1
|
Di Virgilio F, Vultaggio-Poma V, Tarantini M, Giuliani AL. Overview of the role of purinergic signaling and insights into its role in cancer therapy. Pharmacol Ther 2024; 262:108700. [PMID: 39111410 DOI: 10.1016/j.pharmthera.2024.108700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 07/05/2024] [Accepted: 07/31/2024] [Indexed: 08/30/2024]
Abstract
Innovation of cancer therapy has received a dramatic acceleration over the last fifteen years thanks to the introduction of the novel immune checkpoint inhibitors (ICI). On the other hand, the conspicuous scientific knowledge accumulated in purinergic signaling since the early seventies is finally being transferred to the clinic. Several Phase I/II clinical trials are currently underway to investigate the effect of drugs interfering with purinergic signaling as stand-alone or combination therapy in cancer. This is supporting the novel concept of "purinergic immune checkpoint" (PIC) in cancer therapy. In the present review we will address a) the basic pharmacology and cell biology of the purinergic system; b) principles of its pathophysiology in human diseases; c) implications for cell death, cell proliferation and cancer; d) novel molecular tools to investigate nucleotide homeostasis in the extracellular environment; e) recent developments in the pharmacology of P1, P2 receptors and related ecto-enzymes; f) P1 and P2 ligands as novel diagnostic tools; g) current issues in PIC-based anti-cancer therapy. This review will provide an appraisal of the current status of purinergic signaling in cancer and will help identify future avenues of development.
Collapse
Affiliation(s)
| | | | - Mario Tarantini
- Department of Medical Sciences, University of Ferrara, Italy
| | | |
Collapse
|
2
|
Bai X, Li Q, Peng X, Li X, Qiao C, Tang Y, Zhao R. P2X7 receptor promotes migration and invasion of non-small cell lung cancer A549 cells through the PI3K/Akt pathways. Purinergic Signal 2023; 19:685-697. [PMID: 36854856 PMCID: PMC10754800 DOI: 10.1007/s11302-023-09928-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
It has been demonstrated that the ATP-gated ion channel P2X7 receptor is involved in tumor progression and plays an important role in regulating tumor cell growth, invasion, migration and angiogenesis. However, P2X7 receptors have been relatively poorly studied in non-small cell lung cancer (NSCLC) cells. Therefore, the aim of this study was to investigate the effects of P2X7 receptor on A549 cells (NSCLC cell line) migration and invasion and to reveal the molecular mechanisms mediated by it. We detected the expression and function of P2X7 receptor in A549 cells. The effects and mechanisms of P2X7 receptor on A549 cells migration, invasion, and epithelial-mesenchymal transition were detected in vitro and in vivo. The results showed P2X7 receptor expressed by A549 cells had ion channel and macropore formation function. In addition, activation of P2X7 receptor by adenosine triphosphate (ATP) or 2'(3')-O-(4-Benzoylbenzoyl)-adenosine-5'-triphosphate (BzATP) promoted Epithelial-mesenchymal transition (EMT), migration and invasion of A549 cells, which was attenuated by treatment of cells with P2X7 receptor antagonist A438079 and Oxidized ATP. Furthermore, activation of P2X7 receptor increased phosphorylated protein kinase B (p-Akt) levels, and the phosphatidylinositol-tris-phosphate kinase 3 (PI3K)/protein kinase B (Akt) inhibitor LY294002 blocked migration and invasion of A549 cells induced by ATP or BzATP. At the same time, in vivo results showed that P2X7 receptor could also promote EMT and PI3K/Akt expression in transplanted tumors. Our study indicated that P2X7 receptor promotes A549 cells migration and invasion through the PI3K/Akt signaling pathway, suggesting that P2X7 receptor may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12Th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Qianqian Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12Th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
- Department of Laboratory Medicine, Qingdao Eighth People's Hospital, Qingdao, Shandong, China
| | - Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12Th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12Th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Cuicui Qiao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12Th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yiqing Tang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12Th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China.
- Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12Th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
3
|
Shah H, Hill TA, Lim J, Fairlie DP. Protease-activated receptor 2 attenuates doxorubicin-induced apoptosis in colon cancer cells. J Cell Commun Signal 2023:10.1007/s12079-023-00791-6. [PMID: 37991681 DOI: 10.1007/s12079-023-00791-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/02/2023] [Indexed: 11/23/2023] Open
Abstract
Drug resistance represents a major problem in cancer treatment. Doxorubicin (adriamycin) is an injectable DNA intercalating drug that halts cancer cell growth by inhibiting topoisomerase 2, but its long-term effectiveness is compromised by onset of resistance. This study demonstrates that expression of the PAR2 gene in human colon adenocarcinoma tissue samples was the highest among 32 different cancer types (n = 10,989), and higher in colon adenocarcinoma tissues (n = 331) than normal colon tissues (n = 308), revealing an association between PAR2 expression and human colon cancer. HT29 cells are a human colorectal adenocarcinoma cell line that is sensitive to the chemotherapeutic drug doxorubicin and also expresses PAR2. We find that PAR2 activation in HT29 cells, either by an endogenous protease agonist (trypsin) or an exogenous peptide agonist (2f-LIGRL-NH2), significantly reduces doxorubicin-induced cell death, reactive oxygen species production, caspase 3/7 activity and cleavage of caspase-8 and caspase-3. Moreover, PAR2-mediated MEK1/2-ERK1/2 pathway induced by 2f-LIGRL-NH2 leads to upregulated anti-apoptotic MCL-1 and Bcl-xL proteins that promote cellular survival. These findings suggest that activation of PAR2 compromises efficacy of doxorubicin in colon cancer. Further support for this conclusion came from experiments with human colon cancer HT29 cells, either with the PAR2 gene deleted or in the presence of a pharmacological antagonist of PAR2, which showed full restoration of all doxorubicin-mediated effects. Together, these findings reveal a strong link between PAR2 activation and signalling in human colon cancer cells and increased survival against doxorubicin-induced cell death. They support PAR2 antagonism as a possible new strategy for enhancing doxorubicin therapy.
Collapse
Affiliation(s)
- Himani Shah
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Timothy A Hill
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Junxian Lim
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| | - David P Fairlie
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
- Centre for Chemistry and Drug Discovery, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
4
|
Fu X, Li J, Wu Y, Mao C, Jiang Y. PAR2 deficiency tunes inflammatory microenvironment to magnify STING signalling for mitigating cancer metastasis via anionic CRISPR/Cas9 nanoparticles. J Control Release 2023; 363:733-746. [PMID: 37827223 DOI: 10.1016/j.jconrel.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/13/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Metastasis is one of the most significant causes for deterioration of breast cancer, contributing to the clinical failure of anti-tumour drugs. Excessive inflammatory responses intensively promote the occurrence and development of tumour, while protease-activated receptor 2 (PAR2) as a cell membrane receptor actively participates in both tumour cell functions and inflammatory responses. However, rare investigations linked PAR2-mediated inflammatory environment to tumour progression. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology is an emerging and powerful gene editing technique and can be applied for probing the new role of PAR2 in breast cancer metastasis, but it still needs the development of an efficient and safe delivery system. This work constructed anionic bovine serum albumin (BSA) nanoparticles to encapsulate CRISPR/Cas9 plasmid encoding PAR2 sgRNA and Cas9 (tBSA/Cas9-PAR2) for triggering PAR2 deficiency. tBSA/Cas9-PAR2 remarkably promoted CRISPR/Cas9 to enter and transfect both inflammatory and cancer cells, initiating precise PAR2 gene editing in vitro and in vivo. PAR2 deficiency by tBSA/Cas9-PAR2 effectively suppressed NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome signalling in inflammatory microenvironment to magnify stimulator of interferon genes (STING) signalling, reactive oxygen species (ROS) accumulation and epithelial-mesenchymal transition (EMT) reversal, consequently preventing breast cancer metastasis. Therefore, this study not only demonstrated the involvement and underlying mechanism of PAR2 in tumour progression via modulating inflammatory microenvironment, but also suggested PAR2 deficiency by tBSA/Cas9-PAR2 as an attractive therapeutic strategy candidate for breast cancer metastasis.
