1
|
Kim S, Kim YJ, Park KH, Huh KM, Kang SW, Lee CJ, Woo DH. Dopamine-modified hyaluronic acid (DA-HA) as a novel dopamine-mimetics with minimal autoxidation and cytotoxicity. Redox Biol 2024; 76:103320. [PMID: 39178731 PMCID: PMC11388273 DOI: 10.1016/j.redox.2024.103320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024] Open
Abstract
Dopamine-modified hyaluronic acid (DA-HA) has been initially developed as an efficient coating and adhesion material for industrial uses. However, the biological activity and safety of DA-HA in the brain have not been explored yet. Here, we report a series of evidence that DA-HA exhibits similar functionality as dopamine (DA), but with much lower toxicity arising from autoxidation. DA-HA shows very little autoxidation even after 48-h incubation. This is profoundly different from DA and its derivatives including l-DOPA, which all induce severe neuronal death after pre-autoxidation, indicating that autoxidation is the cause of neuronal death. Furthermore, in vivo injection of DA-HA induces significantly lower toxicity compared to 6-OHDA, a well-known oxidized and toxic form of DA, and alleviates the apomorphine-induced rotational behavior in the 6-OHDA animal model of Parkinson's disease. Our study proposes that DA-HA with DA-like functionalities and minimal toxicity has a great potential to treat DA-related disease.
Collapse
Affiliation(s)
- Sunpil Kim
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, 34126, South Korea
| | - Ye-Ji Kim
- Human and Environmental Toxicology, University of Science and Technology (UST), Daejeon, 34114, South Korea; Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), KRICT, Daejeon, 34114, South Korea
| | - Kyoung Hwan Park
- Department of Polymer Science and Engineering, Chungnam National University (CNU), Daejeon, 34134, South Korea; Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), KRICT, Daejeon, 34114, South Korea
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University (CNU), Daejeon, 34134, South Korea
| | - Sun-Woong Kang
- Human and Environmental Toxicology, University of Science and Technology (UST), Daejeon, 34114, South Korea; Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology (KIT), KRICT, Daejeon, 34114, South Korea
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Cluster, Institute for Basic Science (IBS), Daejeon, 34126, South Korea.
| | - Dong Ho Woo
- Human and Environmental Toxicology, University of Science and Technology (UST), Daejeon, 34114, South Korea; Department of Advanced Toxicology Research, Korea Institute of Toxicology (KIT), KRICT, Daejeon, 34114, South Korea.
| |
Collapse
|
2
|
Friedmann A, Jung R, Bilhan H, Ghawi-Begovic HA, Kauffmann F, Diehl D. Reconstructive surgical therapy of peri-implant defects with ribose cross-linked collagen matrix and crosslinked hyaluronic acid - a prospective case series. Clin Oral Investig 2024; 28:536. [PMID: 39302523 PMCID: PMC11415415 DOI: 10.1007/s00784-024-05942-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE To investigate the efficacy of ribose-crosslinked collagen (RCLC) matrices functionalized by crosslinked hyaluronic acid (xHya) for reconstructive treatment of class I and III (b-c) peri-implantitis lesions in a transmucosal healing mode. MATERIALS AND METHODS Thirteen patients presenting with 15 implants were included in this prospective case series. Upon flap reflection, the implants were thoroughly decontaminated employing glycine powder air polishing and adjunctive sodium hypochlorite. For defect augmentation, xHyA was administered to the bony defect walls, exposed implant surfaces, and the RCLC matrix before defect grafting. The full-thickness flap was readapted and sutured around the implant neck for transmucosal healing. Baseline and respective values at the 12 months post-op evaluation were recorded for the clinical parameters peri-implant probing depth (PPD), buccal soft tissue dehiscence (BSTD) and bleeding on probing (BoP). Furthermore, two independent investigators analyzed radiographic changes in the defect area. The mean changes for all variables were analyzed with a paired t-test. RESULTS The initial mean PPD was 7.2 ± 1.9 mm, and BoP was present in 63% of sites. After 12 months, PPD at the latest visit was 3.2 ± 0.66 mm, which amounted to a respective 3.9 ± 1.85 mm reduction, while the BoP frequency dropped to 10% at all sites. Radiographic bone fill was accomplished for 62.8% of the former defect area, accompanied by a mean MBL gain of 1.02 mm around the treated implants (all p < 0.001). CONCLUSIONS Within the limits of this case series, we conclude that the proposed treatment sequence substantially improved peri-implant defects and offered a simplified but predictive technique. CLINICAL RELEVANCE Reconstructive treatment approaches for peri-implantitis are effective but remain non-superior to open flap debridement. Further research on novel biomaterial combinations that may improve reconstructive treatment outcomes are warranted. Ribose-crosslinked collagen matrices biofunctionalized by hyaluronic acid used in this study yield improved clinical and radiographic peri-implant conditions after 12 months.
