1
|
Yu S, Zhang M, Guo Y, Zhang L. Serum Leucine Aminopeptidase Activity Patterns Across Various Disease States: Potential Implications for Bleeding and Thrombosis Risk. Thromb Haemost 2025; 125:120-129. [PMID: 39009008 DOI: 10.1055/a-2365-8601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND Disruptions in the pathways for activating and deactivating proteases in the bloodstream can lead to thrombosis and bleeding issues. Leucine aminopeptidases (LAPs), which are exopeptidases essential for regulating protein and peptide activities, are recognized as clinical biomarkers for liver diseases. However, the relationship between serum LAP activity and the risks of bleeding or thrombosis, as well as the identification of the specific tissues or organs that control LAP levels, is not well understood. METHODS We performed a retrospective study to evaluate serum LAP activities in 149,360 patients with 47 different diseases and 9,449 healthy individuals. The analysis was conducted using SPSS V2.6, RStudio V.1.3.1073, and libraries in Python 3.8. RESULTS Our research revealed that 21 of the 47 diseases studied showed increased median serum LAP activities, while 26 diseases were associated with significantly lower activities, especially those related to thrombosis. Furthermore, most diseases were found to have an increased risk of bleeding and thrombosis, indicated by higher Q25 and lower Q75 LAP activities compared to the control group. Receiver operating characteristic curve analysis confirmed the effectiveness of LAP activities as biomarkers for specific conditions like hepatic encephalopathy, liver cancer, pancreatitis, and pancreatic cancer. Diseases were categorized into clusters with similar bleeding or thrombotic tendencies through principal component analysis. CONCLUSION This study highlighted regulatory influence of the liver and pancreas on LAP levels. The established link between serum LAP concentrations and the risk of bleeding or thrombosis paved the way for the development of diagnostic and preventative approaches for various medical conditions.
Collapse
Affiliation(s)
- Sha Yu
- Department of Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meng Zhang
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yachong Guo
- Nanjing Drum Tower Hospital, Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Lijuan Zhang
- Systems Biology and Medicine Center for Complex Diseases, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Diagnosis, American Institute of Translational Medicine and Therapeutics, Missouri, United States
| |
Collapse
|
2
|
Curtiaud A, Iba T, Angles-Cano E, Meziani F, Helms J. Biomarkers of sepsis-induced coagulopathy: diagnostic insights and potential therapeutic implications. Ann Intensive Care 2025; 15:12. [PMID: 39821561 PMCID: PMC11739444 DOI: 10.1186/s13613-025-01434-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Diagnosing coagulopathy in septic patients remains challenging in intensive care. Disseminated intravascular coagulation (DIC) indeed presents with complex pathophysiology, complicating timely diagnosis. Epidemiological data indicate a significant prevalence of DIC in septic patients, with mortality rates up to 60%. Despite advances, current biomarker-based diagnostic tools often fail to provide early and accurate detection. This review evaluates the utility and limitations of traditional and emerging biomarkers for diagnosing sepsis-induced coagulopathy (SIC) and DIC. We also assess the effectiveness of anticoagulant therapy guided by biomarker-based diagnostic criteria.
Collapse
Affiliation(s)
- Anaïs Curtiaud
- Faculté de Médecine, Service de Médecine Intensive-Réanimation, Université de Strasbourg (UNISTRA), Hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, 1, place de l'Hôpital, Strasbourg, F-67091, cedex, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Toshiaki Iba
- Department of Emergency and Disaster Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eduardo Angles-Cano
- Innovative Therapies in Haemostasis, Université Paris Cité - INSERM U-1140, Paris, 75006, France
| | - Ferhat Meziani
- Faculté de Médecine, Service de Médecine Intensive-Réanimation, Université de Strasbourg (UNISTRA), Hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, 1, place de l'Hôpital, Strasbourg, F-67091, cedex, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France
| | - Julie Helms
- Faculté de Médecine, Service de Médecine Intensive-Réanimation, Université de Strasbourg (UNISTRA), Hôpitaux universitaires de Strasbourg, Nouvel Hôpital Civil, 1, place de l'Hôpital, Strasbourg, F-67091, cedex, France.
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), FMTS, Strasbourg, France.
| |
Collapse
|
3
|
Luo X, Zhang N, Liu Y, Du B, Wang X, Zhao T, Liu B, Zhao S, Qiu J, Wang G. Resolving the developmental mechanisms of cardiac microthrombosis of SARS-CoV-2 based on single-cell transcriptome analysis. SCIENCE CHINA. LIFE SCIENCES 2025; 68:103-115. [PMID: 39470924 DOI: 10.1007/s11427-023-2624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 11/01/2024]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) developed into a global health emergency. Systemic microthrombus caused by SARS-CoV-2 infection is a common complication in patients with COVID-19. Cardiac microthrombosis as a complication of SARS-CoV-2 infection is the primary cause of cardiac injury and death in patietns with severe COVID-19. In this study, we performed single-cell sequencing analysis of the right ventricular free wall tissue from healthy donors, patients who died during the hypercoagulable period of characteristic coagulation abnormality (CAC), and patients who died during the fibrinolytic period of CAC. We collected 61,187 cells enriched in 24 immune cell subsets and 13 cardiac-resident cell subsets. We found that in the course of SARS-CoV-2 infected heart microthrombus, MYO1EhighRASGEF1Bhighmonocyte-derived macrophages promoted hyperactivation of the immune system and initiated the extrinsic coagulation pathway by activating chemokines CCL3, CCL5. This series of events is the main cause of cardiac microthrombi following SARS-CoV-2 infection. In a SARS-CoV-2 infected heart microthrombus, excessive immune activation is accompanied by an increase in cellular iron content, which in turn promotes oxidative stress and intensifies intercellular competition. This induces cells to alter their metabolic environment, resulting in increased sugar uptake via the glycosaminoglycan synthesis pathway. In addition, high levels of reactive oxygen species generated by elevated iron levels promote increased endogenous malondialdehyde synthesis in a subpopulation of cardiac endothelial cells. This exacerbates endothelial cell dysfunction and exacerbates the coagulopathy process.
Collapse
Affiliation(s)
- Xizi Luo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
- College of Mathematics, Jilin University, Changchun, 130021, China
| | - Yuntao Liu
- Bioinformatic Lab, School of Mathematics, Shandong University, Jinan, 250100, China
| | - Beibei Du
- Department of Cardiology, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Xuan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
| | - Tianxu Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China
| | - Bingqiang Liu
- Bioinformatic Lab, School of Mathematics, Shandong University, Jinan, 250100, China
| | - Shishun Zhao
- College of Mathematics, Jilin University, Changchun, 130021, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Guoqing Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Basic Medicine, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Palarasah Y, Borg R, Bladbjerg EM, Pham STD, Mejldal A, Nielsen C, Pedersen EB, Jensen PB, Thiesson HC, Pilely K. The contact system in chronic kidney disease and hemodialysis - A cross-sectional study. Thromb Res 2025; 245:109229. [PMID: 39577039 DOI: 10.1016/j.thromres.2024.109229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND AND HYPOTHESIS The contact system (CAS) is a part of both the immune system and the coagulation system. The involvement of the CAS in chronic kidney disease (CKD) and hemodialysis (HD) has been documented, yet conflicting findings have hindered a comprehensive understanding. This study aimed to investigate whether CAS activation occurs in patients with chronic kidney failure undergoing HD compared with those undergoing peritoneal dialysis (PD), patients with CKD not receiving replacement therapy, or healthy controls and to assess the impact of HD on CAS from pre- to post-dialysis during a single session of HD. METHODS In this cross-sectional study, blood samples from HD patients (n = 106), PD patients (n = 40), CKD patients (n = 60), and healthy control subjects (n = 80) were analyzed. The levels of CAS components, including factor XII, prekallikrein, high-molecular-weight kininogen (HK), cleaved HK (cHK), and C1-inhibitor, and functional kallikrein generation were determined. Among HD patients, CAS measures were evaluated both pre- and post-dialysis. Linear regression models and linear mixed models were employed to analyze associations and changes. RESULTS HD patients had altered levels of prekallikrein, factor XII, and cHK compared with PD patients, CKD patients, and the healthy control group. Moreover, HD patients demonstrated increased levels of C1-inhibitor and reduced functional kallikrein generation, a pattern also observed in PD patients and, to a lesser degree, in CKD patients when compared with healthy controls. Notably, no CAS activation was detected during HD. CONCLUSIONS Impaired kidney function, especially in patients undergoing HD or PD, was associated with reduced functional kallikrein generation and altered levels of CAS components, implying continuous CAS activation in CKD. There was no indication of significant activation of factor XII-mediated CAS during HD. The role of CAS in CKD, independently of dialysis, should be addressed in future research.