Collapse
Affiliation(s)
- Xiujuan Fu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianbin Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yue Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Canquan Mao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yuhong Jiang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
5
|
Abstract
It has been 30 years since the first member of the protease-activated receptor (PAR) family was discovered. This was followed by the discovery of three other receptors, including PAR2. PAR2 is a G protein-coupled receptor activated by trypsin site-specific proteolysis. The process starts with serine proteases acting between arginine and serine, creating an N-terminus that functions as a tethered ligand that binds, after a conformational change, to the second extracellular loop of the receptor, leading to activation of G-proteins. The physiological and pathological functions of this ubiquitous receptor are still elusive. This review focuses on PAR2 activation and its distribution under physiological and pathological conditions, with a particular focus on the pancreas, a significant producer of trypsin, which is the prototype activator of the receptor. The role in acute or chronic pancreatitis, pancreatic cancer, and diabetes mellitus will be highlighted.
Collapse
Affiliation(s)
- Petr SUHAJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas OLEJAR
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radoslav MATEJ
- Department of Pathology and Molecular Medicine, Thomayer University Hospital, Prague, Czech Republic,Department of Pathology, University Hospital Kralovske Vinohrady, Prague, Czech Republic,Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
6
|
Ma J, Scott CA, Ho YN, Mahabaleshwar H, Marsay KS, Zhang C, Teow CK, Ng SS, Zhang W, Tergaonkar V, Partridge LJ, Roy S, Amaya E, Carney TJ. Matriptase activation of Gq drives epithelial disruption and inflammation via RSK and DUOX. eLife 2021; 10:66596. [PMID: 34165081 PMCID: PMC8291973 DOI: 10.7554/elife.66596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are primed to respond to insults by activating epithelial cell motility and rapid inflammation. Such responses are also elicited upon overexpression of the membrane-bound protease, Matriptase, or mutation of its inhibitor, Hai1. Unrestricted Matriptase activity also predisposes to carcinoma. How Matriptase leads to these cellular outcomes is unknown. We demonstrate that zebrafish hai1a mutants show increased H2O2, NfκB signalling, and IP3R -mediated calcium flashes, and that these promote inflammation, but do not generate epithelial cell motility. In contrast, inhibition of the Gq subunit in hai1a mutants rescues both the inflammation and epithelial phenotypes, with the latter recapitulated by the DAG analogue, PMA. We demonstrate that hai1a has elevated MAPK pathway activity, inhibition of which rescues the epidermal defects. Finally, we identify RSK kinases as MAPK targets disrupting adherens junctions in hai1a mutants. Our work maps novel signalling cascades mediating the potent effects of Matriptase on epithelia, with implications for tissue damage response and carcinoma progression. Cancer occurs when normal processes in the cell become corrupted or unregulated. Many proteins can contribute, including one enzyme called Matriptase that cuts other proteins at specific sites. Matriptase activity is tightly controlled by a protein called Hai1. In mice and zebrafish, when Hai1 cannot adequately control Matriptase activity, invasive cancers with severe inflammation develop. However, it is unclear how unregulated Matriptase leads to both inflammation and cancer invasion. One outcome of Matriptase activity is removal of proteins called Cadherins from the cell surface. These proteins have a role in cell adhesion: they act like glue to stick cells together. Without them, cells can dissociate from a tissue and move away, a critical step in cancer cells invading other organs. However, it is unknown exactly how Matriptase triggers the removal of Cadherins from the cell surface to promote invasion. Previous work has shown that Matriptase switches on a receptor called Proteinase-activated receptor 2, or Par2 for short, which is known to activate many enzymes, including one called phospholipase C. When activated, this enzyme releases two signals into the cell: a sugar called inositol triphosphate, IP3; and a lipid or fat called diacylglycerol, DAG. It is possible that these two signals have a role to play in how Matriptase removes Cadherins from the cell surface. To find out, Ma et al. mapped the effects of Matriptase in zebrafish lacking the Hai1 protein. This revealed that Matriptase increases IP3 and DAG levels, which initiate both inflammation and invasion. IP3 promotes inflammation by switching on pro-inflammatory signals inside the cell such as the chemical hydrogen peroxide. At the same time, DAG promotes cell invasion by activating a well-known cancer signalling pathway called MAPK. This pathway activates a protein called RSK. Ma et al. show that this protein is required to remove Cadherins from the surface of cells, thus connecting Matriptase’s activation of phospholipase C with its role in disrupting cell adhesion. An increase in the ratio of Matriptase to HAI-1 (the human equivalent of Hai1) is present in many cancers. For this reason, the signal cascades described by Ma et al. may be of interest in developing treatments for these cancers. Understanding how these signals work together could lead to more direct targeted anti-cancer approaches in the future.