Collapse
Affiliation(s)
- Anton Friedmann
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Rico Jung
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Hakan Bilhan
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Hanan Al Ghawi-Begovic
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Frederic Kauffmann
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany
| | - Daniel Diehl
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58455, Witten, Germany.
| |
Collapse
|
3
|
Schiffmann N, Liang Y, Nemcovsky CE, Almogy M, Halperin-Sternfeld M, Gianneschi NC, Adler-Abramovich L, Rosen E. Enzyme-Responsive Nanoparticles for Dexamethasone Targeted Delivery to Treat Inflammation in Diabetes. Adv Healthc Mater 2023; 12:e2301053. [PMID: 37498238 DOI: 10.1002/adhm.202301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Diabetes is a global epidemic accompanied by impaired wound healing and increased risk of persistent infections and resistance to standard treatments. Therefore, there is an immense need to develop novel methods to specifically target therapeutics to affected tissues and improve treatment efficacy. This study aims to use enzyme-responsive nanoparticles for the targeted delivery of an anti-inflammatory drug, dexamethasone, to treat inflammation in diabetes. These nanoparticles are assembled from fluorescently-labeled, dexamethasone-loaded peptide-polymer amphiphiles. The nanoparticles are injected in vivo, adjacent to labeled collagen membranes sub-periosteally implanted on the calvaria of diabetic rats. Following their implantation, collagen membrane resorption is linked to inflammation, especially in hyperglycemic individuals. The nanoparticles show strong and prolonged accumulation in inflamed tissue after undergoing a morphological switch into microscale aggregates. Significantly higher remaining collagen membrane area and less inflammatory cell infiltration are observed in responsive nanoparticles-treated rats, compared to control groups injected with free dexamethasone and non-responsive nanoparticles. These factors indicate improved therapeutic efficacy in inflammation reduction. These results demonstrate the potential use of enzyme-responsive nanoparticles as targeted delivery vehicles for the treatment of diabetic and other inflammatory wounds.
