |
Collapse
|
15
|
Kumaresan D, Balasundaram A, Naik VK, Appukuttan DP. Gingival crevicular fluid periostin levels in chronic periodontitis patients following nonsurgical periodontal treatment with low-level laser therapy. Eur J Dent 2019; 10:546-550. [PMID: 28042273 PMCID: PMC5166314 DOI: 10.4103/1305-7456.195179] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Periostin is a matricellular protein highly expressed in periosteum, periodontal ligament and is essential for tissue integrity and maturation. It plays a role in collagen fibrillogenesis and is downregulated in periodontal disease. Biostimulation utilizing low-level laser therapy (LLLT) influences periodontal ligament fibroblast proliferation. This study was conducted with the objective of estimating periostin levels in chronic periodontitis (CP) patients following LLLT as an adjunct to root surface debridement (RSD). Materials and Methods: Thirty periodontally healthy participants (Group I) and sixty CP participants were recruited. Based on the therapeutic intervention, CP patients were allocated to either RSD (Group II) or to RSD with LLLT (Group III) group. Clinical parameters and gingival crevicular fluid (GCF) periostin levels were assessed at the baseline and at the 3rd month. Results: Periostin levels were significantly lower in CP patients when compared to healthy individuals at the baseline (P < 0.01). Following nonsurgical periodontal treatment (NSPT), periostin levels significantly increased in both Group II and III, when compared to baseline values (P < 0.001). Comparison of mean periostin levels between both the treatment groups showed a significant increase in LLLT group than RSD at the 3rd month (P < 0.05). Conclusion: Within the limitations of the present study, LLLT application was found to have additional benefits over RSD with respect to clinical periodontal parameters and GCF periostin levels. Moreover, periostin may be used as a possible biomarker to evaluate the outcome following NSPT.
Collapse
Affiliation(s)
| | - Aruna Balasundaram
- Department of Periodontology, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Vanaja Krishna Naik
- Department of Periodontology, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Deva Priya Appukuttan
- Department of Periodontology, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
16
|
Radhika BN, Appukuttan DP, Prakash PSG, Subramanian S, Victor DJ, Balasundaram A. Estimation of Periostin and Tumour Necrosis Factor-α in Type II Diabetics with Chronic Periodontitis: A case-control study. J Indian Soc Periodontol 2019; 23:106-112. [PMID: 30983780 PMCID: PMC6434735 DOI: 10.4103/jisp.jisp_397_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Periostin, a matricellular protein, is downregulated in chronic inflammatory periodontal disease and is negatively modulated by tumor necrosis factor-α (TNF-α) in human periodontal fibroblast cell culture. The study aimed to estimate the gingival crevicular fluid (GCF) levels of periostin and TNF-α and to discern their relationship in chronic periodontitis (CP) individuals with and without Type II diabetes mellitus (DM). Materials and Methods: A total of 60 participants were divided into three groups, with 20 in each group. Group I – systemically and periodontally healthy, Group II – generalized CP, and Group III – generalized CP with Type II DM. Plaque index, gingival index, sulcular bleeding index, probing depth, and clinical attachment level were recorded. GCF periostin and TNF-α were quantified using the enzyme-linked immunosorbent assay. Results: Intergroup comparison was performed using the one-way ANOVA and Kruskal–Wallis. The relationship between the variables was analyzed using the Pearson's and Kendall's Tau correlation. The GCF periostin levels in Groups I, II, and III was 27.52 ± 2.39 ng/mL, 20.18 ± 1.42 ng/mL, and 16.77 ± 3.29 ng/mL, respectively. The GCF TNF-α levels in Groups I, II, and III was 92.41 ± 19.30 ng/L, 118.53 ± 21.93 ng/L, and 147.67 ± 16.35 ng/L, respectively. Periostin decreased, and TNF-α increased in periodontal disease; moreover, periostin level correlated negatively with all the site-specific clinical parameters whereas TNF-α positively correlated (P < 0.001). Conclusions: TNF-α strongly and negatively downregulates periostin in a chronically inflamed locale leading to compromised integrity of the periodontium.