Collapse
Affiliation(s)
- Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Unit for Thrombosis Research, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Rikke Borg
- Department of Medicine, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Else-Marie Bladbjerg
- Department of Regional Health Research, University of Southern Denmark, Esbjerg, Denmark; Department of Clinical Biochemistry, Unit for Thrombosis Research, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Stephanie Thuy Duong Pham
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Anna Mejldal
- Odense Patient Data Explorative Network (OPEN), Odense University Hospital, Odense, Denmark
| | - Christian Nielsen
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark
| | - Erik Bo Pedersen
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Per Bruno Jensen
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Helle Charlotte Thiesson
- Department of Nephrology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Katrine Pilely
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Nephrology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
5
|
He X, Zhao Y, Guang H, Chen K, She Z, Cao M, Bai M, Yang Y, Su M, Zhao W, Liu Y, Liu S, Sun H, Gao J. Qinghaienin, a novel anticoagulation protein from the hard tick Haemaphysalis qinghaiensis, inhibits the activation of factor XII by competing for anionic surfaces. Int J Biol Macromol 2024; 290:139120. [PMID: 39719234 DOI: 10.1016/j.ijbiomac.2024.139120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Salivary proteins of ticks can inhibit host hemostatic and inflammatory responses during the blood-sucking process of the parasites. A cDNA sequence, Hq021, was identified from a cDNA library of Haemaphysalis qinghaiensis. Hq021 encodes a mature protein containing 182 amino acids with a molecular mass of 20.5 kDa. The protein is rich in basic amino acids (lysine and arginine) at its C-terminus. Identification of no homologous proteins in databases suggested its novelty. A recombinant protein expressed with the cDNA in Escherichia coli could prolong the activated partial thromboplastin time (aPTT) of human plasma. We designated this basic tail-protein as Qinghaienin. Although Qinghaienin did not inhibit the amidolytic activities of some coagulation factors, it dose-dependently inhibited the generation of FXIIa, FXIa and kallikrein in plasma in the presence of silica-based aPTT reagent. By competing with FXII for the negatively-charged binding sites, Qinghaienin inhibited the activation of the zymogen and the coagulation processes. These findings suggest that Qinghaienin plays a critical role in both anticoagulation and anti-inflammatory processes during tick feeding and could serve as a potential candidate for the developing tick-derived anticoagulants.
Collapse
Affiliation(s)
- Xiaofei He
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China
| | - Yanan Zhao
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China
| | - Hui Guang
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Kaiting Chen
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Zhanfei She
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China
| | - Meina Cao
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Mengdie Bai
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China
| | - Yinran Yang
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Muya Su
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Wenbin Zhao
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China
| | - Yueqing Liu
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Siqian Liu
- Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China
| | - Hongwu Sun
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jinliang Gao
- Laboratory of Molecular Medicine, Ordos Central Hospital, Inner Mongolia Autonomous Region, Ordos 017000, China; Ordos Clinical Medical College, Inner Mongolia Medical University, Ordos 017000, China; Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014000, China.
| |
Collapse
|
6
|
Shi W, Feng D, Hu X, Wang C, Niu G, Zhao Z, Zhang H, Wang M, Wu Y. Lipoprotein(a) and High-Sensitivity C-Reactive Protein Compound the Risk of Hypoattenuating Leaflet Thickening After Transcatheter Aortic Valve Replacement. J Am Heart Assoc 2024; 13:e035597. [PMID: 39424417 DOI: 10.1161/jaha.124.035597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND The mechanism for hypoattenuating leaflet thickening (HALT) after transcatheter aortic valve replacement is still not well elucidated, and the role of Lp(a) (lipoprotein[a]) and hs-CRP (high-sensitivity C-reactive protein) has rarely been studied. This study sought to test the hypothesis that the risk of HALT is associated with an elevated level of Lp(a) or hs-CRP. METHODS AND RESULTS A total of 307 consecutive individuals who underwent a transcatheter aortic valve replacement procedure were included. All patients received their first postoperative computed tomography scans within 12 months, and raw data were analyzed on 3mensio software. HALT was defined as visually identified increased leaflet thickness with typical meniscal appearance and at least 2 different multiplanar reformation projections. Associations of Lp(a) or hs-CRP with the risk of HALT were evaluated using multivariable logistic regression analysis. The incidence of HALT within 12 months after transcatheter aortic valve replacement in this study was 36.2%, and the risk of HALT was associated with higher baseline Lp(a) (the multivariable adjusted odds ratio [OR] for every 10 mg/dL change was 1.18 [95% CI, 1.09-1.29]) and hs-CRP level (the multivariable adjusted OR for every 1 mg/L change was 1.08 [95% CI, 1.00-1.27]). Compared with individuals out of the top 25th percentile for both Lp(a) and hs-CRP, the multivariable adjusted OR for HALT was 4.74 (95% CI, 1.65-14.37) for the top 25th percentile. This result remained consistent after excluding patients receiving anticoagulant therapy. CONCLUSIONS The top 25th percentile of Lp(a) level (≥40 mg/dL) combined with the top 25th percentile of hs-CRP level (≥3.5 mg/L) conferred a 4.74-fold risk of HALT.
Collapse
Affiliation(s)
- Wence Shi
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Dejing Feng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Xiangming Hu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Can Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Guannan Niu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Zhenyan Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Hongliang Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Moyang Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| | - Yongjian Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease Chinese Academy of Medical Science and Peking Union Medical College Beijing China
| |
Collapse
|
7
|
Rezvani-Sharif A, Lioe H, Dower SK, Pelzing M, Panousis C, Harvie DJE, Muir IL. A mechanistic model of in vitro plasma activation to evaluate therapeutic kallikrein-kinin system inhibitors. PLoS Comput Biol 2024; 20:e1012552. [PMID: 39495806 PMCID: PMC11563367 DOI: 10.1371/journal.pcbi.1012552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/14/2024] [Accepted: 10/11/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND The kallikrein-kinin system (KKS) is a complex biochemical pathway that plays a crucial role in regulating several physiological processes, including inflammation, coagulation, and blood pressure. Dysregulation of the KKS has been associated with several pathological conditions such as hereditary angioedema (HAE), hypertension, and stroke. Developing an accurate quantitative model of the KKS may provide a better understanding of its role in health and disease and facilitate the rapid and targeted development of effective therapies for KKS-related disorders. OBJECTIVES Here, we present a novel, detailed mechanistic model of the plasma KKS, elucidating the processes of Factor XII (FXII) activation, the kallikrein feedback loop, cleavage of high molecular weight kininogen leading to bradykinin (BK) production, and the impact of inhibitors. METHODS The model incorporates both surface and solution-phase reactions of all proteins in the KKS, describing how binding site concentration affects the rate of surface reactions. The model was calibrated and validated using a variety of published and in-house experimental datasets, which encompass a range of dextran sulphate (DXS) concentrations to initiate contact activation and various KKS inhibitors to block bradykinin production. RESULTS Our mathematical model showed that a trace amount of activated FXII is required for subsequent FXII activation. The model also reveals a bell-shaped curve relationship between the activation of the KKS and the number of DXS surface binding sites. Simulations of BK generation in healthy and HAE plasma demonstrated the impact of C1 esterase inhibitor (C1inh) deficiency via increased peak BK levels and accelerated formation in HAE plasma. The efficacy of KKS inhibitors, such as CSL312, ecallantide, and C1inh, was also evaluated, with CSL312 showing the most potent inhibition of BK generation. CONCLUSIONS The present model represents a valuable framework for studying the intricate interactions within the plasma KKS and provides a better understanding of the mechanism of action of various KKS-targeted therapies.