Collapse
Affiliation(s)
- Jiajia Ma
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Claire A Scott
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ying Na Ho
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Harsha Mahabaleshwar
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Katherine S Marsay
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Changqing Zhang
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Christopher Kj Teow
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore
| | - Ser Sue Ng
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Weibin Zhang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| | - Lynda J Partridge
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Sudipto Roy
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore, Singapore.,Department of Pediatrics, Yong Loo Ling School of Medicine, National University of Singapore, Singapore, Singapore
| | - Enrique Amaya
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Experimental Medicine Building, Yunnan Garden Campus, 59 Nanyang Drive, Nanyang Technological University, Singapore, Singapore.,Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, Singapore
| |
Collapse
|
7
|
Zhang WJ, Luo C, Huang C, Pu FQ, Zhu JF, Zhu ZM. PI3K/Akt/GSK-3β signal pathway is involved in P2X7 receptor-induced proliferation and EMT of colorectal cancer cells. Eur J Pharmacol 2021; 899:174041. [PMID: 33737010 DOI: 10.1016/j.ejphar.2021.174041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
P2X7 receptor (P2X7R) plays an important role in regulating the growth of tumor cells. However, the role of P2X7R in colorectal cancer (CRC) has remained poorly understood. Therefore, in this study, in vivo and in vitro experiments were performed to investigate the effect of P2X7R on the proliferation of CRC. The results showed that P2X7R was expressed in CRC cell lines (SW620 and HCT116). ATP and BzATP increased the expression of P2X7R in CRC cells, while the application of P2X7R antagonist A438079 and AZD9056 decreased the P2X7R expression induced by BzATP. Moreover, ATP and BzATP induced the activation of P2X7R to promote the proliferation, migration and invasion of CRC cells. Conversely, A438079, AZD9056 or siRNA transfection targeting P2X7R (siP2X7R) knockdown P2X7R expression inhibited the proliferation and migration of CRC cells. TGF-β1 promoted the migration and invasion of CRC cells, while the application of P2X7R antagonist could inhibit TGF-β1 induced migration of CRC cells. Furthermore, activation of P2X7R increased the expression of Vimentin, Snail, Fibronectin and decreased the expression of E-cadherin. While reducing the expression of P2X7R could inhibit these genes expression. In addition, ATP and BzATP increased the expression of p-Akt, p-GSK-3beta and β-catenin via P2X7R. P13/Akt pathway inhibitor LY294002 inhibited the proliferation of CRC cells, and the P13/Akt signaling was required for BzATP induced the proliferation of CRC cells. Our conclusion is that P2X7R mediated the PI3K/Akt/GSK-3beta signaling to promote the proliferation and EMT of CRC, indicating that P2X7R may be used as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Chen Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Chao Huang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Fan-Qin Pu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jin-Feng Zhu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zheng-Ming Zhu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
8
|
Jiang Y, Zhuo X, Fu X, Wu Y, Mao C. Targeting PAR2 Overcomes Gefitinib Resistance in Non-Small-Cell Lung Cancer Cells Through Inhibition of EGFR Transactivation. Front Pharmacol 2021; 12:625289. [PMID: 33967759 PMCID: PMC8100583 DOI: 10.3389/fphar.2021.625289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Drug resistance can notably restrict clinical applications of gefitinib that is a commonly used EGFR-tyrosine kinase inhibitors (EGFR-TKIs) for non-small cell lung cancer (NSCLC). The attempts in exploring novel drug targets and reversal strategies are still needed, since gefitinib resistance has not been fully addressed. Protease-activated receptor 2 (PAR2), a G protein-coupled receptor, possesses a transactivation with EGFR to initiate a variety of intracellular signal transductions, but there is a lack of investigations on the role of PAR2 in gefitinib resistance. This study established that protease-activated receptor 2 (PAR2), actively participated in NSCLC resistant to gefitinib. PAR2 expression was significantly up-regulated when NSCLC cells or tumor tissues became gefitinib resistance. PAR2 inhibition notably enhanced gefitinib to modulate EGFR transactivation, cell viability, migration and apoptosis in gefitinib-sensitive and-resistant NSCLC cells, suggesting its reversal effects in gefitinib resistance. Meanwhile, the combination of a PAR2 inhibitor (P2pal-18S) and gefitinib largely blocked ERK phosphorylation and epithelial-mesenchymal transition (EMT) compared to gefitinib alone. Importantly, we probed its underlying mechanism and uncovered that PAR2 blockade sensitized gefitinib and reversed its resistance mainly via β-arrestin-EGFR-ERK signaling axis. These effects of PAR2 inhibition were further confirmed by the in vivo study which showed that P2pal-18S reactivated gefitinib to inhibit tumor growth via restricting ERK activation. Taken together, this study could not only reveal a new mechanism of receptor-mediated transactivation to modulate drug resistance, but also provide a novel drug target and direction for overcoming gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xin Zhuo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Xiujuan Fu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yue Wu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
9
|
Sharma S, Kalra H, Akundi RS. Extracellular ATP Mediates Cancer Cell Migration and Invasion Through Increased Expression of Cyclooxygenase 2. Front Pharmacol 2021; 11:617211. [PMID: 33584298 PMCID: PMC7873692 DOI: 10.3389/fphar.2020.617211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment plays a major role in the ability of the tumor cells to undergo metastasis. A major player of tumors gaining metastatic property is the inflammatory protein, cyclooxygenase 2 (COX-2). Several tumors show upregulation of this protein, which has been implicated in mediating metastasis in various cancer types such as of colon, breast and lung. In this report, we show that the concentration of extracellular ATP (eATP) is increased in response to cell death mediated by chemotherapeutic agents such as doxorubicin. By using three different cell-lines-HeLa (cervical), IMR-32 (neuronal) and MCF-7 (breast)-we show that this eATP goes on to act on purinergic (P2) receptors. Among the various P2 receptors expressed in these cells we identified P2X7, in IMR-32 and MCF-7 cells, and P2Y12, in HeLa cells, as important in modulating cell migration and invasion. Downstream of the P2 receptor activation, both p42/44 mitogen-activated protein kinase (MAPK) and the p38 MAPK are activated in these cells. These result in an increase in the expression of COX-2 mRNA and protein. We also observe an increase in the activity of matrix metalloproteinase 2 (MMP-2) enzyme in these cells. Blocking the P2 receptors not only blocks migration and invasion, but also COX-2 synthesis and MMP-2 activity. Our results show the link between purinergic receptors and COX-2 expression. Increased levels of ATP in the tumor microenvironment, therefore, leads to increased COX-2 expression, which, in turn, affords migratory and invasive properties to the tumor. This provides P2 receptor-based anti-inflammatory drugs (PBAIDs) a potential opportunity to be explored as cancer therapeutics.
Collapse
Affiliation(s)
- Shilpa Sharma
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Harshit Kalra
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Ravi Shankar Akundi
- Neuroinflammation Research Lab, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| |
Collapse
|
10
|
Woods LT, Forti KM, Shanbhag VC, Camden JM, Weisman GA. P2Y receptors for extracellular nucleotides: Contributions to cancer progression and therapeutic implications. Biochem Pharmacol 2021; 187:114406. [PMID: 33412103 DOI: 10.1016/j.bcp.2021.114406] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Purinergic receptors for extracellular nucleotides and nucleosides contribute to a vast array of cellular and tissue functions, including cell proliferation, intracellular and transmembrane ion flux, immunomodulation and thrombosis. In mammals, the purinergic receptor system is composed of G protein-coupled P1 receptors A1, A2A, A2B and A3 for extracellular adenosine, P2X1-7 receptors that are ATP-gated ion channels and G protein-coupled P2Y1,2,4,6,11,12,13 and 14 receptors for extracellular ATP, ADP, UTP, UDP and/or UDP-glucose. Recent studies have implicated specific P2Y receptor subtypes in numerous oncogenic processes, including cancer tumorigenesis, metastasis and chemotherapeutic drug resistance, where G protein-mediated signaling cascades modulate intracellular ion concentrations and activate downstream protein kinases, Src family kinases as well as numerous mitogen-activated protein kinases. We are honored to contribute to this special issue dedicated to the founder of the field of purinergic signaling, Dr. Geoffrey Burnstock, by reviewing the diverse roles of P2Y receptors in the initiation, progression and metastasis of specific cancers with an emphasis on pharmacological and genetic strategies employed to delineate cell-specific and P2Y receptor subtype-specific responses that have been investigated using in vitro and in vivo cancer models. We further highlight bioinformatic and empirical evidence on P2Y receptor expression in human clinical specimens and cover clinical perspectives where P2Y receptor-targeting interventions may have therapeutic relevance to cancer treatment.