Collapse
Affiliation(s)
- Burra Naga Radhika
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Deva Priya Appukuttan
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | | | - Sangeetha Subramanian
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Dhayanand John Victor
- Department of Periodontics, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | | |
Collapse
|
17
|
Abstract
Periostin is a secreted matricellular protein that primarily interacts with type I collagen and fibronectin extracellular matrix proteins, and is widely distributed in tissues rich in collagen-rich connective tissues, including the periodontal ligament. Its expression in these tissues is especially regulated by mechanical load. While the expression and regulation of periostin in the teeth of murine models and cell lines is well known, its presence in human teeth is poorly documented. Here we update and summarize the available data on the distribution of periostin in the human periodontal ligament, gingiva and dental pulp.
Collapse
|
18
|
Liu Q, Huang P, Guo SJ. [Progress relationship between periostin and periodontitis]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:681-685. [PMID: 30593118 DOI: 10.7518/hxkq.2018.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Periostin, a kind of matricellular protein highly expressed in periodontal ligament and periosteum, is an important regulator of the integrity of periodontal ligament and periodontitis processes. Periostin has been shown to play a positive role in the recovery of periodontitis. This paper reviews relevant literature about the role of periostin in periodontal tissue and periodontitis.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ping Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shu-Juan Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Sankardas PA, Lavu V, Lakakula BVKS, Rao SR. Differential expression of periostin, sclerostin, receptor activator of nuclear factor-κB, and receptor activator of nuclear factor-κB ligand genes in severe chronic periodontitis. ACTA ACUST UNITED AC 2018; 10:e12369. [DOI: 10.1111/jicd.12369] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Pooja A. Sankardas
- Department of Periodontology; Faculty of Dental Sciences; Sri Ramachandra University; Chennai Tamil Nadu India
| | - Vamsi Lavu
- Department of Periodontology; Faculty of Dental Sciences; Sri Ramachandra University; Chennai Tamil Nadu India
| | | | - Suresh R. Rao
- Department of Periodontology; Faculty of Dental Sciences; Sri Ramachandra University; Chennai Tamil Nadu India
| |
Collapse
|
20
|
Periostin, dentin matrix protein 1 and P2rx7 ion channel in human teeth and periodontal ligament. Ann Anat 2018; 216:103-111. [DOI: 10.1016/j.aanat.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 11/27/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023]
|
21
|
Akman AC, Buyukozdemir Askin S, Guncu GN, Nohutcu RM. Evaluation of gingival crevicular fluid and peri-implant sulcus fluid levels of periostin: A preliminary report. J Periodontol 2018; 89:195-202. [PMID: 28914595 DOI: 10.1902/jop.2017.170315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/16/2017] [Indexed: 11/13/2022]
Abstract
BACKGROUND Periostin is a protein present in alveolar bone and periodontal ligament whose function is related to response to external forces. The aims of this study are to detect levels of periostin in peri-implant sulcular fluid (PISF) and gingival crevicular fluid (GCF) and to evaluate the relationship between periostin, pyridinoline cross-linked carboxyterminal telopeptide of Type I collagen (ICTP), and C-terminal cross-linked telopeptide of Type I collagen (CTX) levels and clinical inflammatory symptoms and duration of functional loading. METHODS The study population comprised nine women and four men with mean age 43.23 ± 12.48. Twenty "bone-level designed" dental implants (DIs) placed in molar or premolar sites, without any signs of peri-implant bone loss and with a restoration in function for at least 12 months, were included in the study with 20 contralateral natural teeth (NT) as controls. Clinical parameters and restoration dates of the implants were recorded. PISF, GCF, ICTP, CTX, and periostin levels were evaluated using enzyme-linked immunosorbent assay. RESULTS ICTP, CTX, and periostin levels were similar between DI and NT groups. There were no statistically significant differences between PISF and GCF values. When implants were grouped as healthy (gingival index [GI] = 0) and inflamed (GI ≥0), ICTP levels and PISF volume were lower in healthy implants compared with the inflamed group. Both periostin and CTX levels were negatively correlated with functioning time, suggesting less bone remodeling around DIs at later stages of functioning. CONCLUSION Findings of this study suggest collagen breakdown products may be used as markers to evaluate peri-implant metabolism.