Collapse
Affiliation(s)
- Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yifei Liang
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Carlos E Nemcovsky
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Almogy
- Department of Periodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Nathan C Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Department of Biomedical Engineering, Department of Pharmacology, Northwestern University, Evanston, IL, 60208, USA
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eyal Rosen
- Department of Endodontology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
4
|
Zhu X, von Werdt L, Zappalà G, Sculean A, Eick S, Stähli A. In vitro activity of hyaluronic acid and human serum on periodontal biofilm and periodontal ligament fibroblasts. Clin Oral Investig 2023; 27:5021-5029. [PMID: 37380794 PMCID: PMC10492760 DOI: 10.1007/s00784-023-05121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES A beneficial effect of cross-linked hyaluronic acid (cHA) on periodontal wound healing and regeneration has recently been demonstrated. The present in vitro study was designed to obtain deeper knowledge on the effect of cHA when applied in the gingival sulcus (serum-rich environment) during non-surgical periodontal therapy. MATERIALS AND METHODS The influence of cHA, human serum (HS), and cHA/HS on (i) a 12-species biofilm formation, (ii) the adhesion of periodontal ligament fibroblasts (PDLF) to dentine surface, (iii) the expression and secretion of interleukin-8, and (iv) the expression of receptors of HA in PDLF and gingival fibroblasts (GF) were evaluated. RESULTS At 4 h of biofilm formation, cHA and HS in combination (cHA/HS) slightly decreased the colony-forming unit counts in biofilm whereas the metabolic activity of biofilm was reduced in all test groups (cHA, HS, cHA/HS) vs. control. At 24 h, the quantity of biofilm was reduced in all test groups vs. untreated control. The test substances did not affect adhesion of PDLF to dentin. HS increased the expression of IL-8 by PDLF and GF which was partially downregulated by cHA. HS and/or cHA promoted the expression of the HA receptor RHAMM in GF but not in PDLF. CONCLUSIONS In summary, the present data indicate that serum neither negatively affect the activity of cHA against periodontal biofilm nor had any unwanted influence on the activity of PDLF. CLINICAL RELEVANCE These findings lend additional support for the positive effects of cHA on cells involved in periodontal wound healing, thus pointing to its potential use in non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Livia von Werdt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Graziano Zappalà
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Mobed A, Kohansal F, Dolati S, Hasanzadeh M, Shakouri SK. An Innovative Electrochemical Immuno-Platform for Monitoring Chronic Conditions Using the Biosensing of Hyaluronic Acid in Human Plasma Samples. CHEMOSENSORS 2023; 11:367. [DOI: 10.3390/chemosensors11070367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Hyaluronic acid (HA) is the main non-sulfated glycosaminoglycan of the extracellular matrix that is synthesized by fibroblasts and other specialized connective tissue cells. The accumulation of HA on different tissues is a characteristic of disorders that are associated with progressive tissue fibrosis. HA is also known to play a critical role in tumorigenesis and tumor metastasis. It is overproduced by many types of tumors and promotes tumor progression and multidrug resistance. There is a great necessity for the development of an easy and cost-effective detection method for the monitoring of HA for both the diagnosis and efficient treatment of related disorders. In the present study, an innovative immune device was designed for the rapid and sensitive recognition of HA in human plasma samples. For this purpose, an efficient alloy (Pt@Au) was fabricated on the surface of the gold electrode. Thus, a novel substrate was used for the preparation of an efficient transducer, which is necessary for the immobilization of biotinylated antibodies. CHA was applied for the electrochemical deposition of Pt@Au nano-alloy on Au electrodes. Additionally, the morphological study of the used nanocomposite was assessed using FESEM at a working voltage of 3 kV, and the chemical structures of the electrode were analyzed using the EDS apparatus. For the first time, a biocompatible alloy-based substrate was prepared for the study of antigen–antibody identification. The developed immunosensor has a linear response within the range of 0.156–160 ng.mL−1 with a limit of detection of 0.039 ng.mL−1 in human plasma samples. This research study offers a novel promising technique for HA analyses and is anticipated to be used in the early diagnosis of some disorders related to abnormal levels of HA in human bio-fluids. Thus, a constructed (pt@Au) nano-alloy provides a useful interface for the dense loading of AB. This excellent design loads high sensations of the biosensor for the selective detection of HA in real samples (human bio-fluids).