Collapse
Affiliation(s)
- Lucas T Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Vinit C Shanbhag
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jean M Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Gary A Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
11
|
Jiang Y, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP. PAR2 induces ovarian cancer cell motility by merging three signalling pathways to transactivate EGFR. Br J Pharmacol 2020; 178:913-932. [PMID: 33226635 DOI: 10.1111/bph.15332] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Specific cellular functions mediated by GPCRs are often associated with signalling through a particular G protein or β-arrestin. Here, we examine signalling through a GPCR, protease-activated receptor 2 (PAR2), in a high-grade serous ovarian cancer cell line (OV90). EXPERIMENTAL APPROACH Human ovarian cancer tissues (n = 1,200) and nine human ovarian cancer cell lines were assessed for PAR2 expression. PAR2 signalling mechanisms leading to cell migration and invasion were dissected using cellular assays, western blots, CRISPR-Cas9 gene knockouts, pharmacological inhibitors of PAR2 and downstream signalling proteins in OV90 cancer cells. KEY RESULTS PAR2 was significantly overexpressed in clinical ovarian cancer tissues and in OV90 ovarian cancer cells. PAR2 agonists, an endogenous protease (trypsin) and a synthetic peptide (2f-LIGRL-NH2 ), induced migration and invasion of OV90 ovarian cancer cells through activating a combination of Gαq/11 , Gα12/13 and β-arrestin1/2, but not Gαs or Gαi . This novel cooperative rather than parallel signalling resulted in downstream serial activation of Src kinases, then transactivation of epidermal growth factor receptor (EGFR), followed by downstream MEK-ERK1/2-FOS/MYC/STAT3-COX2 signalling. Either a PAR2 antagonist (I-191), CRISPR-Cas9 gene knockouts (PAR2 or Gα proteins or β-arrestin1/2), or inhibitors of each downstream protein attenuated human ovarian cancer cell motility. CONCLUSION AND IMPLICATIONS This study highlights a novel shared signalling cascade, requiring each of Gαq/11 , Gα12/13 and β-arrestin1/2 for PAR2-induced ovarian cancer cell migration and invasion. This mechanism controlling a cellular function is unusual in not being linked to a specific individual G protein or β-arrestin-mediated signalling pathway.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Weijun Xu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Zhang WJ, Hu CG, Luo HL, Zhu ZM. Activation of P2×7 Receptor Promotes the Invasion and Migration of Colon Cancer Cells via the STAT3 Signaling. Front Cell Dev Biol 2020; 8:586555. [PMID: 33330466 PMCID: PMC7732635 DOI: 10.3389/fcell.2020.586555] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The pathological mechanism of colon cancer is very complicated. Therefore, exploring the molecular basis of the pathogenesis of colon cancer and finding a new therapeutic target has become an urgent problem to be solved in the treatment of colon cancer. ATP plays an important role in regulating the progression of tumor cells. P2 × 7 belongs to ATP ion channel receptor, which is involved in the progression of tumors. In this study, we explored the effect and molecular mechanism of ATP-mediated P2 × 7 receptor on the migration and metastasis of colon cancer cells. The results showed that ATP and BzATP significantly increased the inward current and intracellular calcium concentration of LOVO and SW480 cells, while the use of antagonists (A438079 and AZD9056) could reverse the above phenomenon. We found that ATP promoted the migration and invasion of LOVO and SW480 cells and is dose-dependent on ATP concentration (100–300 μM). Similarly, BzATP (10, 50, and 100 μM) also significantly promoted the migration and invasion of colon cancer cells in a concentration-dependent manner. While P2 × 7 receptor antagonists [A438079 (10 μM), AZD9056 (10 μM)] or P2 × 7 siRNA could significantly inhibit ATP-induced colon cancer cell migration and invasion. Moreover, in vivo experiments showed that ATP-induced activation of P2 × 7 receptor promoted the growth of tumors. Furthermore, P2 × 7 receptor activation down-regulated E-cadherin protein expression and up-regulated MMP-2 mRNA and concentration levels. Knocking down the expression of P2 × 7 receptor could significantly inhibit the increase in the expression of N-cadherin, Vimentin, Zeb1, and Snail induced by ATP. In addition, ATP time-dependently induced the activation of STAT3 via the P2 × 7 receptor, and the STAT3 pathway was required for the ATP-mediated invasion and migration. Our conclusion is that ATP-induced P2 × 7 receptor activation promotes the migration and invasion of colon cancer cells, possibly via the activation of STAT3 pathway. Therefore, the P2 × 7 receptor may be a potential target for the treatment of colon cancer.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Ce-Gui Hu
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Hong-Liang Luo
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| | - Zheng-Ming Zhu
- The Second Affiliated Hospital, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Novak I, Yu H, Magni L, Deshar G. Purinergic Signaling in Pancreas-From Physiology to Therapeutic Strategies in Pancreatic Cancer. Int J Mol Sci 2020; 21:E8781. [PMID: 33233631 PMCID: PMC7699721 DOI: 10.3390/ijms21228781] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
The purinergic signaling has an important role in regulating pancreatic exocrine secretion. The exocrine pancreas is also a site of one of the most serious cancer forms, the pancreatic ductal adenocarcinoma (PDAC). Here, we explore how the network of purinergic and adenosine receptors, as well as ecto-nucleotidases regulate normal pancreatic cells and various cells within the pancreatic tumor microenvironment. In particular, we focus on the P2X7 receptor, P2Y2 and P2Y12 receptors, as well as A2 receptors and ecto-nucleotidases CD39 and CD73. Recent studies indicate that targeting one or more of these candidates could present new therapeutic approaches to treat pancreatic cancer. In pancreatic cancer, as much as possible of normal pancreatic function should be preserved, and therefore physiology of purinergic signaling in pancreas needs to be considered.
Collapse
MESH Headings
- 5'-Nucleotidase/genetics
- 5'-Nucleotidase/immunology
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antineoplastic Agents, Immunological/therapeutic use
- Apyrase/genetics
- Apyrase/immunology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Clinical Trials as Topic
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy/methods
- Pancreas/drug effects
- Pancreas/immunology
- Pancreas/pathology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Stellate Cells/drug effects
- Pancreatic Stellate Cells/immunology
- Pancreatic Stellate Cells/pathology
- Receptors, Adenosine A2/genetics
- Receptors, Adenosine A2/immunology
- Receptors, Purinergic P2X7/genetics
- Receptors, Purinergic P2X7/immunology
- Receptors, Purinergic P2Y12/genetics
- Receptors, Purinergic P2Y12/immunology
- Receptors, Purinergic P2Y2/genetics
- Receptors, Purinergic P2Y2/immunology
- Signal Transduction/genetics
- Signal Transduction/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark; (H.Y.); (L.M.); (G.D.)
| | | | | | | |
Collapse
|
14
|
Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis. Pharmacol Ther 2020; 220:107713. [PMID: 33141027 DOI: 10.1016/j.pharmthera.2020.107713] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
The old Greek saying "Panta Rhei" ("everything flows") is true for all life and all living things in general. It also becomes nicely evident when looking closely into cells. There, material from the extracellular space is taken up by endocytic processes and transported to endosomes where it is sorted either for recycling or degradation. Cargo is also packaged for export through exocytosis involving the Golgi network, lysosomes and other organelles. Everything in this system is in constant motion and many proteins are necessary to coordinate transport along the different intracellular pathways to avoid chaos. Among these proteins are ion channels., in particular TRPML channels (mucolipins) and two-pore channels (TPCs) which reside on endosomal and lysosomal membranes to speed up movement between organelles, e.g. by regulating fusion and fission; they help readjust pH and osmolarity changes due to such processes, or they promote exocytosis of export material. Pathophysiologically, these channels are involved in neurodegenerative, metabolic, retinal and infectious diseases, cancer, pigmentation defects, and immune cell function, and thus have been proposed as novel pharmacological targets, e.g. for the treatment of lysosomal storage disorders, Duchenne muscular dystrophy, or different types of cancer. Here, we discuss the similarities but also differences of TPCs and TRPMLs in regulating phagocytosis, autophagy and lysosomal exocytosis, and we address the contradictions and open questions in the field relating to the roles TPCs and TRPMLs play in these different processes.