Collapse
Affiliation(s)
- Abdullah C Akman
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | | | - Guliz N Guncu
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Rahime M Nohutcu
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Jamesha FI, Maradi AP, Chithresan K, Janakiram S, Maddur PK, Rangaraju R. Comparison of gingival crevicular fluid periostin levels in healthy, chronic periodontitis, and aggressive periodontitis. J Indian Soc Periodontol 2018; 22:480-486. [PMID: 30631225 PMCID: PMC6305088 DOI: 10.4103/jisp.jisp_266_18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background: In both states of health and disease, the integrity of connective tissue along with regulation in formation of bones are well maintained by periostin (POSTN) which is a matricellular protein secreted by fibroblasts. The present study aimed to assess the gingival crevicular fluid (GCF) POSTN levels in patients with chronic periodontitis (CP) and aggressive periodontitis and to compare them with that of healthy controls. Materials and Methods: A total of 39 individuals were recruited and allocated into the healthy group, and two periodontitis groups (the chronic and the aggressive types) (13 in each group). The samples of GCF fluid were collected using microcapillary pipette. The POSTN levels were estimated using the enzyme-linked immunosorbent assay. Results: The mean levels of total POSTN in GCF fluid (in pg/μl) were 182.41, 79.87, and 49.28 for the healthy, CP, aggressive periodontitis groups, respectively. There was a statistically significant difference between the groups with P < 0.05. Furthermore, there were statistically significant differences when compared among the groups with P < 0.05. When all three groups were examined together, there were negative correlations between GCF POSTN levels and clinical parameters. Conclusion: The GCF POSTN levels reduced with an increase in the severity of the periodontitis. With the present study results, we could conclude that the GCF POSTN level can be considered as a dependable marker in periodontal disease diagnosis, disease activity, and healing.
Collapse
Affiliation(s)
- Fazal Ilahi Jamesha
- Department of Periodontics, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - Arun Parappa Maradi
- Department of Periodontics, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - Koshy Chithresan
- Department of Periodontics, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - Srihari Janakiram
- Department of Periodontics, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - Praveen Krishna Maddur
- Department of Periodontics, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| | - Rajesh Rangaraju
- Department of Periodontics, Sri Ramakrishna Dental College and Hospital, Coimbatore, Tamil Nadu, India
| |
Collapse
|
23
|
Gingival Crevicular Fluid and Salivary Periostin Levels in Non-Smoker Subjects With Chronic and Aggressive Periodontitis : Periostin Levels in Chronic and Aggressive Periodontitis. Inflammation 2017; 39:986-93. [PMID: 26931107 DOI: 10.1007/s10753-016-0328-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Periostin, an extracellular matrix protein functioning as an important structural mediator and adhesion molecule, has been shown to be an important regulator of connective tissue integrity. This study aimed to evaluate the levels of periostin in chronic periodontitis (CP) and aggressive periodontitis (AgP) compared to non-periodontitis (NP). Individuals were submitted to gingival crevicular fluid (GCF) and saliva sampling. Periodontal examination consisted of plaque index (PI), gingival index (GI), probing depth (PD), bleeding on probing (BOP), and clinical attachment level (CAL) measurements. Assays for periostin were performed by an enzyme-linked immunosorbent assay. Periodontitis patients presented more severe clinical indices compared to the NP group (p < 0.001). The mean GCF level of periostin was lowest in the AgP group as compared to the other groups and was lower in the CP group as compared to the NP group (p < 0.001). Increased levels of periostin were observed in the saliva of patients with AgP as compared to the CP and NP groups (p < 0.05). There was a negative relationship between GCF periostin levels and clinical parameters (p < 0.01), whereas a positive correlation was observed between salivary periostin levels and full-mouth GI and CAL scores (p < 0.01). To our knowledge, this is the first report investigating periostin levels in GCF and saliva in aggressive periodontitis. The results suggest that subjects with CP and AgP exhibit a different periostin profile. Periostin in GCF may have a protective role against periodontal disease. Furthermore, salivary periostin concentrations may have a promising diagnostic potential for the aggressive forms of periodontal disease.