Collapse
Affiliation(s)
- Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Fereshteh Kohansal
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Recent Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| | - Seyed Kazem Shakouri
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166-15731, Iran
| |
Collapse
|
6
|
Almogy M, Moses O, Schiffmann N, Weinberg E, Nemcovsky CE, Weinreb M. Addition of Resolvins D1 or E1 to Collagen Membranes Mitigates Their Resorption in Diabetic Rats. J Funct Biomater 2023; 14:jfb14050283. [PMID: 37233393 DOI: 10.3390/jfb14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Uncontrolled diabetes is characterized by aberrant inflammatory reactions and increased collagenolysis. We have reported that it accelerates the degradation of implanted collagen membranes (CM), thus compromising their function in regenerative procedures. In recent years, a group of physiological anti-inflammatory agents called specialized pro-resolving lipid mediators (SPMs) have been tested as a treatment for various inflammatory conditions, either systemically or locally, via medical devices. Yet, no study has tested their effect on the fate of the biodegradable material itself. Here, we measured the in vitro release over time of 100 or 800 ng resolvin D1 (RvD1) incorporated into CM discs. In vivo, diabetes was induced in rats with streptozotocin, while buffer-injected (normoglycemic) rats served as controls. Resolvins (100 or 800 ng of RvD1 or RvE1) were added to biotin-labeled CM discs, which were implanted sub-periosteally over the calvaria of rats. Membrane thickness, density, and uniformity were determined by quantitative histology after 3 weeks. In vitro, significant amounts of RvD1 were released over 1-8 days, depending on the amount loaded. In vivo, CMs from diabetic animals were thinner, more porous, and more variable in thickness and density. The addition of RvD1 or RvE1 improved their regularity, increased their density, and reduced their invasion by the host tissue significantly. We conclude that addition of resolvins to biodegradable medical devices can protect them from excessive degradation in systemic conditions characterized by high degree of collagenolysis.
Collapse
Affiliation(s)
- Michal Almogy
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Nathan Schiffmann
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Evgeny Weinberg
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel Aviv-Yafo 6997801, Israel
| |
Collapse
|
7
|
Mobed A, Kohansal F, Dolati S, Hasanzadeh M. A novel immuno-device based on the specific binding of AuNP-supported CTAB with biotinylated antibody of hyaluronic acid toward an early-stage recognition of a biomarker: a bioanalytical assay in real samples using disposal biosensor technology. RSC Adv 2022; 12:28473-28488. [PMID: 36320526 PMCID: PMC9533320 DOI: 10.1039/d2ra04984h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022] Open
Abstract
Hyaluronic Acid (HA) is a non-sulfated glycosaminoglycan, which is a potential biomarker that could be evaluated in the diagnosis of some cancers. For the first time, a novel label-free electrochemical immunosensor was developed based on modified ITO-PET (indium tin oxide-polyethylene terephthalate) electrodes for the sensitive recognition of hyaluronic acid (HA) in real samples. A disposable ITO-coated PET electrode was modified with gold nanoparticles (AuNPs) to construct a suitable substrate for the efficient immobilization of biotinylated antibodies of HA. Importantly, the encapsulation of biotinylated antibody of HA in KCC1-NH-CS2 was performed successfully, which was another innovative part of this bio-device construction. For determining the immobilization steps and optimization of the biosensor, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used. Furthermore, the morphological characterization of each ITO electrode surface was performed by field emission scanning electron microscopy (FESEM). Specific binding of gold nanoparticles supported CTAB to ITO-PET and its bioconjugation with the biotinylated antibody of HA was studied using the electroanalysis of the sensor performance. For the better performance of the antibody to generate an immunocomplex with HA (antigen), its encapsulation was performed, which led to the excellent behavior of the immunosensor. The proposed HA immunosensor indicated excellent reproducibility, high selectivity, and long-term stability. The HA electrochemical immunosensor performed perfectly with a wide determination range (0.078 to 160 ng mL-1) and a low limit of quantification (0.078 ng mL-1) in human plasma samples. It is recommended that the designed biosensor can be used as a diagnostic tool in clinical bioassays in the near future.
