1
|
Sun Y, Yin Y, Yang S, Ai D, Qin H, Xia X, Xu X, Song J. Lipotoxicity: The missing link between diabetes and periodontitis? J Periodontal Res 2024; 59:431-445. [PMID: 38419425 DOI: 10.1111/jre.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 03/02/2024]
Abstract
Lipotoxicity refers to the accumulation of lipids in tissues other than adipose tissue (body fat). It is one of the major pathophysiological mechanisms responsible for the progression of diabetes complications such as non-alcoholic fatty liver disease and diabetic nephropathy. Accumulating evidence indicates that lipotoxicity also contributes significantly to the toxic effects of diabetes on periodontitis. Therefore, we reviewed the current in vivo, in vitro, and clinical evidence of the detrimental effects of lipotoxicity on periodontitis, focusing on its molecular mechanisms, especially oxidative and endoplasmic reticulum stress, inflammation, ceramides, adipokines, and programmed cell death pathways. By elucidating potential therapeutic strategies targeting lipotoxicity and describing their associated mechanisms and clinical outcomes, including metformin, statins, liraglutide, adiponectin, and omega-3 PUFA, this review seeks to provide a more comprehensive and effective treatment framework against diabetes-associated periodontitis. Furthermore, the challenges and future research directions are proposed, aiming to contribute to a more profound understanding of the impact of lipotoxicity on periodontitis.
Collapse
Affiliation(s)
- Yu Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yuanyuan Yin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Sihan Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Dongqing Ai
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Qin
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xuyun Xia
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiaohui Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
2
|
He W, Fu Y, Yao S, Huang L. Programmed cell death of periodontal ligament cells. J Cell Physiol 2023; 238:1768-1787. [PMID: 37566596 DOI: 10.1002/jcp.31091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The periodontal ligament is a crucial tissue that provides support to the periodontium. Situated between the alveolar bone and the tooth root, it consists primarily of fibroblasts, cementoblasts, osteoblasts, osteoclasts, periodontal ligament stem cells (PDLSCs), and epithelial cell rests of Malassez. Fibroblasts, cementoblasts, osteoblasts, and osteoclasts are functionally differentiated cells, whereas PDLSCs are undifferentiated mesenchymal stem cells. The dynamic development of these cells is intricately linked to periodontal changes and homeostasis. Notably, the regulation of programmed cell death facilitates the clearance of necrotic tissue and plays a pivotal role in immune response. However, it also potentially contributes to the loss of periodontal supporting tissues and root resorption. These findings have significant implications for understanding the occurrence and progression of periodontitis, as well as the mechanisms underlying orthodontic root resorption. Further, the regulation of periodontal ligament cell (PDLC) death is influenced by both systemic and local factors. This comprehensive review focuses on recent studies reporting the mechanisms of PDLC death and related factors.
Collapse
Affiliation(s)
- Wei He
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Fu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Song Yao
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
3
|
Kano F, Hashimoto N, Liu Y, Xia L, Nishihara T, Oki W, Kawarabayashi K, Mizusawa N, Aota K, Sakai T, Azuma M, Hibi H, Iwasaki T, Iwamoto T, Horimai N, Yamamoto A. Therapeutic benefits of factors derived from stem cells from human exfoliated deciduous teeth for radiation-induced mouse xerostomia. Sci Rep 2023; 13:2706. [PMID: 36792628 PMCID: PMC9932159 DOI: 10.1038/s41598-023-29176-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Radiation therapy for head and neck cancers is frequently associated with adverse effects on the surrounding normal tissue. Irreversible damage to radiation-sensitive acinar cells in the salivary gland (SG) causes severe radiation-induced xerostomia (RIX). Currently, there are no effective drugs for treating RIX. We investigated the efficacy of treatment with conditioned medium derived from stem cells from human exfoliated deciduous teeth (SHED-CM) in a mouse RIX model. Intravenous administration of SHED-CM, but not fibroblast-CM (Fibro-CM), prevented radiation-induced cutaneous ulcer formation (p < 0.0001) and maintained SG function (p < 0.0001). SHED-CM treatment enhanced the expression of multiple antioxidant genes in mouse RIX and human acinar cells and strongly suppressed radiation-induced oxidative stress. The therapeutic effects of SHED-CM were abolished by the superoxide dismutase inhibitor diethyldithiocarbamate (p < 0.0001). Notably, quantitative liquid chromatography-tandem mass spectrometry shotgun proteomics of SHED-CM and Fibro-CM identified eight proteins activating the endogenous antioxidant system, which were more abundant in SHED-CM than in Fibro-CM (p < 0.0001). Neutralizing antibodies against those activators reduced antioxidant activity of SHED-CM (anti-PDGF-D; p = 0.0001, anti-HGF; p = 0.003). Our results suggest that SHED-CM may provide substantial therapeutic benefits for RIX primarily through the activation of multiple antioxidant enzyme genes in the target tissue.