Collapse
Affiliation(s)
| | - Hadi Lioe
- CSL Ltd, Bio21 Institute, Melbourne, Victoria, Australia
| | | | | | - Con Panousis
- CSL Ltd, Bio21 Institute, Melbourne, Victoria, Australia
| | - Dalton J. E. Harvie
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ineke L. Muir
- CSL Ltd, Bio21 Institute, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Qureshi Z, Altaf F, Jamil A, Siddique R, Shah S. Breaking boundaries: exploring recent advances in anticoagulation and thrombosis management: a comprehensive review. Ann Med Surg (Lond) 2024; 86:6585-6597. [PMID: 39525737 PMCID: PMC11543160 DOI: 10.1097/ms9.0000000000002589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024] Open
Abstract
Background Thromboembolic disorders globally contribute to morbidity and mortality, emphasizing adequate anticoagulation and thrombosis management. Therapeutic advances are essential in preventing complications like pulmonary embolism, stroke, and myocardial infarction. This review summarizes recent anticoagulation advances, current challenges, future directions, and novel anticoagulants and drug delivery systems on clinical outcomes. Methods This paper assesses the effectiveness and safety of new anticoagulants through a systematic review of recent clinical trials, meta-analyses, and guideline publications. Key studies, including PACIFIC-AF, RIVER, ENAVLE, ENVISAGE-TAVI AF, and ARCADIA, were analyzed to provide a perspective on therapeutic advancements. Results The review highlights key findings from vital clinical trials. Asundexian, in the PACIFIC-AF trial, demonstrated a 34% reduction in bleeding events compared to Apixaban. In the RIVER trial, Rivaroxaban reduced significant bleeding events by 20% compared to warfarin in patients with bioprosthetic mitral valves. In the ENAVLE trial, Edoxaban achieved a 3.7% decrease in thromboembolic events compared to warfarin without increasing significant bleeding rates. In the ENVISAGE-TAVI AF trial, edoxaban was noninferior to VKAs in preventing thromboembolic events but showed a slight increase in major bleeding events by 1.5%. Lastly, the ARCADIA trial highlighted that apixaban did not significantly reduce recurrent stroke risk compared to aspirin, with both treatments having an annualized stroke rate of 4.4%. Conclusion Advances in anticoagulant therapies and drug delivery systems aim to enhance patients' clinical outcomes for thromboembolic disorders. While recent trials show promising data, ongoing patient-specific responses and monitoring challenges require further research. Continuous innovation and investigation are essential to refine anticoagulation practices and tailor treatments.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, Connecticut, USA
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, USA
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre Watertown, New York, USA
| | | | | |
Collapse
|
9
|
Yang J, Li Z, Deng X, Li M, Li B, Thuku RC, Chen Q, Sun X, Lu Q, Fang M. Kallikrein inhibitor derived from immunoglobulin heavy chain junction region possesses anti-thromboinflammation potential. Pharmacol Res 2024; 209:107460. [PMID: 39393436 DOI: 10.1016/j.phrs.2024.107460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Influenza vaccination is associated with a reduced incidence of cardiovascular events, cardiovascular death, and all-cause mortality. However, the functional role of the associated immunoglobulin remains unclear. This study identified a specific influenza-related immunoglobulin heavy chain junction region sequence (Ser-Leu-Gly-Ala-Ser-Asp, SD6) that inhibited plasma kallikrein (PKa) activity to resist thromboinflammatory responses and stroke injury. PKa is considered an attractive therapeutic target for alleviating the complications of thrombophilia-induced inflammation. In vitro, SD6 prolonged plasma recalcification and activated partial thromboplastin time, with no effects on bleeding risk-related prothrombin time, indicating selective inhibition of the intrinsic coagulation pathway. Correspondingly, at doses ranging from 0.25 to 4 mg/kg, SD6 attenuated arterial and cortical venous thrombosis in FeCl3-induced and photochemically induced mice, without impacting hemorrhage risk, and further mitigated cerebral inflammatory injury in a mouse model of transient middle cerebral artery occlusion ischemic stroke. These findings suggest that SD6 may serve as a potential therapeutic agent for the treatment of thromboinflammatory conditions.
Collapse
Affiliation(s)
- Juan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China; Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Ziyu Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Deng
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Mengru Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Bin Li
- Yan'an Hospital of Kunming Medical University, No. 245 Renmin East Road, Kunming, Yunnan 650051, China
| | - Rebecca Caroline Thuku
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiang Sun
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Qiumin Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China
| | - Mingqian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan, 650201, P. R. China.
| |
Collapse
|
10
|
Park S, Park JK. Back to basics: the coagulation pathway. Blood Res 2024; 59:35. [PMID: 39466528 PMCID: PMC11519239 DOI: 10.1007/s44313-024-00040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
The classic coagulation cascade model of intrinsic and extrinsic coagulation pathways, i.e. contact activation pathway and tissue factor pathway, has been widely modified. The cascade can be categorized as follows: 1) initiation by tissue factor (TF), 2) amplification by the intrinsic tenase complex, and 3) propagation on activated platelets. TF-FVIIa forms an extrinsic tenase complex and activates FX to FXa and FIX to FIXa. FXa-FVa forms a prothrombinase complex that converts prothrombin into thrombin. At this initial stage of coagulation, only small amounts of thrombin are generated owing to the low circulating levels of FVa. The generated thrombin, although in minor quantities, is sufficient to prime the subsequent coagulation reactions. Platelets and in turn FV, FVIII, and FXI are activated. Subsequently, FVIIIa binds to FIXa to form the intrinsic tenase complex, which is aided by a cofactor, FVIIIa, and activates FX at a rate 50-times higher than that of the extrinsic tenase complex, thereby amplifying thrombin generation. Thrombin cleaves fibrinogen into one fibrin monomer and two fibrinopeptides. Fibrin monomers aggregate, crosslink, and branch into an insoluble fibrin network structure. The contact activation system is initiated by FXII, which is activated upon exposure to negatively charged surfaces. Coagulation is driven by FXIIa-mediated FXI cleavage. FXIa activates FIX, which forms an intrinsic tenase complex, eventually leading to thrombin formation. The contact activation system is considered to contribute to thrombosis but is not required for hemostasis in vivo.