Collapse
Affiliation(s)
- Ahmad Mobed
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical SciencesTabrizIran,Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical SciencesTabrizIran,Pharmaceutical Analysis Research Center, Tabriz University of Medical SciencesTabrizIran
| | - Fereshteh Kohansal
- Pharmaceutical Analysis Research Center, Tabriz University of Medical SciencesTabrizIran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical SciencesTabrizIran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical SciencesTabrizIran
| |
Collapse
|
8
|
Nobis B, Ostermann T, Weiler J, Dittmar T, Friedmann A. Impact of Cross-Linked Hyaluronic Acid on Osteogenic Differentiation of SAOS-2 Cells in an Air-Lift Model. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6528. [PMID: 36233870 PMCID: PMC9572243 DOI: 10.3390/ma15196528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the impact of cross-linked hyaluronic acid on osteoblast-like cells seeded on top of two collagen substrates, native porcine pericardium membrane (substrate A) and ribose cross-linked collagen membranes (substrate B), in an air-lift model. Substrates A or B, saturated with three hyaluronic acid concentrations, served as membranes for SAOS-2 cells seeded on top. Cultivation followed for 7 and 14 days in the air-lift model. Controls used the same substrates without hyaluronic pre-treatment. Cells were harvested, and four (Runx2, BGLAP, IBSP, Cx43) different osteogenic differentiation markers were assessed by qPCR. Triplicated experiment outcomes were statistically analyzed (ANOVA, t-test; SPSS). Supplementary histologic analysis confirmed the cells' vitality. After seven days, only few markers were overexpressed on both substrates. After 14 days, targeted genes were highly expressed on substrate A. The same substrate treated with 1:100 diluted xHyA disclosed statistically significant different expression level vs. substrate B (p = 0.032). Time (p = 0.0001), experimental condition as a function of time (p = 0.022), and substrate (p = 0.028) were statistically significant factors. Histological imaging demonstrated vitality and visualized nuclei. We conclude that the impact of hyaluronic acid resulted in a higher expression profile of SAOS-2 cells on substrate A compared to substrate B in an air-lift culture after two weeks.
Collapse
Affiliation(s)
- Bianca Nobis
- Department of Periodontology, School of Dentistry, Faculty of Health, Witten-Herdecke University, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| | - Thomas Ostermann
- Department of Psychology, Witten-Herdecke University, 58455 Witten, Germany
| | - Julian Weiler
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| | - Thomas Dittmar
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| | - Anton Friedmann
- Department of Periodontology, School of Dentistry, Faculty of Health, Witten-Herdecke University, Alfred-Herrhausen-Str. 50, 58455 Witten, Germany
- Institute of Immunology, Centre of Biomedical Education and Research (ZBAF), Stockumer Str. 10, 58448 Witten, Germany
| |
Collapse
|
9
|
Eliezer M, Sculean A, Miron RJ, Nemcovsky C, Bosshardt DD, Fujioka-Kobayashi M, Weinreb M, Moses O. Cross-linked hyaluronic acid slows down collagen membrane resorption in diabetic rats through reducing the number of macrophages. Clin Oral Investig 2021; 26:2401-2411. [PMID: 34608575 DOI: 10.1007/s00784-021-04206-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/26/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES We previously showed that accelerated degradation of collagen membranes (CMs) in diabetic rats is associated with increased infiltration of macrophages and blood vessels. Since pre-implantation immersion of CMs in cross-linked high molecular weight hyaluronic acid (CLHA) delays membrane degradation, we evaluated here its effect on the number of macrophages and endothelial cells (ECs) within the CM as a possible mechanism for inhibition of CM resorption. MATERIALS AND METHODS Diabetes was induced with streptozotocin in 16 rats, while 16 healthy rats served as control. CM discs were labeled with biotin, soaked in CLHA or PBS, and implanted under the scalp. Fourteen days later, CMs were embedded in paraffin and the number of macrophages and ECs within the CMs was determined using antibodies against CD68 and transglutaminase II, respectively. RESULTS Diabetes increased the number of macrophages and ECs within the CMs (∼2.5-fold and fourfold, respectively). Immersion of CMs in CLHA statistically significantly reduced the number of macrophages (p < 0.0001) in diabetic rats, but not that of ECs. In the healthy group, CLHA had no significant effect on the number of either cells. Higher residual collagen area and membrane thickness in CLHA-treated CMs in diabetic animals were significantly correlated with reduced number of macrophages but not ECs. CONCLUSIONS Immersion of CM in CLHA inhibits macrophage infiltration and reduces CM degradation in diabetic animals. CLINICAL RELEVANCE The combination of CLHA and CM may represent a valuable approach when guided tissue regeneration or guided bone regeneration procedures are performed in diabetic patients.