Collapse
|
24
|
Türer ÇC, Ballı U, Güven B. Fetuin-A, serum amyloid A and tumor necrosis factor alpha levels in periodontal health and disease. Oral Dis 2017; 23:379-386. [DOI: 10.1111/odi.12625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/24/2016] [Accepted: 12/13/2016] [Indexed: 12/19/2022]
Affiliation(s)
- ÇC Türer
- Department of Periodontology; Faculty of Dentistry; Bulent Ecevit University; Zonguldak Turkey
| | - U Ballı
- Department of Periodontology; Faculty of Dentistry; Bulent Ecevit University; Zonguldak Turkey
| | - B Güven
- Department of Biochemistry; Faculty of Medicine; Bulent Ecevit University; Zonguldak Turkey
| |
Collapse
|
25
|
Bi J, Koivisto L, Owen G, Huang P, Wang Z, Shen Y, Bi L, Rokka A, Haapasalo M, Heino J, Häkkinen L, Larjava H. Epithelial Microvesicles Promote an Inflammatory Phenotype in Fibroblasts. J Dent Res 2016; 95:680-8. [DOI: 10.1177/0022034516633172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Microvesicles (MVs) are extracellular vesicles secreted by various cell types that are involved in intercellular communication. We hypothesized that in human periodontal disease, the pocket epithelium releases MVs, which then modulate gene expression in the underlying fibroblasts to control periodontal inflammation. MVs were isolated from culture medium of gingival epithelial cells (GECs) treated with oral bacterial biofilm extract or left untreated. Biofilm treatment significantly increased MV release from the GECs. Mass spectrometry of GEC-MVs identified a total of 2,173 proteins, of which about 80% were detected in MVs from both control and biofilm-treated GECs. Among 80 signature genes of human gingival fibroblasts, 20 were significantly regulated ( P < 0.05) by MVs from control and biofilm-treated GECs in a similar manner. Matrix metalloproteinase 1 and 3 and interleukin 6 and 8 showed the strongest regulation at the mRNA and protein levels. Several cellular signaling pathways were activated by GEC-MVs in human gingival fibroblasts, including Smad and mitogen-activated protein kinase–associated pathways ERK1/2, JNK, and p38. However, ERK1/2 signaling dominated in the MV-induced gene expression changes. The results demonstrate that GEC-MVs have a strong regulatory effect on the expression of fibroblast genes associated with inflammation and matrix degradation and that bacterial biofilm stimulates the generation of GEC-MVs. This suggests that bacterial biofilms can contribute to the initiation and progression of periodontal disease by promoting a tissue-destructive phenotype in gingival fibroblasts via the enhanced secretion of epithelial MVs.
Collapse
Affiliation(s)
- J. Bi
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - L. Koivisto
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - G. Owen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - P. Huang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z. Wang
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - Y. Shen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - L. Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - A. Rokka
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - M. Haapasalo
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - J. Heino
- Department of Biochemistry, University of Turku, Turku, Finland
| | - L. Häkkinen
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| | - H.S. Larjava
- Faculty of Dentistry, Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
26
|
Baeza M, Garrido M, Hernández-Ríos P, Dezerega A, García-Sesnich J, Strauss F, Aitken JP, Lesaffre E, Vanbelle S, Gamonal J, Brignardello-Petersen R, Tervahartiala T, Sorsa T, Hernández M. Diagnostic accuracy for apical and chronic periodontitis biomarkers in gingival crevicular fluid: an exploratory study. J Clin Periodontol 2016; 43:34-45. [DOI: 10.1111/jcpe.12479] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Mauricio Baeza
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Mauricio Garrido
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Patricia Hernández-Ríos
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Andrea Dezerega
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Jocelyn García-Sesnich
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Franz Strauss
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Juan Pablo Aitken
- Department of Pathology and Oral Medicine; Faculty of Dentistry; University of Chile; Santiago Chile
| | - Emmanuel Lesaffre
- Leuven Biostatistics and Statistical Bioinformatics Centre; KU Leuven; Leuven Belgium
| | - Sophie Vanbelle