Collapse
Affiliation(s)
- Seonyang Park
- Department of Internal Medicine, Inje University Haeundae Paik Hospital, 875 Haeundae-Ro, Haeundae-Gu, Busan, 48108, Korea.
| | - Joo Kyung Park
- Daisy Hill Hospital, 5 Hospital Road, Newry, BT35 8DR, UK
| |
Collapse
|
11
|
Shamanaev A, Litvak M, Ivanov I, Srivastava P, Sun MF, Dickeson SK, Kumar S, He TZ, Gailani D. Factor XII Structure-Function Relationships. Semin Thromb Hemost 2024; 50:937-952. [PMID: 37276883 PMCID: PMC10696136 DOI: 10.1055/s-0043-1769509] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ivan Ivanov
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Priyanka Srivastava
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mao-Fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
12
|
Witzdam L, White T, Rodriguez-Emmenegger C. Steps Toward Recapitulating Endothelium: A Perspective on the Next Generation of Hemocompatible Coatings. Macromol Biosci 2024; 24:e2400152. [PMID: 39072925 DOI: 10.1002/mabi.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Endothelium, the lining in this blood vessel, orchestrates three main critical functions such as protecting blood components, modulating of hemostasis by secreting various inhibitors, and directing clot digestion (fibrinolysis) by activating tissue plasminogen activator. No other surface can perform these tasks; thus, the contact of blood and blood-contacting medical devices inevitably leads to the activation of coagulation, often causing device failure, and thromboembolic complications. This perspective, first, discusses the biological mechanisms of activation of coagulation and highlights the efforts of advanced coatings to recapitulate one characteristic of endothelium, hereafter single functions of endothelium and noting necessity of the synergistic integration of its three main functions. Subsequently, it is emphasized that to overcome the challenges of blood compatibility an endothelium-mimicking system is needed, proposing a synergy of bottom-up synthetic biology, particularly synthetic cells, with passive- and bioactive surface coatings. Such integration holds promise for developing advanced biomaterials capable of recapitulating endothelial functions, thereby enhancing the hemocompatibility and performance of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Tom White
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Madrid, 28029, Spain
| |
Collapse
|
13
|
Lira AL, Kohs TC, Moellmer SA, Shatzel JJ, McCarty OJ, Puy C. Substrates, Cofactors, and Cellular Targets of Coagulation Factor XIa. Semin Thromb Hemost 2024; 50:962-969. [PMID: 36940715 PMCID: PMC11069399 DOI: 10.1055/s-0043-1764469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.
Collapse
Affiliation(s)
- André L. Lira
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Tia C.L. Kohs
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Samantha A. Moellmer
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Joseph J. Shatzel
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Owen J.T. McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Cristina Puy
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon
- Divison of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
14
|
Cohn DM, Renné T. Targeting factor XIIa for therapeutic interference with hereditary angioedema. J Intern Med 2024; 296:311-326. [PMID: 39331688 DOI: 10.1111/joim.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Hereditary angioedema (HAE) is a rare, potentially life-threatening genetic disorder characterized by recurrent attacks of swelling. Local vasodilation and vascular leakage are stimulated by the vasoactive peptide bradykinin, which is excessively produced due to dysregulation of the activated factor XII (FXIIa)-driven kallikrein-kinin system. There is a need for novel treatments for HAE that provide greater efficacy, improved quality of life, minimal adverse effects, and reduced treatment burden over current first-line therapies. FXIIa is emerging as an attractive therapeutic target for interference with HAE attacks. In this review, we draw on preclinical, experimental animal, and in vitro studies, providing an overview on targeting FXIIa as the basis for pharmacologic interference in HAE. We highlight that there is a range of FXIIa inhibitors in development for different therapeutic areas. Of these, garadacimab, an FXIIa-targeted inhibitory monoclonal antibody, is the most advanced and has shown potential as a novel long-term prophylactic treatment for patients with HAE in clinical trials. The evidence from these trials is summarized and discussed, and we propose areas for future research where targeting FXIIa may have therapeutic potential beyond HAE.
Collapse
Affiliation(s)
- Danny M Cohn
- University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thomas Renné
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
15
|
Vappala S, Smith SA, Kizhakkedathu JN, Morrissey JH. Inhibitors of Polyphosphate and Neutrophil Extracellular Traps. Semin Thromb Hemost 2024; 50:970-977. [PMID: 37192652 PMCID: PMC10651799 DOI: 10.1055/s-0043-1768936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The contact pathway of blood clotting has received intense interest in recent years as studies have linked it to thrombosis, inflammation, and innate immunity. Because the contact pathway plays little to no role in normal hemostasis, it has emerged as a potential target for safer thromboprotection, relative to currently approved antithrombotic drugs which all target the final common pathway of blood clotting. Research since the mid-2000s has identified polyphosphate, DNA, and RNA as important triggers of the contact pathway with roles in thrombosis, although these molecules also modulate blood clotting and inflammation via mechanisms other than the contact pathway of the clotting cascade. The most significant source of extracellular DNA in many disease settings is in the form of neutrophil extracellular traps (NETs), which have been shown to contribute to incidence and severity of thrombosis. This review summarizes known roles of extracellular polyphosphate and nucleic acids in thrombosis, with an emphasis on novel agents under current development that target the prothrombotic activities of polyphosphate and NETs.
Collapse
Affiliation(s)
- Sreeparna Vappala
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie A. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine; and Centre for Blood Research, Life Science Institute; University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry; and School of Biomedical Engineering; University of British Columbia, Vancouver, British Columbia, Canada
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
16
|
Cha LN, Yang J, Gao JA, Lu X, Chang XL, Thuku RC, Liu Q, Lu QM, Li DS, Lai R, Fang MQ. Bat-derived oligopeptide LE6 inhibits the contact-kinin pathway and harbors anti-thromboinflammation and stroke potential. Zool Res 2024; 45:1001-1012. [PMID: 39147715 PMCID: PMC11491786 DOI: 10.24272/j.issn.2095-8137.2023.372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/30/2024] [Indexed: 08/17/2024] Open
Abstract
Thrombosis and inflammation are primary contributors to the onset and progression of ischemic stroke. The contact-kinin pathway, initiated by plasma kallikrein (PK) and activated factor XII (FXIIa), functions bidirectionally with the coagulation and inflammation cascades, providing a novel target for therapeutic drug development in ischemic stroke. In this study, we identified a bat-derived oligopeptide from Myotis myotis (Borkhausen, 1797), designated LE6 (Leu-Ser-Glu-Glu-Pro-Glu, 702 Da), with considerable potential in stroke therapy due to its effects on the contact kinin pathway. Notably, LE6 demonstrated significant inhibitory effects on PK and FXIIa, with inhibition constants of 43.97 μmol/L and 6.37 μmol/L, respectively. In vitro analyses revealed that LE6 prolonged plasma recalcification time and activated partial thromboplastin time. In murine models, LE6 effectively inhibited carrageenan-induced mouse tail thrombosis, FeCl 3-induced carotid artery thrombosis, and photochemically induced intracerebral thrombosis. Furthermore, LE6 significantly decreased inflammation and stroke injury in transient middle cerebral artery occlusion models. Notably, the low toxicity, hemolytic activity, and bleeding risk of LE6, along with its synthetic simplicity, underscore its clinical applicability. In conclusion, as an inhibitor of FXIIa and PK, LE6 offers potential therapeutic benefits in stroke treatment by mitigating inflammation and preventing thrombus formation.
Collapse
Affiliation(s)
- Li-Na Cha
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Juan Yang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Jin-Ai Gao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Xin Lu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xiao-Long Chang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Rebecca Caroline Thuku
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qi Liu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Qiu-Min Lu
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Dong-Sheng Li
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Ming-Qian Fang
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| |
Collapse
|
17
|
Sexton D, Faucette R, Rivera-Hernandez M, Kenniston JA, Papaioannou N, Cosic J, Kopacz K, Salmon G, Beauchemin C, Juethner S, Yeung D. A novel assay of excess plasma kallikrein-kinin system activation in hereditary angioedema. FRONTIERS IN ALLERGY 2024; 5:1436855. [PMID: 39391687 PMCID: PMC11464748 DOI: 10.3389/falgy.2024.1436855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/20/2024] [Indexed: 10/12/2024] Open
Abstract
Background Cleaved high-molecular-weight kininogen (HKa) is a disease state biomarker of kallikrein-kinin system (KKS) activation in patients with hereditary angioedema due to C1 inhibitor deficiency (HAE-C1INH), the endogenous inhibitor of plasma kallikrein (PKa). Objective Develop an HKa-specific enzyme-linked immunosorbent assay (ELISA) to monitor KKS activation in the plasma of HAE-C1INH patients. Methods A novel HKa-specific antibody was discovered by antibody phage display and used as a capture reagent to develop an HKa-specific ELISA. Results Specific HKa detection following KKS activation was observed in plasma from healthy controls but not in prekallikrein-, high-molecular-weight kininogen-, or coagulation factor XII (FXII)-deficient plasma. HKa levels in plasma collected from HAE-C1INH patients in a disease quiescent state were higher than in plasma from healthy controls and increased further in HAE-C1INH plasma collected during an angioedema attack. The specificity of the assay for PKa-mediated HKa generation in minimally diluted plasma activated with exogenous FXIIa was demonstrated using a specific monoclonal antibody inhibitor (lanadelumab, IC50 = 0.044 µM). Conclusions An ELISA was developed for the specific and quantitative detection of HKa in human plasma to support HAE-C1INH drug development. Improved quantification of the HKa biomarker may facilitate further pathophysiologic insight into HAE-C1INH and other diseases mediated by a dysregulated KKS and may enable the design of highly potent inhibitors targeting this pathway.