Collapse
|
15
|
Sriram K, Salmerón C, Wiley SZ, Insel PA. GPCRs in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. Br J Pharmacol 2020; 177:2434-2455. [PMID: 32060895 DOI: 10.1111/bph.15028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/06/2020] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer has one of the highest mortality rates (5-year survival ~9%) among cancers. Pancreatic adenocarcinoma (PAAD) is the most common (>80%) and the most lethal type of pancreatic cancer. A need exists for new approaches to treat pancreatic adenocarcinoma. GPCRs, the largest family of cell-surface receptors and drug targets, account for ~35% of approved drugs. Recent studies have revealed roles for GPCRs in PAAD cells and cells in the tumour micro-environment. This review assesses current information regarding GPCRs in PAAD by summarizing omics data for GPCRs expression in PAAD. The PAAD "GPCRome" includes GPCRs with approved agents, thereby offering potential for their repurposing/repositioning. We then reviewed the evidence for functional roles of specific GPCRs in PAAD. We also highlight gaps in understanding the contribution of GPCRs to PAAD biology and identify several GPCRs that may be novel therapeutic targets for future work in search of GPCR-targeted drugs to treat PAAD tumours.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Cristina Salmerón
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shu Z Wiley
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology, University of California San Diego, La Jolla, California.,Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
16
|
Søreide K, Roalsø M, Aunan JR. Is There a Trojan Horse to Aggressive Pancreatic Cancer Biology? A Review of the Trypsin-PAR2 Axis to Proliferation, Early Invasion, and Metastasis. J Pancreat Cancer 2020; 6:12-20. [PMID: 32064449 PMCID: PMC7014313 DOI: 10.1089/pancan.2019.0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Purpose: Pancreatic cancer is one of the most lethal of solid tumors and is associated with aggressive cancer biology. The purpose is to review the role of trypsin and effect on molecular and cellular processes potentially explaining the aggressive biology in pancreatic cancer. Methods: A narrative literature review of studies investigating trypsin and its effect on protease systems in cancer, with special reference to pancreatic cancer biology. Results: Proteases, such as trypsin, provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Trypsin is a digestive enzyme produced by the exocrine pancreas that is also related to mechanisms of proliferation, invasion and metastasis. Several of these mechanisms may be co-regulated or influenced by activation of proteinase-activated receptor 2 (PAR-2). The current role in pancreatic cancer is not clear but emerging data suggest several potential mechanisms. Trypsin may act as a Trojan horse in the pancreatic gland, facilitating several molecular pathways from the onset, which leads to rapid progression of the disease. Pancreatic cancer cell lines containing PAR-2 proliferate upon exposure to trypsin, whereas cancer cell lines not containing PAR-2 fail to proliferate upon trypsin expression. Several mechanisms of action include a proinflammatory environment, signals inducing proliferation and migration, and direct and indirect evidence for mechanisms promoting invasion and metastasis. Novel techniques (such as organoid models) and increased understanding of mechanisms (such as the microbiome) may yield improved understanding into the role of trypsin in pancreatic carcinogenesis. Conclusion: Trypsin is naturally present in the pancreatic gland and may experience pathological activation intracellularly and in the neoplastic environment, which speeds up molecular mechanisms of proliferation, invasion, and metastasis. Further investigation of these processes will provide important insights into how pancreatic cancer evolves, and suggest new ways for treatment.
Collapse
Affiliation(s)
- Kjetil Søreide
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Marcus Roalsø
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway.,Faculty of Health and Medicine, University of Stavanger, Stavanger, Norway
| | - Jan Rune Aunan
- Gastrointestinal Translational Research Unit, Laboratory for Molecular Medicine, Stavanger University Hospital, Stavanger, Norway.,Department of Gastrointestinal Surgery, HPB Unit, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
17
|
Platelet ATP, Thyroid Hormone Receptor on Integrin αvβ3 and Cancer Metastasis. Discov Oncol 2019; 11:13-16. [PMID: 31838715 DOI: 10.1007/s12672-019-00371-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/17/2019] [Indexed: 01/30/2023] Open
Abstract
Activated platelets may contribute to the metastatic behavior of tumor cells when the cancer cells and platelets interact. The interaction requires cell and platelet surface integrin. Thyroid hormone as L-thyroxine (T4) is the principal ligand for a hormone receptor on integrin αvβ3 on tumor cells and platelets. T4 activates the integrin, promoting platelet aggregation and degranulation (local ATP release) and stimulating tumor cell proliferation. By a variety of molecular mechanisms reviewed here, extracellular ATP promotes tumor cell invasiveness and metastasis and supports a role for T4 as a pro-metastatic factor.
Collapse
|
18
|
Bellefeuille SD, Molle CM, Gendron FP. Reviewing the role of P2Y receptors in specific gastrointestinal cancers. Purinergic Signal 2019; 15:451-463. [PMID: 31478181 PMCID: PMC6923304 DOI: 10.1007/s11302-019-09678-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023] Open
Abstract
Extracellular nucleotides are important intercellular signaling molecules that were found enriched in the tumor microenvironment. In fact, interfering with G protein-coupled P2Y receptor signaling has emerged as a promising therapeutic alternative to treat aggressive and difficult-to-manage cancers such as those affecting the gastrointestinal system. In this review, we will discuss the functions of P2Y receptors in gastrointestinal cancers with an emphasis on colorectal, hepatic, and pancreatic cancers. We will show that P2Y2 receptor up-regulation increases cancer cell proliferation, tumor growth, and metastasis in almost all studied gastrointestinal cancers. In contrast, we will present P2Y6 receptor as having opposing roles in colorectal cancer vs. gastric cancer. In colorectal cancer, the P2Y6 receptor induces carcinogenesis by inhibiting apoptosis, whereas P2Y6 suppresses gastric cancer tumor growth by reducing β-catenin transcriptional activity. The contribution of the P2Y11 receptor in the migration of liver and pancreatic cancer cells will be compared to its normal inhibitory function on this cellular process in ciliated cholangiocytes. Hence, we will demonstrate that the selective inhibition of the P2Y12 receptor activity in platelets was associated to a reduction in the risk of developing colorectal cancer and metastasis formation. We will succinctly review the role of P2Y1, P2Y4, P2Y13, and P2Y14 receptors as the knowledge for these receptors in gastrointestinal cancers is sparse. Finally, redundant ligand selectivity, nucleotide high lability, cell context, and antibody reliability will be presented as the main difficulties in defining P2Y receptor functions in gastrointestinal cancers.