- Department of Methodology and Statistics; CAPHRI; Maastricht University; Maastricht The Netherlands
| | - Jorge Gamonal
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
| | | | - Taina Tervahartiala
- Departments of Oral and Maxillofacial Diseases; Helsinki University and Helsinki University Central Hospital; Helsinki Finland
| | - Timo Sorsa
- Departments of Oral and Maxillofacial Diseases; Helsinki University and Helsinki University Central Hospital; Helsinki Finland
- Division of Periodontology; Department of Dental Medicine; Karolinska Institutet; Huddinge Sweden
| | - Marcela Hernández
- Laboratory of Periodontal Biology; Department of Conservative Dentistry; Faculty of Dentistry; University of Chile; Santiago Chile
- Department of Pathology and Oral Medicine; Faculty of Dentistry; University of Chile; Santiago Chile
| |
Collapse
|
27
|
Cobo T, Obaya A, Cal S, Solares L, Cabo R, Vega JA, Cobo J. Immunohistochemical localization of periostin in human gingiva. Eur J Histochem 2015; 59:2548. [PMID: 26428890 PMCID: PMC4598602 DOI: 10.4081/ejh.2015.2548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/16/2015] [Accepted: 08/22/2015] [Indexed: 12/27/2022] Open
Abstract
The periostin is a matricellular protein expressed in collagen-rich tissues including some dental and periodontal tissues where it is regulated by mechanical forces, growth factors and cytokines. Interestingly the expression of this protein has been found modified in different gingival pathologies although the expression of periostin in normal human gingiva was never investigated. Here we used Western blot and double immunofluorescence coupled to laser-confocal microscopy to investigated the occurrence and distribution of periostin in different segments of the human gingival in healthy subjects. By Western blot a protein band with an estimated molecular mass of 94 kDa was observed. Periostin was localized at the epithelial-connective tissue junction, or among the fibers of the periodontal ligament, and never co-localized with cytokeratin or vimentin thus suggesting it is an extracellular protein. These results demonstrate the occurrence of periostin in adult human gingiva; its localization suggests a role in the bidirectional interactions between the connective tissue and the epithelial cells, and therefore in the physiopathological conditions in which these interactions are altered.
Collapse
Affiliation(s)
- T Cobo
- Instituto Asturiano de Odontología.
| | | | | | | | | | | | | |
Collapse
|
28
|
Padial-Molina M, Volk SL, Rios HF. Preliminary insight into the periostin leverage during periodontal tissue healing. J Clin Periodontol 2015. [PMID: 26202398 DOI: 10.1111/jcpe.12432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Tissue repair and regeneration is assisted by the efficient coordination of cell and extracellular matrix interactions mediated by matricellular molecules such as periostin. Given its high expression around the teeth, the periodontal organ represents an ideal system to capture the protein dynamics during wound healing. METHODS An observational prospective case-control study was designed to characterize periostin changes over time after periodontal surgery in tissue, oral fluids and serum by histological, protein and mRNA analyses. RESULTS Histological analysis showed lower periostin with a diffuse local distribution pattern in disease patients. Levels of periostin in gingival crevicular fluid (GCF) increased over time for both groups, more noticeably in the periodontitis subjects. A transient and subtle change in circulating periostin levels was also noticed. The mRNA periostin levels contrasted with the protein levels and may indicate the underlying post-transcriptional regulatory process during chronic inflammation. Levels of known periodontal disease biomarkers such as IL-β, IL1-α, TNF-α, MIP-1α and CRP served as tissue stability markers and complemented the clinical parameters recorded. CONCLUSION The transient local increase in GCF periostin after eliminating the local etiology in periodontally affected sites suggests its importance in the maturation and stability of the connective tissue. The decreasing levels observed as the tissue healed highlight its spatial/temporal significance.
Collapse
Affiliation(s)
- Miguel Padial-Molina
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,Department of Oral Surgery and Implant Dentistry, School of Dentistry, University of Granada, Granada, Spain
| | - Sarah L Volk
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hector F Rios
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|