Collapse
Affiliation(s)
- Meizi Eliezer
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Richard J Miron
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Carlos Nemcovsky
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dieter D Bosshardt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.,Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Masako Fujioka-Kobayashi
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Moses
- Department of Periodontology and Dental Implantology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Aprile P, Letourneur D, Simon‐Yarza T. Membranes for Guided Bone Regeneration: A Road from Bench to Bedside. Adv Healthc Mater 2020; 9:e2000707. [PMID: 32864879 DOI: 10.1002/adhm.202000707] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Bone resorption can negatively influence the osseointegration of dental implants. Barrier membranes for guided bone regeneration (GBR) are used to exclude nonosteogenic tissues from influencing the bone healing process. In addition to the existing barrier membranes available on the market, a growing variety of membranes for GBR with tailorable physicochemical properties are under preclinical evaluation. Hence, the aim of this review is to provide a comprehensive description of materials used for GBR and to report the main industrial and regulatory aspects allowing the commercialization of these medical devices (MDs). In particular, a summary of the main attributes defining a GBR membrane is reported along with a description of commercially available and under development membranes. Finally, strategies for the scaling-up of the manufacturing process and the regulatory framework of the main MD producers (USA, EU, Japan, China, and India) are presented. The description of the regulatory approval process of GBR membranes is representative of the typical path that medium- to high-risk MDs have to follow for an effective medical translation, which is of fundamental importance to increase the impact of biomedical research on public health.
Collapse
Affiliation(s)
- Paola Aprile
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Didier Letourneur
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| | - Teresa Simon‐Yarza
- LVTS INSERM U1148 X. Bichat Hospital Université de Paris Université Sorbonne Paris Nord Paris F‐75018 France
| |
Collapse
|
11
|
Which substances loaded onto collagen scaffolds influence oral tissue regeneration?-an overview of the last 15 years. Clin Oral Investig 2020; 24:3363-3394. [PMID: 32827278 DOI: 10.1007/s00784-020-03520-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Collagen scaffolds are widely used for guided bone or tissue regeneration. Aiming to enhance their regenerative properties, studies have loaded various substances onto these scaffolds. This review aims to provide an overview of existing literature which conducted in vitro, in vivo, and clinical testing of drug-loaded collagen scaffolds and analyze their outcome of promoting oral regeneration. MATERIALS AND METHODS PubMed, Scopus, and Ovid Medline® were systematically searched for publications from 2005 to 2019. Journal articles assessing the effect of substances on oral hard or soft tissue regeneration, while using collagen carriers, were screened and qualitatively analyzed. Studies were grouped according to their used substance type-biological medical products, pharmaceuticals, and tissue-, cell-, and matrix-derived products. RESULTS A total of 77 publications, applying 36 different substances, were included. Collagen scaffolds were demonstrating favorable adsorption behavior and release kinetics which could even be modified. BMP-2 was investigated most frequently, showing positive effects on oral tissue regeneration. BMP-9 showed comparable results at lower concentrations. Also, FGF2 enhanced bone and periodontal healing. Antibiotics improved the scaffold's anti-microbial activity and reduced the penetrability for bacteria. CONCLUSION Growth factors showed promising results for oral tissue regeneration, while other substances were investigated less frequently. Found effects of investigated substances as well as adsorption and release properties of collagen scaffolds should be considered for further investigation. CLINICAL RELEVANCE Collagen scaffolds are reliable carriers for any of the applied substances. BMP-2, BMP-9, and FGF2 showed enhanced bone and periodontal healing. Antibiotics improved anti-microbial properties of the scaffolds.