Collapse
Affiliation(s)
- Steve Dagenais Bellefeuille
- Département d’anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8 Canada
| | - Caroline M. Molle
- Département d’anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8 Canada
| | - Fernand-Pierre Gendron
- Département d’anatomie et de biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, Québec, J1E 4K8 Canada
| |
Collapse
|
19
|
Xu M, Almasi S, Yang Y, Yan C, Sterea AM, Rizvi Syeda AK, Shen B, Richard Derek C, Huang P, Gujar S, Wang J, Zong WX, Trebak M, El Hiani Y, Dong XP. The lysosomal TRPML1 channel regulates triple negative breast cancer development by promoting mTORC1 and purinergic signaling pathways. Cell Calcium 2019; 79:80-88. [PMID: 30889511 PMCID: PMC6698368 DOI: 10.1016/j.ceca.2019.02.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 01/05/2023]
Abstract
The triple-negative breast cancer (TNBC) that comprises approximately 10%-20% of breast cancers is an aggressive subtype lacking effective therapeutics. Among various signaling pathways, mTORC1 and purinergic signals have emerged as potentially fruitful targets for clinical therapy of TNBC. Unfortunately, drugs targeting these signaling pathways do not successfully inhibit the progression of TNBC, partially due to the fact that these signaling pathways are essential for the function of all types of cells. In this study, we report that TRPML1 is specifically upregulated in TNBCs and that its genetic downregulation and pharmacological inhibition suppress the growth of TNBC. Mechanistically, we demonstrate that TRPML1 regulates TNBC development, at least partially, through controlling mTORC1 activity and the release of lysosomal ATP. Because TRPML1 is specifically activated by cellular stresses found in tumor microenvironments, antagonists of TRPML1 could represent anticancer drugs with enhanced specificity and potency. Our findings are expected to have a major impact on drug targeting of TNBCs.
Collapse
Affiliation(s)
- Mengnan Xu
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada; Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shekoufeh Almasi
- Department of Biology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Yiming Yang
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Chi Yan
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Andra Mihaela Sterea
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Alia Kazim Rizvi Syeda
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Bing Shen
- Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Clements Richard Derek
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Peng Huang
- College of Basic Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shashi Gujar
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Jun Wang
- Department of Microbiology & Immunology, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, 164 Frelinghuysen Road, Piscataway NJ08854, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey PA 17033, USA
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada.
| | - Xian-Ping Dong
- Department of Physiology and Biophysics, Dalhousie University, 5850 College Street, Halifax, B3H 4R2, Nova Scotia, Canada; Department of Physiology, School of Basic Medicine, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
20
|
Fernando EH, Gordon MH, Beck PL, MacNaughton WK. Inhibition of Intestinal Epithelial Wound Healing through Protease-Activated Receptor-2 Activation in Caco2 Cells. J Pharmacol Exp Ther 2018; 367:382-392. [PMID: 30190338 DOI: 10.1124/jpet.118.249524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/31/2018] [Indexed: 01/02/2025] Open
Abstract
The mechanisms of epithelial wound healing are not completely understood, especially in the context of proteases and their receptors. It was recently shown that activation of protease-activated receptor-2 (PAR2) on intestinal epithelial cells induced the expression of cyclooxygenase-2 (COX-2), which has protective functions in the gastrointestinal tract. It was hypothesized that PAR2-induced COX-2 could enhance wound healing in intestinal epithelial cells. Caco2 cells were used to model epithelial wound healing of circular wounds. Cellular proliferation was studied with a 5-ethynyl-2'-deoxyuridine assay, and migration was studied during wound healing in the absence of proliferation. Immunofluorescence was used to visualize E-cadherin and F-actin, and the cellular transcription profile during wound healing and PAR2 activation was explored with RNA sequencing. PAR2 activation inhibited Caco2 wound healing by reducing cell migration, independently of COX-2 activity. Interestingly, even though migration was reduced, proliferation was increased. When the actin dynamics and cell-cell junctions were investigated, PAR2 activation was found to induce actin cabling and prevent the internalization of E-cadherin. To further investigate the effect of PAR2 on transcriptionally dependent wound healing, RNA sequencing was performed. This analysis revealed that PAR2 activation, in the absence of wounding, induced a similar transcriptional profile compared with wounding alone. These findings represent a novel effect of PAR2 activation on the mechanisms of epithelial cell wound healing that could influence the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Elizabeth H Fernando
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marilyn H Gordon
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul L Beck
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Departments of Physiology and Pharmacology (E.H.F., M.H.G., W.K.M.) and Medicine (P.L.B.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Schepis A, Barker A, Srinivasan Y, Balouch E, Zheng Y, Lam I, Clay H, Hsiao CD, Coughlin SR. Protease signaling regulates apical cell extrusion, cell contacts, and proliferation in epithelia. J Cell Biol 2018; 217:1097-1112. [PMID: 29301867 PMCID: PMC5839797 DOI: 10.1083/jcb.201709118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/27/2017] [Accepted: 12/07/2017] [Indexed: 11/22/2022] Open
Abstract
Mechanisms that sense and regulate epithelial morphogenesis, integrity, and homeostasis are incompletely understood. Protease-activated receptor 2 (Par2), the Par2-activating membrane-tethered protease matriptase, and its inhibitor, hepatocyte activator inhibitor 1 (Hai1), are coexpressed in most epithelia and may make up a local signaling system that regulates epithelial behavior. We explored the role of Par2b in matriptase-dependent skin abnormalities in Hai1a-deficient zebrafish embryos. We show an unexpected role for Par2b in regulation of epithelial apical cell extrusion, roles in regulating proliferation that were opposite in distinct but adjacent epithelial monolayers, and roles in regulating cell-cell junctions, mobility, survival, and expression of genes involved in tissue remodeling and inflammation. The epidermal growth factor receptor Erbb2 and matrix metalloproteinases, the latter induced by Par2b, may contribute to some matriptase- and Par2b-dependent phenotypes and be permissive for others. Our results suggest that local protease-activated receptor signaling can coordinate cell behaviors known to contribute to epithelial morphogenesis and homeostasis.
Collapse
Affiliation(s)
- Antonino Schepis
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Adrian Barker
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Yoga Srinivasan
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Eaman Balouch
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Yaowu Zheng
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Ian Lam
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Hilary Clay
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li, Taiwan
| | - Shaun R Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
22
|
Suen J, Adams M, Lim J, Madala P, Xu W, Cotterell A, He Y, Yau M, Hooper J, Fairlie D. Mapping transmembrane residues of proteinase activated receptor 2 (PAR 2 ) that influence ligand-modulated calcium signaling. Pharmacol Res 2017; 117:328-342. [DOI: 10.1016/j.phrs.2016.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/22/2022]
|
23
|
Shi K, Damhofer H, Daalhuisen J, Ten Brink M, Richel DJ, Spek CA. Dabigatran potentiates gemcitabine-induced growth inhibition of pancreatic cancer in mice. Mol Med 2017; 23:13-23. [PMID: 28182192 DOI: 10.2119/molmed.2016.00214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/24/2017] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is one of the most lethal solid malignancies with little treatment options. We have recently shown that expression of protease activated receptor (PAR)-1 in the tumor microenvironment drives progression and induces chemoresistance of pancreatic cancer. As thrombin is the prototypical PAR-1 agonist, here we addressed the effect of the direct thrombin inhibitor dabigatran on pancreatic cancer growth and drug resistance in an orthotropic pancreatic cancer model. We show that dabigatran treatment did not affect primary tumor growth whereas it significantly increased tumor dissemination throughout the peritoneal cavity. Increased dissemination was accompanied by intratumoral bleeding and increased numbers of aberrant and/or collapsed blood vessels in the primary tumors. In combination with gemcitabine, dabigatran treatment limited primary tumor growth, did not induce bleeding complications and prevented tumor cell dissemination. Dabigatran was however not as efficient as genetic ablation of PAR-1 in our previous study suggesting that thrombin is not the main PAR-1 agonist in the setting of pancreatic cancer. Overall, we show that dabigatran potentiates gemcitabine-induced growth inhibition of pancreatic cancer but does not affect primary tumor growth when used as a monotherapy.