Collapse
Affiliation(s)
- Dan Sexton
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Ryan Faucette
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Jon A. Kenniston
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | | | - Janja Cosic
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Kris Kopacz
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| | - Gary Salmon
- Charles River Laboratories, Harlow, United Kingdom
| | | | - Salomé Juethner
- Takeda Pharmaceuticals USA, Inc., Lexington, MA, United States
| | - Dave Yeung
- Takeda Development Center Americas Inc., Cambridge, MA, United States
| |
Collapse
|
18
|
Silbak S, Schmaier AH. The enigma of factor XII surface binding. J Thromb Haemost 2024; 22:2422-2425. [PMID: 39174229 DOI: 10.1016/j.jtha.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024]
Affiliation(s)
- Sadiq Silbak
- Departments of Medicine and Pathology, Division of Hematology and Cell Therapy, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alvin H Schmaier
- Departments of Medicine and Pathology, Division of Hematology and Cell Therapy, Case Western Reserve University, Cleveland, Ohio, USA; Division of Hematology and Cell Therapy, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.
| |
Collapse
|
19
|
Dickeson SK, Kumar S, Sun MF, Litvak M, He TZ, Phillips DR, Roberts ET, Feener EP, Law RHP, Gailani D. A mechanism for hereditary angioedema caused by a methionine-379-to-lysine substitution in kininogens. Blood 2024; 143:641-650. [PMID: 37992228 PMCID: PMC10873535 DOI: 10.1182/blood.2023022254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT Hereditary angioedema (HAE) is associated with episodic kinin-induced swelling of the skin and mucosal membranes. Most patients with HAE have low plasma C1-inhibitor activity, leading to increased generation of the protease plasma kallikrein (PKa) and excessive release of the nanopeptide bradykinin from high-molecular-weight kininogen (HK). However, disease-causing mutations in at least 10% of patients with HAE appear to involve genes for proteins other than C1-inhibitor. A point mutation in the Kng1 gene encoding HK and low-molecular weight kininogen (LK) was identified recently in a family with HAE. The mutation changes a methionine (Met379) to lysine (Lys379) in both proteins. Met379 is adjacent to the Lys380-Arg381 cleavage site at the N-terminus of the bradykinin peptide. Recombinant wild-type (Met379) and variant (Lys379) versions of HK and LK were expressed in HEK293 cells. PKa-catalyzed kinin release from HK and LK was not affected by the Lys379 substitutions. However, kinin release from HK-Lys379 and LK-Lys379 catalyzed by the fibrinolytic protease plasmin was substantially greater than from wild-type HK-Met379 and LK-Met379. Increased kinin release was evident when fibrinolysis was induced in plasma containing HK-Lys379 or LK-Lys379 compared with plasma containing wild-type HK or LK. Mass spectrometry revealed that the kinin released from wild-type and variant kininogens by PKa is bradykinin. Plasmin also released bradykinin from wild-type kininogens but cleaved HK-Lys379 and LK-Lys379 after Lys379 rather than Lys380, releasing the decapeptide Lys-bradykinin (kallidin). The Met379Lys substitutions make HK and LK better plasmin substrates, reinforcing the relationship between fibrinolysis and kinin generation.
Collapse
Affiliation(s)
- S. Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Sunil Kumar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Mao-fu Sun
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Tracey Z. He
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | | | | | | | - Ruby H. P. Law
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
20
|
Coelho SVA, Augusto FM, de Arruda LB. Potential Pathways and Pathophysiological Implications of Viral Infection-Driven Activation of Kallikrein-Kinin System (KKS). Viruses 2024; 16:245. [PMID: 38400022 PMCID: PMC10892958 DOI: 10.3390/v16020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Microcirculatory and coagulation disturbances commonly occur as pathological manifestations of systemic viral infections. Research exploring the role of the kallikrein-kinin system (KKS) in flavivirus infections has recently linked microvascular dysfunctions to bradykinin (BK)-induced signaling of B2R, a G protein-coupled receptor (GPCR) constitutively expressed by endothelial cells. The relevance of KKS activation as an innate response to viral infections has gained increasing attention, particularly after the reports regarding thrombogenic events during COVID-19. BK receptor (B2R and B1R) signal transduction results in vascular permeability, edema formation, angiogenesis, and pain. Recent findings unveiling the role of KKS in viral pathogenesis include evidence of increased activation of KKS with elevated levels of BK and its metabolites in both intravascular and tissue milieu, as well as reports demonstrating that virus replication stimulates BKR expression. In this review, we will discuss the mechanisms triggered by virus replication and by virus-induced inflammatory responses that may stimulate KKS. We also explore how KKS activation and BK signaling may impact virus pathogenesis and further discuss the potential therapeutic application of BKR antagonists in the treatment of hemorrhagic and respiratory diseases.
Collapse
Affiliation(s)
- Sharton Vinícius Antunes Coelho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | | | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
21
|
Bartlett R, Arachichilage DJ, Chitlur M, Hui SKR, Neunert C, Doyle A, Retter A, Hunt BJ, Lim HS, Saini A, Renné T, Kostousov V, Teruya J. The History of Extracorporeal Membrane Oxygenation and the Development of Extracorporeal Membrane Oxygenation Anticoagulation. Semin Thromb Hemost 2024; 50:81-90. [PMID: 36750217 DOI: 10.1055/s-0043-1761488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) was first started for humans in early 1970s by Robert Bartlett. Since its inception, there have been numerous challenges with extracorporeal circulation, such as coagulation and platelet activation, followed by consumption of coagulation factors and platelets, and biocompatibility of tubing, pump, and oxygenator. Unfractionated heparin (heparin hereafter) has historically been the defacto anticoagulant until recently. Also, coagulation monitoring was mainly based on bedside activated clotting time and activated partial thromboplastin time. In the past 50 years, the technology of ECMO has advanced tremendously, and thus, the survival rate has improved significantly. The indication for ECMO has also expanded. Among these are clinical conditions such as postcardiopulmonary bypass, sepsis, ECMO cardiopulmonary resuscitation, and even severe coronavirus disease 2019 (COVID-19). Not surprisingly, the number of ECMO cases has increased according to the Extracorporeal Life Support Organization Registry and prolonged ECMO support has become more prevalent. It is not uncommon for patients with COVID-19 to be on ECMO support for more than 1 year until recovery or lung transplant. With that being said, complications of bleeding, thrombosis, clot formation in the circuit, and intravascular hemolysis still remain and continue to be major challenges. Here, several clinical ECMO experts, including the "Father of ECMO"-Dr. Robert Bartlett, describe the history and advances of ECMO.