Collapse
|
12
|
Isola G, Matarese G, Ramaglia L, Pedullà E, Rapisarda E, Iorio-Siciliano V. Association between periodontitis and glycosylated haemoglobin before diabetes onset: a cross-sectional study. Clin Oral Investig 2020; 24:2799-2808. [PMID: 31776665 DOI: 10.1007/s00784-019-03143-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of the present cross-sectional study was to investigate the association between serum glycosylated haemoglobin (HbA1c) levels and periodontal status in patients with periodontitis (CP) and periodontally healthy controls. Furthermore, the objectives were to determine if the periodontitis influenced the serum HbA1c levels. MATERIALS AND METHODS A total of 93 patients with CP and 95 periodontally healthy subjects were enrolled in the present study using a cross-sectional design. At baseline, patients were examined and characterized on a regular basis for blood serum parameters and non-fasting blood samples levels. In all patients, a full periodontal examination was performed and clinical attachment loss (CAL) was the primary outcome variable chosen. The spearman correlation, a stepwise multivariable linear regression, and Jonckheere-Terpstra tests were applied in order to assess the relationship between HbA1c levels and periodontitis. RESULTS Patients in the CP group presented a significantly higher median serum level of HbA1c [40.9 (31.2; 45.6) mmol/mol)] compared to patients in the healthy control group [35.3 (29.6; 38.6) mmol/mol)] (p < 0.001). HbA1c levels were negatively correlated with the number of teeth and positively correlated with C-reactive protein levels and all periodontal parameters (p < 0.001). Moreover, there was a significant decrease in the number of teeth when HbA1c levels increased (P-trend < 0.001), while there was a significant increase in periodontal parameters (CAL, p = 0.002); PD, p = 0.008; BOP, p < 0.001) when levels of HbA1c increased. CONCLUSIONS Patients with CP and undiagnosed diabetes presented significantly higher serum levels of HbA1c compared to periodontally healthy controls. Moreover, the presence of periodontitis was positively correlated with serum HbA1c levels before diabetes onset. CLINICAL RELEVANCE HbA1c levels were positively correlated with the severity of periodontitis before diabetes onset.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia n° 78, 95125, Catania, Italy.
| | - Giovanni Matarese
- Department of Biomedical, Odontostomatological, Sciences and of Morphological and Functional Images, School of Dentistry, University of Messina, Via Consolare Valeria 1, 98100, Messina, Italy
| | - Luca Ramaglia
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Eugenio Pedullà
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia n° 78, 95125, Catania, Italy
| | - Ernesto Rapisarda
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Via S. Sofia n° 78, 95125, Catania, Italy
| | - Vincenzo Iorio-Siciliano
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| |
Collapse
|
13
|
Binshabaib M, Aabed K, Alotaibi F, Alwaqid M, Alfraidy A, Alharthi S. Antimicrobial efficacy of 0.8% Hyaluronic Acid and 0.2% Chlorhexidine against Porphyromonas gingivalis strains: An in-vitro study. Pak J Med Sci 2020; 36:111-114. [PMID: 32063942 PMCID: PMC6994868 DOI: 10.12669/pjms.36.2.1456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: The aim of the present in-vitro study was to assess antimicrobial efficacy of 0.8% hyaluronic acid (HA) and 0.2% Chlorhexidine gluconate (CHX) against Porphyromonas gingivalis (P. gingivalis). Methods: The study was performed between December 2018 and March 2019 at the College of Dentistry at the Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia. The P. gingivalis biofilms were formed and grown for 72 hours at 37°C under anaerobic conditions on glass slides coated with human saliva. The slides were individually positioned and exposed to 0.8% HA or 0.2% CHX. Therapeutically, the biofilms were divided into 3 groups as follows: (a) negative group; (b) 0.8% HA group and (c) 0.2% CHX group. P-values less than 0.05 were considered statistically significant. Results: In the 0.8% HA group, P. gingivalis CFUs/ml were significantly higher at baseline than at 24- (P<0.05), 48 (P<0.05) and 72 hours (P<0.05) intervals. In the 0.2% CHX group, P. gingivalis CFUs/ml were significantly higher at baseline than at 72 hours interval (P<0.05). In the CHX group, there was no difference in P. gingivalis CFUs/ml between baseline, 24- and 48-hours intervals. At 48- and 72-hours intervals, the P. gingivalis CFUs/ml were significantly higher in the 0.2% CHX group compared with the 0.8% HA group. Conclusion: In-vitro, 0.8% HA is more effective in reducing the P. gingivalis CFUs/ml compared with 0.2% CHX.