Collapse
Affiliation(s)
- Kun Shi
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Helene Damhofer
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Joost Daalhuisen
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Marieke Ten Brink
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| | - Dick J Richel
- Department of Medical Oncology, Academic Medical Center, Amsterdam, the Netherlands
| | - C Arnold Spek
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Stahn S, Thelen L, Albrecht IM, Bitzer J, Henkel T, Teusch NE. Teleocidin A2 inhibits human proteinase-activated receptor 2 signaling in tumor cells. Pharmacol Res Perspect 2016; 4:e00230. [PMID: 28116092 PMCID: PMC5242168 DOI: 10.1002/prp2.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 01/04/2023] Open
Abstract
Enhanced expression of the proteinase‐activated receptor 2 (PAR2) is linked to cell proliferation and migration in many cancer cell types. The role of PAR2 in cancer progression strongly illustrates the need for PAR2‐inhibiting compounds. However, to date, potent and selective PAR2 antagonists have not been reported. The natural product teleocidin A2 was characterized against PAR2‐activating peptide SLIGKV‐NH2, and trypsin‐induced PAR2‐dependent intracellular Ca2+ mobilization in tumor and in primary endothelial or epithelial cells. Further biochemical and cell‐based studies were conducted to evaluate teleocidin specificity. The antagonizing effect of teleocidin A2 was confirmed in PAR2‐dependent cell migration and rearrangement of actin cytoskeleton of human breast adenocarcinoma cell line (MDA‐MB 231) breast cancer cells. Teleocidin A2 antagonizes PAR2‐dependent intracellular Ca2+ mobilization induced by either SLIGKV‐NH2 or trypsin with IC50 values from 15 to 25 nmol/L in MDA‐MB 231, lung carcinoma cell line, and human umbilical vein endothelial cell. Half maximal inhibition of either PAR1 or P2Y receptor‐dependent Ca2+ release is only achieved with 10‐ to 20‐fold higher concentrations of teleocidin A2. In low nanomolar concentrations, teleocidin A2 reverses both SLIGKV‐NH2 and trypsin‐mediated PAR2‐dependent migration of MDA‐MB 231 cells, and has no effect itself on cell migration and no effect on cell viability. Teleocidin A2 further controls PAR2‐induced actin cytoskeleton rearrangement of MDA‐MB 231 cells. Thus, for the first time, the small molecule natural product teleocidin A2 exhibiting PAR2 antagonism in the low nanomolar range with potent antimigratory activity is described.
Collapse
Affiliation(s)
- Sonja Stahn
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| | - Lisa Thelen
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| | - Ina-Maria Albrecht
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| | | | | | - Nicole Elisabeth Teusch
- Bio-Pharmaceutical Chemistry Faculty of Applied Natural Sciences Cologne University of Applied Sciences Chem Park Leverkusen Leverkusen Germany
| |
Collapse
|
25
|
Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets. Blood Cancer J 2016; 6:e431. [PMID: 27258612 PMCID: PMC5141352 DOI: 10.1038/bcj.2016.36] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is associated with poor clinical outcome and the development of more effective therapies is urgently needed. G protein-coupled receptors (GPCRs) represent attractive therapeutic targets, accounting for approximately 30% of all targets of marketed drugs. Using next-generation sequencing, we studied the expression of 772 GPCRs in 148 genetically diverse AML specimens, normal blood and bone marrow cell populations as well as cord blood-derived CD34-positive cells. Among these receptors, 30 are overexpressed and 19 are downregulated in AML samples compared with normal CD34-positive cells. Upregulated GPCRs are enriched in chemokine (CCR1, CXCR4, CCR2, CX3CR1, CCR7 and CCRL2), adhesion (CD97, EMR1, EMR2 and GPR114) and purine (including P2RY2 and P2RY13) receptor subfamilies. The downregulated receptors include adhesion GPCRs, such as LPHN1, GPR125, GPR56, CELSR3 and GPR126, protease-activated receptors (F2R and F2RL1) and the Frizzled family receptors SMO and FZD6. Interestingly, specific deregulation was observed in genetically distinct subgroups of AML, thereby identifying different potential therapeutic targets in these frequent AML subgroups.
Collapse
|
26
|
Correlation of IL-18 with Tryptase in Atopic Asthma and Induction of Mast Cell Accumulation by IL-18. Mediators Inflamm 2016; 2016:4743176. [PMID: 27069315 PMCID: PMC4812453 DOI: 10.1155/2016/4743176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/13/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022] Open
Abstract
Interleukin- (IL-) 18 and tryptase were previously reported to relate to asthma, but the correlation between these two potent proinflammatory molecules in asthma and their roles in mast cell accumulation remain uninvestigated. Using flow cytometric analysis technique and ovalbumin- (OVA-) sensitized mouse model, it was found that IL-18 and tryptase levels in the plasma of moderate and severe asthma were elevated, and they correlated well with each other. Tryptase and agonist peptides of protease activated receptor- (PAR-) 2 induced substantial quantity of IL-18 release. IL-18 and tryptase provoked mast cell accumulation in peritoneum of OVA-sensitized mice. OVA-sensitization increased number of IL-18 receptor (R)+ mast cells. IL-18 and tryptase induced dramatic increase in IL-18R+ mast cells and mean fluorescence intensity (MFI) of IL-18R on mast cells. Moreover, while IL-18 induced an increase in PAR-2+ mast cells in nonsensitized mice, IL-18 and tryptase provoked increases in IL-4 and thymic stromal lymphopoietin (TSLP) in the peritoneum of OVA-sensitized mice. In summary, the correlation between IL-18 and tryptase in plasma of patients with asthma indicates close interactions between them, which should be considered for development of anti-IL-18 and antitryptase therapies. Interactions between IL-18 and tryptase may contribute to mast cell recruitment in asthma.