Collapse
Affiliation(s)
- Robert Bartlett
- Department of Surgery, University of Michigan, Ann Arbor, Michigan
| | - Deepa J Arachichilage
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
- Department of Haematology, Imperial College, Healthcare NHS Trust, London, United Kingdom
| | - Meera Chitlur
- Division of Hematology/Oncology, Central Michigan University School of Medicine, Children's Hospital of Michigan, Michigan
| | - Shiu-Ki Rocky Hui
- Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Cindy Neunert
- Columbia University Irving Medical Center, New York, New York
| | | | | | | | - Hoong Sern Lim
- University Hospitals Birmingham NHS Foundation Trust, United Kingdom
| | - Arun Saini
- Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Vadim Kostousov
- Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Jun Teruya
- Department of Pathology & Immunology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
22
|
Witzdam L, Vosberg B, Große-Berkenbusch K, Stoppelkamp S, Wendel HP, Rodriguez-Emmenegger C. Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting. Macromol Biosci 2024; 24:e2300321. [PMID: 37742317 DOI: 10.1002/mabi.202300321] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.
Collapse
Affiliation(s)
- Lena Witzdam
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Berlind Vosberg
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Katharina Große-Berkenbusch
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Sandra Stoppelkamp
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Hans Peter Wendel
- Clinic for Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstr, 7/1, 72076, Tuebingen, Germany
| | - Cesar Rodriguez-Emmenegger
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, Barcelona, 08028, Spain
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine, The Institute of Health Carlos III, Barcelona, Madrid, 28029, Spain
| |
Collapse
|
23
|
Yao Y, Kang H, Cheng Y, Su X, Wang B. Inflammatory Progression in Patients Undergoing Extracorporeal Membrane Oxygenation. Curr Mol Med 2024; 24:844-855. [PMID: 37340745 DOI: 10.2174/1566524023666230619102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 06/22/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is identified as a novel therapeutic strategy that offers short-term support to the metabolism of the heart and lungs in humans. Recently, the clinical centers, which provide ECMO has increased rapidly worldwide. The indications for the use of ECMO in daily clinical practice were broadened dynamically. However, even with the widespread adoption of ECMO, it still remains significant morbidity and mortality, and the underlying mechanisms are still not elucidated. Notably, one of the vital complications during ECMO was proposed as the inflammatory progression within the extracorporeal circulation. via the development of inflammatory response, patients with ECMO may further suffer from systemic inflammatory response syndrome (SIRS), posing serious risks to human health. Recently, growing evidence confirmed that through exposure of blood into the ECMO circuit could lead to the stimulation of the immune system which also facilitated the inflammatory response and systemic impaired. In the current review, the pathological development of inflammatory progression in patients with ECMO is well-listed. Furthermore, the relationship between immune-related activation and the development of inflammation is also summarized, which may further help us to decide the therapeutic strategies in daily clinical practice.
Collapse
Affiliation(s)
- Yan'er Yao
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Huiyuan Kang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Ye Cheng
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Xin Su
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Bin Wang
- Department of Cardiology, the Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
24
|
Pagán-Escribano J, Corral J, Miñano A, Padilla J, Roldán V, Hernández-Vidal MJ, Lozano J, de la Morena-Barrio I, Vicente V, Lozano ML, Herranz MT, de la Morena-Barrio ME. Factor XI in Carriers of Antiphospholipid Antibodies: Elevated Levels Associated with Symptomatic Thrombotic Cases, While Low Levels Linked to Asymptomatic Cases. Int J Mol Sci 2023; 24:16270. [PMID: 38003459 PMCID: PMC10670960 DOI: 10.3390/ijms242216270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antiphospholipid syndrome (APS) is a thromboinflammatory disorder caused by circulating antiphospholipid autoantibodies (aPL) and characterized by an increased risk of thrombotic events. The pathogenic mechanisms of these antibodies are complex and not fully understood, but disturbances in coagulation and fibrinolysis have been proposed to contribute to the thrombophilic state. This study aims to evaluate the role of an emerging hemostatic molecule, FXI, in the thrombotic risk of patients with aPL. Cross-sectional and observational study of 194 consecutive and unrelated cases with aPL recruited in a single center: 82 asymptomatic (AaPL) and 112 with primary antiphospholipid syndrome (APS). Clinical and epidemiological variables were collected. The profile of aPL was determined. Plasma FXI was evaluated by Western blotting and two coagulation assays (FXI:C). In cases with low FXI, molecular analysis of the F11 gene was performed. FXI:C levels were significantly higher in patients with APS than in patients with AaPL (122.8 ± 33.4 vs. 104.5 ± 27.5; p < 0.001). Multivariate analysis showed a significant association between symptomatic patients with aPL (APS) and high FXI (>150%) (OR = 11.57; 95% CI: 1.47-90.96; p = 0.020). In contrast, low FXI (<70%), mostly caused by inhibitors, was less frequent in the group of patients with APS compared to AaPL (OR = 0.17; 95%CI: 0.36-0.86; p = 0.032). This study suggests that FXI levels may play a causal role in the prothrombotic state induced by aPLs and holds the promise of complementary treatments in APS patients by targeting FXI.
Collapse
Affiliation(s)
- Javier Pagán-Escribano
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | - Javier Corral
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - Antonia Miñano
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - José Padilla
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - Vanessa Roldán
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - María Julia Hernández-Vidal
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | - Jesús Lozano
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | | | - Vicente Vicente
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - María Luisa Lozano
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| | - María Teresa Herranz
- Servicio de Medicina Interna, Unidad de Enfermedad Tromboembólica, Hospital General Universitario José María Morales Meseguer, 30008 Murcia, Spain; (J.P.-E.); (M.J.H.-V.); (J.L.)
| | - María Eugenia de la Morena-Barrio
- Servicio de Hematología Hospital General Universitario José María Morales Meseguer, Centro Regional de Hemodonación, Universidad de Murcia, IMIB-Pascual Parrilla, CIBERER-ISCIII, CEI Campus Mare Nostrum, 30003 Murcia, Spain; (J.C.); (A.M.); (J.P.); (V.R.); (V.V.); (M.L.L.)
| |
Collapse
|
25
|
Lenhart D, Tischhöfer MT, Gruber R, Maag K, Reiter C, Alban S. Chemical and biological differences between original and mimetic pentosan polysulfates. Carbohydr Polym 2023; 319:121201. [PMID: 37567725 DOI: 10.1016/j.carbpol.2023.121201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/22/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
Pentosan polysulfate sodium (PPS) is a semi-synthetic, heparin-like polysaccharide with manifold therapeutic actions. It is approved for treatment of bladder pain syndrome / interstitial cystitis in humans and treatment of musculoskeletal diseases in animals. PPS is produced by a complex procedure using beech wood as starting material. It consists of a mixture of sulfated glucuronoxylans, whose structural composition cannot be fully characterized by physicochemical analysis. The question arises whether PPS follow-on products are identical with the original and thus meet the requirement for generic drug application. The aim of this study was to investigate whether commercially available PPS products differ in physicochemical characteristics and biological effects from the original. Ten PPS preparations from different manufactures were analyzed using orthogonal analytical techniques including, inter alia, size exclusion chromatography with triple detection, nuclear magnetic resonance spectroscopy, and high-resolution mid-infrared spectroscopy in aqueous solution with chemometric evaluation. For functional analysis, we measured the plasma kallikrein generation in human plasma and FXII activation. The study revealed significant structural and biological differences between PPS from different sources. Therefore, follow-on products cannot be considered identical but at best similar to original PPS. However, their similar efficacy and safety have still to be proven by comprehensive studies.