Collapse
Affiliation(s)
- Fumiya Kano
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Noboru Hashimoto
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Yao Liu
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Linze Xia
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Takaaki Nishihara
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Wakana Oki
- grid.267335.60000 0001 1092 3579Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504 Japan
| | - Keita Kawarabayashi
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Noriko Mizusawa
- grid.267335.60000 0001 1092 3579Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Keiko Aota
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Takayoshi Sakai
- grid.136593.b0000 0004 0373 3971Department of Oral-Facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masayuki Azuma
- grid.267335.60000 0001 1092 3579Department of Oral Medicine, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hideharu Hibi
- grid.27476.300000 0001 0943 978XDepartment of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomonori Iwasaki
- grid.267335.60000 0001 1092 3579Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tsutomu Iwamoto
- grid.265073.50000 0001 1014 9130Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Akihito Yamamoto
- Department of Tissue Regeneration, Tokushima University Graduate School of Biomedical Sciences, Tokushima, 770-8504, Japan.
| |
Collapse
|
4
|
Hodjat M, Jourshari PB, Amirinia F, Asadi N. 5-Azacitidine and Trichostatin A induce DNA damage and apoptotic responses in tongue squamous cell carcinoma: An in vitro study. Arch Oral Biol 2021; 133:105296. [PMID: 34735927 DOI: 10.1016/j.archoralbio.2021.105296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The present in vitro study aims to investigate the potential use of epigenetic inhibitors as treatment modalities in tongue squamous cell carcinoma. DESIGN The human tongue squamous cell carcinoma cell line (CAL-27) was cultured and exposed to varying concentrations of 5-Azacitidine (5-Aza) or Trichostatin A (TSA) in the culture medium. The cell apoptosis was evaluated using Annexin V/PI by flow cytometry. To evaluate DNA damage response, γH2AX foci analysis was performed using immunofluorescence. Single cell gel electrophoresis (SCGE) was applied to measure DNA strand breaks. Gene expression was assessed by quantitative real-time PCR. RESULTS The results showed that 5-Aza and TSA had apoptotic effects on the SCC cell line at concentrations of 50-200 µM and 0.5-5 µM, respectively. Immunofluorescence analysis showed increased expression of γH2AX, the marker of DNA damage response after treatment of 5-Aza and TSA that was associated with increased DNA strand breaks. The expressions of urokinase plasminogen activator, its receptor and matrix metalloproteinase-2, were significantly reduced in TSA- and 5-Aza-treated cells. CONCLUSIONS Our results showed that 5-Aza and TSA increase apoptotic and DNA damage response in squamous cell carcinoma cell line while reducing the expression of tumor invasion genes that further indicating the potential therapeutic value of two epigenetic modifiers in squamous cell carcinoma.