Collapse
|
27
|
Xia J, Yu X, Tang L, Li G, He T. P2X7 receptor stimulates breast cancer cell invasion and migration via the AKT pathway. Oncol Rep 2015; 34:103-10. [PMID: 25976617 DOI: 10.3892/or.2015.3979] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/20/2015] [Indexed: 11/05/2022] Open
Abstract
Purinergic signaling has been implicated in the regulation of many cellular processes. A high concentration of ATP has been observed in the tumor microenvironment, suggesting a possible role of extracellular ATP in tumor progression. The P2X7 receptor, which belongs to the ligand-gated ion channel receptor family, is involved in tumor development and metastasis. In the present study, we found that extracellular ATP stimulated the invasion and migration of human T47D breast cancer cells, in a dose-dependent manner. BzATP (ATP analogue), but not ADP, also promoted invasion and migration. We further found that the P2X7 receptor was highly expressed in the T47D cells. After knockdown of the P2X7 receptor, ATP-stimulated invasion and migration were markedly inhibited. Moreover, activation of the P2X7 receptor by ATP downregulated the protein level of E-cadherin and upregulated the production of MMP-13. In addition, ATP time-dependently induced the activation of AKT via the P2X7 receptor, and the AKT pathway was required for the ATP-mediated invasion and migration. Taken together, our results revealed that activation of the P2X7 receptor by ATP promotes breast cancer cell invasion and migration, possibly via activation of the AKT pathway and regulation of E-cadherin and MMP-13 expression. Therefore, the P2X7 receptor may be a useful therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jiyi Xia
- Research Center for Drug and Functional Food, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Xiaolan Yu
- Department of Obstetrics and Gynecology, The Affiliated TCM Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Li Tang
- Experimental Medicine Center, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatrics, Affiliated Hospital of Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Department of Biochemistry, Luzhou Medical College, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
28
|
Hepatocyte growth factor activator inhibitor type 1 maintains the assembly of keratin into desmosomes in keratinocytes by regulating protease-activated receptor 2-dependent p38 signaling. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1610-23. [PMID: 25842366 DOI: 10.1016/j.ajpath.2015.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/26/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022]
Abstract
Hepatocyte growth factor activator inhibitor type 1 (HAI-1; official symbol SPINT1) is a membrane-associated serine proteinase inhibitor abundantly expressed in epithelial tissues. Genetically engineered mouse models demonstrated that HAI-1 is critical for epidermal function, possibly through direct and indirect regulation of cell surface proteases, such as matriptase and prostasin. To obtain a better understanding of the role of HAI-1 in maintaining epidermal integrity, we performed ultrastructural analysis of Spint1-deleted mouse epidermis and organotypic culture of an HAI-1 knockdown (KD) human keratinocyte cell line, HaCaT. We found that the aggregation of tonofilaments to desmosomes was significantly reduced in HAI-1-deficient mouse epidermis with decreased desmosome number. Similar findings were observed in HAI-1 KD HaCaT organotypic cultures. Immunoblot and immunohistochemical analyses revealed that p38 mitogen-activated protein kinase was activated in response to HAI-1 insufficiency. Treatment of HAI-1 KD HaCaT cells with a p38 inhibitor abrogated the above-observed ultrastructural abnormalities. The activation of p38 induced by the loss of HAI-1 likely resulted from enhanced signaling of protease-activated receptor-2 (PAR-2), because its silencing abrogated the enhanced activation of p38. Consequently, treatment of HAI-1 KD HaCaT cells with a serine protease inhibitor, aprotinin, or PAR-2 antagonist alleviated the abnormal ultrastructural phenotype in organotypic culture. These results suggest that HAI-1 may have a critical role in maintaining normal keratinocyte morphology through regulation of PAR-2-dependent p38 mitogen-activated protein kinase signaling.
Collapse
|
29
|
Kularathna PK, Pagel CN, Mackie EJ. Tumour progression and cancer-induced pain: a role for protease-activated receptor-2? Int J Biochem Cell Biol 2014; 57:149-56. [PMID: 25448411 DOI: 10.1016/j.biocel.2014.10.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/23/2014] [Indexed: 02/08/2023]
Abstract
The role of proteases in modifying the microenvironment of tumour cells has long been recognised. With the discovery of the protease-activated receptor family of G protein-coupled receptors a mechanism for cells to sense and respond directly to proteases in their microenvironment was revealed. Many early studies described the roles of protease-activated receptors in the cellular events that occur during blood coagulation and inflammation. More recently, studies have begun to focus on the roles of protease-activated receptors in the establishment, progression and metastasis of a variety of tumours. This review will focus on the expression of protease-activated receptor-2 and its activators by normal and neoplastic tissues, and describe current evidence that activation of protease-activated receptor-2 is an important event at multiple stages of tumour progression and in pain associated with cancer.
Collapse
Affiliation(s)
- Pamuditha K Kularathna
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Charles N Pagel
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Eleanor J Mackie
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
30
|
Shi K, Queiroz KCS, Roelofs JJTH, van Noesel CJM, Richel DJ, Spek CA. Protease-activated receptor 2 suppresses lymphangiogenesis and subsequent lymph node metastasis in a murine pancreatic cancer model. J Pathol 2014; 234:398-409. [DOI: 10.1002/path.4411] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Kun Shi
- Centre for Experimental and Molecular Medicine; Academic Medical Centre; Amsterdam The Netherlands
| | - Karla CS Queiroz
- Centre for Experimental and Molecular Medicine; Academic Medical Centre; Amsterdam The Netherlands
| | - Joris JTH Roelofs
- Department of Pathology; Academic Medical Centre; Amsterdam The Netherlands
| | | | - Dirk J Richel
- Department of Medical Oncology; Academic Medical Centre; Amsterdam The Netherlands
| | - C Arnold Spek
- Centre for Experimental and Molecular Medicine; Academic Medical Centre; Amsterdam The Netherlands
| |
Collapse
|
31
|
Tang SC, Chen YC. Novel therapeutic targets for pancreatic cancer. World J Gastroenterol 2014; 20:10825-10844. [PMID: 25152585 PMCID: PMC4138462 DOI: 10.3748/wjg.v20.i31.10825] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/13/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has become the fourth leading cause of cancer death in the last two decades. Only 3%-15% of patients diagnosed with pancreatic cancer had 5 year survival rate. Drug resistance, high metastasis, poor prognosis and tumour relapse contributed to the malignancies and difficulties in treating pancreatic cancer. The current standard chemotherapy for pancreatic cancer is gemcitabine, however its efficacy is far from satisfactory, one of the reasons is due to the complex tumour microenvironment which decreases effective drug delivery to target cancer cell. Studies of the molecular pathology of pancreatic cancer have revealed that activation of KRAS, overexpression of cyclooxygenase-2, inactivation of p16INK4A and loss of p53 activities occurred in pancreatic cancer. Co-administration of gemcitabine and targeting the molecular pathological events happened in pancreatic cancer has brought an enhanced therapeutic effectiveness of gemcitabine. Therefore, studies looking for novel targets in hindering pancreatic tumour growth are emerging rapidly. In order to give a better understanding of the current findings and to seek the direction in future pancreatic cancer research; in this review we will focus on targets suppressing tumour metastatsis and progression, KRAS activated downstream effectors, the relationship of Notch signaling and Nodal/Activin signaling with pancreatic cancer cells, the current findings of non-coding RNAs in inhibiting pancreatic cancer cell proliferation, brief discussion in transcription remodeling by epigenetic modifiers (e.g., HDAC, BMI1, EZH2) and the plausible therapeutic applications of cancer stem cell and hyaluronan in tumour environment.
Collapse
|
32
|
Queiroz KCS, Shi K, Duitman J, Aberson HL, Wilmink JW, van Noesel CJM, Richel DJ, Spek CA. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer 2014; 135:2294-304. [PMID: 24436106 DOI: 10.1002/ijc.28726] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/02/2014] [Indexed: 12/26/2022]
Abstract
Protease activated receptor (PAR)-1 expression in tumor cells is associated with disease progression and overall survival in a variety of cancers of epithelial origin; however, the importance of PAR-1 in the tumor microenvironment remains unexplored. Utilizing an orthotopic pancreatic cancer model in which tumor cells are PAR-1 positive whereas stromal cells are PAR-1 negative, we show that PAR-1 expression in the microenvironment drives progression and induces chemoresistance of pancreatic cancer. PAR-1 enhances monocyte recruitment into the tumor microenvironment by regulating monocyte migration and fibroblast dependent chemokine production thereby inducing chemoresistance. Overall, our data identify a novel role of PAR-1 in the pancreatic tumor microenvironment and suggest that PAR-1 may be an attractive target to reduce drug resistance in pancreatic cancer.
Collapse
Affiliation(s)
- Karla C S Queiroz
- Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Versteeg HH, Ruf W. New helpers in TF-dependent migration. J Thromb Haemost 2013; 11:1877-9. [PMID: 23941045 DOI: 10.1111/jth.12378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Indexed: 12/26/2022]
Affiliation(s)
- H H Versteeg
- Leiden University Medical Center, Leiden, the Netherlands
| | | |
Collapse
|