Collapse
Affiliation(s)
- Dominik Lenhart
- bene pharmaChem GmbH & Co.KG, Bayerwaldstr. 7-9, 82538 Geretsried, Germany
| | | | - Rudolf Gruber
- bene pharmaChem GmbH & Co.KG, Bayerwaldstr. 7-9, 82538 Geretsried, Germany
| | - Klaus Maag
- bene pharmaChem GmbH & Co.KG, Bayerwaldstr. 7-9, 82538 Geretsried, Germany
| | - Christian Reiter
- Paradigm Biopharmaceuticals, Level 15, 500 Collins St, Vic 3000, Melbourne, Australia
| | - Susanne Alban
- Pharmaceutical Institute, Kiel University, Gutenbergstraße 76, 24118 Kiel, Germany.
| |
Collapse
|
26
|
Santagata D, Donadini MP, Ageno W. Factor XI inhibitors for the prevention of cardiovascular disease: A new therapeutic approach on the horizon? Blood Rev 2023; 62:101119. [PMID: 37580207 DOI: 10.1016/j.blre.2023.101119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Anticoagulant drugs that are currently used to prevent and/or treat thrombosis have some limitations that hinder their ability to meet specific clinical requirements. While these drugs effectively reduce the rates of thrombotic events, they simultaneously increase the risk of bleeding. Moreover, their risk-to-benefit balance is problematic in some patients, such as those with severe chronic kidney disease or those at high bleeding risk. A novel anticoagulation method, FXI inhibition has emerged as a promising alternative. It demonstrates a strong rationale for the prevention and treatment of venous thromboembolism and the potential fulfillment of unmet clinical needs in the cardiovascular field. A number of FXI inhibitors are currently undergoing clinical investigation. The objective of this review is to provide an overview of early results of research on FXI inhibitors in the cardiovascular setting, offering valuable insights into their potential role in shaping the future of anticoagulation.
Collapse
Affiliation(s)
- D Santagata
- Research Center on Thromboembolic Diseases and Antithrombotic Therapies, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - M P Donadini
- Research Center on Thromboembolic Diseases and Antithrombotic Therapies, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| | - W Ageno
- Research Center on Thromboembolic Diseases and Antithrombotic Therapies, Department of Medicine and Surgery, University of Insubria, Varese, Italy.
| |
Collapse
|
27
|
Engelen MM, Verhamme P, Vanassche T. Clotting of the Extracorporeal Circuit in Hemodialysis: Beyond Contact-Activated Coagulation. Semin Nephrol 2023; 43:151473. [PMID: 38233291 DOI: 10.1016/j.semnephrol.2023.151473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Thrombotic complications in patients with end-stage kidney disease are frequent. While being a lifesaving treatment for these patients, hemodialysis introduces a thromboinflammatory environment. Additionally, the extracorporeal hemodialysis circuit itself is prone to clotting because of an interaction between different activation mechanisms of the coagulation system, platelets, and the immune system. Anticoagulation of the patient and the machine is frequently complicated by bleeding. We discuss the factors important in this balancing act and touch on potential strategies that are on the horizon to target thromboinflammation.
Collapse
Affiliation(s)
- Matthias M Engelen
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium.
| | - Peter Verhamme
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Lim B, Jang MJ, Oh SM, No JG, Lee J, Kim SE, Ock SA, Yun IJ, Kim J, Chee HK, Kim WS, Kang HJ, Cho K, Oh KB, Kim JM. Comparative transcriptome analysis between long- and short-term survival after pig-to-monkey cardiac xenotransplantation reveals differential heart failure development. Anim Cells Syst (Seoul) 2023; 27:234-248. [PMID: 37808548 PMCID: PMC10552608 DOI: 10.1080/19768354.2023.2265150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiac xenotransplantation is the potential treatment for end-stage heart failure, but the allogenic organ supply needs to catch up to clinical demand. Therefore, genetically-modified porcine heart xenotransplantation could be a potential alternative. So far, pig-to-monkey heart xenografts have been studied using multi-transgenic pigs, indicating various survival periods. However, functional mechanisms based on survival period-related gene expression are unclear. This study aimed to identify the differential mechanisms between pig-to-monkey post-xenotransplantation long- and short-term survivals. Heterotopic abdominal transplantation was performed using a donor CD46-expressing GTKO pig and a recipient cynomolgus monkey. RNA-seq was performed using samples from POD60 XH from monkey and NH from age-matched pigs, D35 and D95. Gene-annotated DEGs for POD60 XH were compared with those for POD9 XH (Park et al. 2021). DEGs were identified by comparing gene expression levels in POD60 XH versus either D35 or D95 NH. 1,804 and 1,655 DEGs were identified in POD60 XH versus D35 NH and POD60 XH versus D95 NH, respectively. Overlapped 1,148 DEGs were annotated and compared with 1,348 DEGs for POD9 XH. Transcriptomic features for heart failure and inhibition of T cell activation were observed in both long (POD60)- and short (POD9)-term survived monkeys. Only short-term survived monkey showed heart remodeling and regeneration features, while long-term survived monkey indicated multi-organ failure by neural and hormonal signaling as well as suppression of B cell activation. Our results reveal differential heart failure development and survival at the transcriptome level and suggest candidate genes for specific signals to control adverse cardiac xenotransplantation effects.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Min-Jae Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seung-Mi Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jin Gu No
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang Eun Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Sun A. Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Ik Jin Yun
- Departments of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Junseok Kim
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hyun Keun Chee
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Wan Seop Kim
- Departments of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Kahee Cho
- Primate Organ Transplantation Centre, Genia Inc., Seongnam, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
29
|
Malik RA, Liao P, Zhou J, Hussain R, Fredenburgh JC, Hettrick L, Revenko AS, Weitz JI. Histidine-rich glycoprotein attenuates catheter thrombosis. Blood Adv 2023; 7:5651-5660. [PMID: 37042966 PMCID: PMC10546346 DOI: 10.1182/bloodadvances.2022009236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/13/2023] Open
Abstract
Factor XII (FXII) knockdown attenuates catheter thrombosis in rabbits. Because histidine-rich glycoprotein (HRG) modulates FXIIa activity, we hypothesized that HRG depletion would promote catheter thrombosis. To test this, rabbits were given either antisense oligonucleotides (ASOs) against HRG or FXII, a control ASO, or saline. The activated partial thromboplastin time (aPTT), prothrombin time (PT), and catheter-induced thrombin generation were determined in blood collected before and after treatment. Compared with the controls, the HRG- and FXII-directed ASOs reduced hepatic messenger RNA and plasma levels of HRG and FXII, respectively, by >90%. Although HRG knockdown shortened the aPTT by 2.5 fold, FXII knockdown prolonged it by fourfold; neither of the ASOs affected the PT. Catheter segments shortened the lag time and increased peak thrombin in the plasma from control rabbits; effects were significantly enhanced and attenuated in the plasma from rabbits given the HRG- and FXII-directed ASOs, respectively. Catheters were then inserted into the right external jugular vein of the rabbits, and the time for catheter occlusion was determined. The catheter occlusion times with the control ASO or saline were 62 ± 8 minutes and 60 ± 11 minutes, respectively. The occlusion time was significantly reduced to 34 ± 9 minutes, with HRG knockdown and significantly prolonged to 128 ± 19 minutes with FXII knockdown. HRG levels are decreased with sepsis or cancer, and such patients are prone to catheter thrombosis. Because HRG modulates catheter thrombosis, our findings suggest that HRG supplementation may prevent this problem.