Collapse
Affiliation(s)
- Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Parisa Bina Jourshari
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Amirinia
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Nasrin Asadi
- Department of Biochemistry, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Buckley BJ, Kumar A, Aboelela A, Bujaroski RS, Li X, Majed H, Fliegel L, Ranson M, Kelso MJ. Screening of 5- and 6-Substituted Amiloride Libraries Identifies Dual-uPA/NHE1 Active and Single Target-Selective Inhibitors. Int J Mol Sci 2021; 22:ijms22062999. [PMID: 33804289 PMCID: PMC8000185 DOI: 10.3390/ijms22062999] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022] Open
Abstract
The K+-sparing diuretic amiloride shows off-target anti-cancer effects in multiple rodent models. These effects arise from the inhibition of two distinct cancer targets: the trypsin-like serine protease urokinase-type plasminogen activator (uPA), a cell-surface mediator of matrix degradation and tumor cell invasiveness, and the sodium-hydrogen exchanger isoform-1 (NHE1), a central regulator of transmembrane pH that supports carcinogenic progression. In this study, we co-screened our library of 5- and 6-substituted amilorides against these two targets, aiming to identify single-target selective and dual-targeting inhibitors for use as complementary pharmacological probes. Closely related analogs substituted at the 6-position with pyrimidines were identified as dual-targeting (pyrimidine 24 uPA IC50 = 175 nM, NHE1 IC50 = 266 nM, uPA selectivity ratio = 1.5) and uPA-selective (methoxypyrimidine 26 uPA IC50 = 86 nM, NHE1 IC50 = 12,290 nM, uPA selectivity ratio = 143) inhibitors, while high NHE1 potency and selectivity was seen with 5-morpholino (29 NHE1 IC50 = 129 nM, uPA IC50 = 10,949 nM; NHE1 selectivity ratio = 85) and 5-(1,4-oxazepine) (30 NHE1 IC50 = 85 nM, uPA IC50 = 5715 nM; NHE1 selectivity ratio = 67) analogs. Together, these amilorides comprise a new toolkit of chemotype-matched, non-cytotoxic probes for dissecting the pharmacological effects of selective uPA and NHE1 inhibition versus dual-uPA/NHE1 inhibition.
Collapse
Affiliation(s)
- Benjamin J. Buckley
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
- Correspondence: (B.J.B.); (M.J.K.); Tel.: +61-2-4221-5085 (M.J.K.)
| | - Ashna Kumar
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ashraf Aboelela
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Richard S. Bujaroski
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Xiuju Li
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (L.F.)
| | - Hiwa Majed
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (X.L.); (L.F.)
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- CONCERT-Translational Cancer Research Centre, Sydney, NSW 2750, Australia
| | - Michael J. Kelso
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (A.K.); (A.A.); (R.S.B.); (H.M.); (M.R.)
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: (B.J.B.); (M.J.K.); Tel.: +61-2-4221-5085 (M.J.K.)
| |
Collapse
|
6
|
Tao P, Gao L, Li H, Wang B, Li X, Zhang Y, Chen H. Prognostic role of urokinase plasminogen activator in hepatocellular carcinoma: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e23841. [PMID: 33350772 PMCID: PMC7769352 DOI: 10.1097/md.0000000000023841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have showed that the high expression of urokinase plasminogen activator (uPA) in pathology and serology is closely related to the progression of hepatocellular carcinoma (HCC). However, there are no systematic reviews for these evidence, and the association between uPA and HCC is still not completely understood. Therefore, we will undertake a systematic review of the literature to summarize previous evidence regarding this topic, in order to clarify the prognostic significance of uPA in HCC. METHODS AND ANALYSIS Studies comparing the HCC patients with high and low expression of uPA on the clinicopathological features and the prognosis are eligible for this review. Outcomes include all endpoints about survival and clinicopathological features. Prospective or retrospective primary studies which published in English will be included. Four databases of Medline, EMBASE, Web of Science, and the Cochrane Library will be systematically searched from their inception to Mar 2021 to retrieve relevant studies. Reference lists of included studies will be manually reviewed and grey literatures will be identified by Google Scholar. Two reviewers will independently screen the records and extract the information and data of the included studies. The Newcastle-Ottawa Scale will be used to assess the quality of included studies. Hazard ratio and 95% confidence interval will be pooled to assess the association between uPA expression and the prognosis. Pooled odds ratio and 95% confidence interval will be used for other outcomes. Heterogeneity will be assessed using the Cochrane Q test and I2 statistic, and a subgroup analysis will be performed if necessary. Grades of Recommendation, Assessment, Development and Evaluation method will be applied to assess the certainty of evidence. ETHICS AND DISSEMINATION This protocol required information extracted from previously published articles. So, there is no ethical problem in this study. We plan to publish our findings in peer-reviewed journals and relevant conference proceedings. SYSTEMATIC REVIEW REGISTRATION This study has been registered with the International Prospective Register of Systematic Reviews database (no.CRD42020150340).