Collapse
Affiliation(s)
- Munerah Binshabaib
- Munerah Binshabaib, BDS, MSc. Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Kawther Aabed
- Kawther Aabed, BDS. Department of Biology, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fitoon Alotaibi
- Fitoon Alotaibi, BDS. General Dental Practitioner, Private Dental Practitioners, Riyadh, Saudi Arabia
| | - Milaf Alwaqid
- Milaf Alwaqid, BDS. General Dental Practitioner, Private Dental Practitioners, Riyadh, Saudi Arabia
| | - Aljohara Alfraidy
- Aljowhara Faraidy, BDS. General Dental Practitioner, Private Dental Practitioners, Riyadh, Saudi Arabia
| | - Shatha Alharthi
- Shatha Alharthi, BDS, MSc. Department of Preventive Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Zoabi H, Nemcovsky CE, Bender O, Moses O, Weinreb M. Accelerated degradation of collagen membranes in type 1 diabetic rats is associated with increased expression and production of several inflammatory molecules. J Periodontol 2020; 91:1348-1356. [PMID: 32056217 DOI: 10.1002/jper.19-0503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Membrane durability is critical for regenerative procedures. We reported previously that type 1-like diabetes in rats accelerates the degradation of collagen membranes and we tested here whether this is associated with increased local production of inflammatory molecules as part of a diabetes-induced chronic inflammation around and within the membranes. METHODS Collagen membrane discs were implanted under the scalp in diabetic (streptozotocin-induced) and control rats, which were sacrificed after 2 or 3 weeks. Total RNA and proteins were isolated from the membrane and its surrounding tissues and the expression and production of six inflammatory molecules (interleukin-6 [IL-6], tumor necrosis factor alpha [TNFα], matrix metalloproteinase [MMP]-9, macrophage migration inhibitory factor [MIF], MIP-1α, and MIP-2α) was measured using real-time PCR and western blotting, respectively. Minimal histological analysis of the membranes was conducted to conform to previous studies. RESULTS Hyperglycemia resulted in reduced membrane thickness (by 10% to 25%) and increased mononuclear infiltrate inside the membrane. mRNA and protein levels of IL-6, TNFα, and MMP-9 were elevated in diabetic rats both 2 and 3 weeks post-surgery. The levels (both mRNA and protein) of MIF were increased at 2 weeks post-surgery and those of MIP-1α and MIP-2α at 3 weeks. There was a very good match in the temporal changes of all examined genes between the mRNA and protein levels. CONCLUSIONS Elevated local production of inflammatory cytokines and MMPs, together with apparent mononuclear infiltrate and increased collagenolysis confirm that hyperglycemia leads to a chronic inflammation in and around the implanted collagen membranes, which reduces membrane longevity.
Collapse
Affiliation(s)
- Hasan Zoabi
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Carlos E Nemcovsky
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Omer Bender
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Moses
- Department of Periodontology and Implant Dentistry, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Miron Weinreb
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|