Collapse
Affiliation(s)
- Pengxian Tao
- The Department of Tumor Surgery, Lanzhou University Second Hospital
- The Second Clinical Medical College, Lanzhou University, Lanzhou
| | - Lei Gao
- The Department of Tumor Surgery, Lanzhou University Second Hospital
- The Second Clinical Medical College, Lanzhou University, Lanzhou
| | - Haiyuan Li
- The Department of Tumor Surgery, Lanzhou University Second Hospital
- The Second Clinical Medical College, Lanzhou University, Lanzhou
| | - Bofang Wang
- The Department of Tumor Surgery, Lanzhou University Second Hospital
- The Second Clinical Medical College, Lanzhou University, Lanzhou
| | - Xuemei Li
- The Department of Tumor Surgery, Lanzhou University Second Hospital
- The Second Clinical Medical College, Lanzhou University, Lanzhou
| | - Ying Zhang
- Department of Laboratory Medicine, the First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hao Chen
- The Department of Tumor Surgery, Lanzhou University Second Hospital
| |
Collapse
|
7
|
Hodjat M, Khan F, Saadat KA. Epigenetic alterations in aging tooth and the reprogramming potential. Ageing Res Rev 2020; 63:101140. [PMID: 32795505 DOI: 10.1016/j.arr.2020.101140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Tooth compartments and associated supportive tissues exhibit significant alterations during aging, leading to their impaired functioning. Aging not only affects the structure and function of dental tissue but also reduces its capacity to maintain physiological homeostasis and the healing process. Decreased cementocyte viability; diminished regenerative potential of stem cells residing in the pulp, alveolar bone and periodontal ligament; and impaired osteogenic and odontogenic differentiation capacity of progenitor cells are among the cellular impacts associated with oral aging. Various physiological and pathological phenomena are regulated by the epigenome, and hence, changes in epigenetic markers due to external stimuli have been reported in aging oral tissues and are considered a possible molecular mechanism underlying dental aging. The role of nutri-epigenetics in aging has emerged as an attractive research area. Thus far, various nutrients and bioactive compounds have been identified to have a modulatory effect on the epigenetic machinery, showing a promising response in dental aging. The human microbiota is another key player in aging and can be a target for anti-aging interventions in dental tissue. Considering the reversible characteristics of epigenetic markers and the potential for environmental factors to manipulate the epigenome, to minimize the deteriorative effects of aging, it is important to evaluate the linkage between external stimuli and their effects in terms of age-related epigenetic modifications.
Collapse
|
8
|
Khan F, Hodjat M, Rahimifard M, Nigjeh MN, Azizi M, Baeeri M, Bayrami Z, Gholami M, Hassani S, Abdollahi M. Assessment of arsenic-induced modifications in the DNA methylation of insulin-related genes in rat pancreatic islets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110802. [PMID: 32531573 DOI: 10.1016/j.ecoenv.2020.110802] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Extended exposure to inorganic arsenic through contaminated drinking water has been linked with increased incidence of diabetes mellitus. The most common exposure occurs through the consumption of contaminated drinking water mainly through geogenic sources of inorganic arsenic. Epigenetic modifications are important mechanisms through which environmental pollutants could exert their toxic effects. Bisulfite sequencing polymerase chain reaction method followed by Sanger sequencing was performed for DNA methylation analysis. Our results showed that sodium arsenite treatment significantly reduced insulin secretion in pancreatic islets. It was revealed that the methylation of glucose transporter 2 (Glut2) gene was changed at two cytosine-phosphate-guanine (CpG) sites (-1743, -1734) in the promoter region of the sodium arsenite-treated group comparing to the control. No changes were observed in the methylation status of peroxisome proliferator-activated receptor-gamma (PPARγ), pancreatic and duodenal homeobox 1 (Pdx1) and insulin 2 (Ins2) CpG sites in the targeted regions. Measuring the gene expression level showed increase in Glut2 expression, while the expression of insulin (INS) and Pdx1 were significantly affected by sodium arsenite treatment. This study revealed that exposure to sodium arsenite changed the DNA methylation pattern of Glut2, a key transporter of glucose entry into the pancreatic beta cells (β-cells). Our data suggested possible epigenetic-mediated toxicity mechanism for arsenite-induced β-cells dysfunction. Further studies are needed to dissect the precise epigenetic modulatory activity of sodium arsenite that affect the biogenesis of insulin.
Collapse
Affiliation(s)
- Fazlullah Khan
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei Nigjeh
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Azizi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|