Collapse
Affiliation(s)
- Rida A. Malik
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
| | - Peng Liao
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ji Zhou
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Rawaa Hussain
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - James C. Fredenburgh
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Lisa Hettrick
- Department of Pulmonary and Oncology Drug Discovery, Ionis Pharmaceuticals Inc, Carlsbad, CA
| | - Alexey S. Revenko
- Department of Pulmonary and Oncology Drug Discovery, Ionis Pharmaceuticals Inc, Carlsbad, CA
| | - Jeffrey I. Weitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, ON, Canada
- Department of Medical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Nepal A, Tran HD, Nguyen NT, Ta HT. Advances in haemostatic sponges: Characteristics and the underlying mechanisms for rapid haemostasis. Bioact Mater 2023; 27:231-256. [PMID: 37122895 PMCID: PMC10130630 DOI: 10.1016/j.bioactmat.2023.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023] Open
Abstract
In traumatized patients, the primary cause of mortality is uncontrollable continuous bleeding and unexpected intraoperative bleeding which is likely to increase the risk of complications and surgical failure. High expansion sponges are effective clinical practice for the treatment of wound bleeding (irregular/deep/narrow) that are caused by capillaries, veins and even arterioles as they possess a high liquid absorption ratio so can absorb blood platelets easily in comparison with traditional haemostasis treatments, which involve compression, ligation, or electrical coagulation etc. When in contact with blood, haemostatic sponges can cause platelet adhesion, aggregation, and thrombosis, preventing blood from flowing out from wounds, triggering the release of coagulation factors, causing the blood to form a stable polymerized fibre protein, forming blood clots, and achieving the goal of wound bleeding control. Haemostatic sponges are found in a variety of shapes and sizes. The aim of this review is to facilitate an overview of recent research around haemostatic sponge materials, products, and technology. This paper reviews the synthesis, properties, and characteristics of haemostatic sponges, together with the haemostasis mechanisms of haemostatic sponges (composite materials), such as chitosan, cellulose, gelatin, starch, graphene oxide, hyaluronic acid, alginate, polyethylene glycol, silk fibroin, synthetic polymers silver nanoparticles, zinc oxide nanoparticles, mesoporous silica nanoparticles, and silica nanoparticles. Also, this paper reviews commercial sponges and their properties. In addition to this, we discuss various in-vitro/in-vivo approaches for the evaluation of the effect of sponges on haemostasis.
Collapse
Affiliation(s)
- Akriti Nepal
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Huong D.N. Tran
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- Queensland Micro-and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
- Bioscience Discipline, School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Corresponding author. Bioscience Department, School of Environment and Science, Griffith University, Nathan Campus, Brisbane, QLD, 4111, Australia..
| |
Collapse
|
31
|
Mishra L, Lee D, Ho KM. Incidence of factor XII deficiency in critically ill patients with a prolonged activated partial thromboplastin time: a prospective observational study. Blood Coagul Fibrinolysis 2023; 34:364-369. [PMID: 37395184 DOI: 10.1097/mbc.0000000000001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Limited data is available on factor XII deficiency in critically ill patients with prolonged activated partial thromboplastin time (aPTT). The association of factor XII deficiency with an increased risk of thromboembolism is unclear. This prospective observational study assessed the incidence of factor XII deficiency among critically ill patients with prolonged aPTT (>40 s), whether factor XII deficiency manifesting as prolonged aPTT was associated with an increased risk of thromboembolism, and clotting time on a viscoelastic (ROTEM) test was useful to predict factor XII deficiency. Of the 40 included patients, 48% [95% confidence interval (CI) 33-63) had a factor XII deficiency (mean ± standard deviation of factor XII level of all patients: 54% ± 29%). Factor XII levels were not significantly correlated with the measured aPTT ( r = -0.163, P = 0.315). Factor XII deficiency was significantly more common in patients who were less critically ill ( P = 0.027), but it was not significantly related to Disseminated Intravascular Coagulation scores ( P = 0.567). The incidence of symptomatic venous thromboembolism ( P = 0.246), allogeneic blood transfusion ( P = 0.816), and hospital mortality ( P = 0.201) were not significantly different between those with and without factor XII deficiency. The clotting time on the viscoelastic test was not predictive of factor XII deficiency (area under the receiver-operating characteristic = 0.605, P = 0.264). Factor XII deficiency was common in critically ill patients with a prolonged aPTT. There was no association between factor XII deficiency and risk of thromboembolism. The clotting time on ROTEM was not predictive of the presence of factor XII deficiency.
Collapse
Affiliation(s)
- Lipi Mishra
- Medical School, University of Western Australia, and School of Veterinary & Life Sciences, Murdoch University, Intensive Care Unit, Royal Perth Hospital, Western Australia, Australia
| | | | | |
Collapse
|
32
|
Lodge S, Lawler NG, Gray N, Masuda R, Nitschke P, Whiley L, Bong SH, Yeap BB, Dwivedi G, Spraul M, Schaefer H, Gil-Redondo R, Embade N, Millet O, Holmes E, Wist J, Nicholson JK. Integrative Plasma Metabolic and Lipidomic Modelling of SARS-CoV-2 Infection in Relation to Clinical Severity and Early Mortality Prediction. Int J Mol Sci 2023; 24:11614. [PMID: 37511373 PMCID: PMC10380980 DOI: 10.3390/ijms241411614] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
An integrative multi-modal metabolic phenotyping model was developed to assess the systemic plasma sequelae of SARS-CoV-2 (rRT-PCR positive) induced COVID-19 disease in patients with different respiratory severity levels. Plasma samples from 306 unvaccinated COVID-19 patients were collected in 2020 and classified into four levels of severity ranging from mild symptoms to severe ventilated cases. These samples were investigated using a combination of quantitative Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) platforms to give broad lipoprotein, lipidomic and amino acid, tryptophan-kynurenine pathway, and biogenic amine pathway coverage. All platforms revealed highly significant differences in metabolite patterns between patients and controls (n = 89) that had been collected prior to the COVID-19 pandemic. The total number of significant metabolites increased with severity with 344 out of the 1034 quantitative variables being common to all severity classes. Metabolic signatures showed a continuum of changes across the respiratory severity levels with the most significant and extensive changes being in the most severely affected patients. Even mildly affected respiratory patients showed multiple highly significant abnormal biochemical signatures reflecting serious metabolic deficiencies of the type observed in Post-acute COVID-19 syndrome patients. The most severe respiratory patients had a high mortality (56.1%) and we found that we could predict mortality in this patient sub-group with high accuracy in some cases up to 61 days prior to death, based on a separate metabolic model, which highlighted a different set of metabolites to those defining the basic disease. Specifically, hexosylceramides (HCER 16:0, HCER 20:0, HCER 24:1, HCER 26:0, HCER 26:1) were markedly elevated in the non-surviving patient group (Cliff's delta 0.91-0.95) and two phosphoethanolamines (PE.O 18:0/18:1, Cliff's delta = -0.98 and PE.P 16:0/18:1, Cliff's delta = -0.93) were markedly lower in the non-survivors. These results indicate that patient morbidity to mortality trajectories is determined relatively soon after infection, opening the opportunity to select more intensive therapeutic interventions to these "high risk" patients in the early disease stages.
Collapse
Affiliation(s)
- Samantha Lodge
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nicola Gray
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Reika Masuda
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Philipp Nitschke
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Sze-How Bong
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Bu B. Yeap
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Girish Dwivedi
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | | | | | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Elaine Holmes
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Julien Wist
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Jeremy K. Nicholson
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Faculty Building, South Kensington Campus, London SW7 2NA, UK
| |
Collapse
|
33
|
Wichaiyo S, Parichatikanond W, Visansirikul S, Saengklub N, Rattanavipanon W. Determination of the Potential Clinical Benefits of Small Molecule Factor XIa Inhibitors in Arterial Thrombosis. ACS Pharmacol Transl Sci 2023; 6:970-981. [PMID: 37470020 PMCID: PMC10353063 DOI: 10.1021/acsptsci.3c00052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Indexed: 07/21/2023]
Abstract
Anticoagulants are the mainstay for the prevention and treatment of thrombosis. However, bleeding complications remain a primary concern. Recent advances in understanding the contribution of activated factor XI (FXIa) in arterial thrombosis with a limited impact on hemostasis have led to the development of several FXIa-targeting modalities. Injectable agents including monoclonal antibodies and antisense oligonucleotides against FXIa have been primarily studied in venous thrombosis. The orally active small molecules that specifically inhibit the active site of FXIa are currently being investigated for their antithrombotic activity in both arteries and veins. This review focuses on a discussion of the potential clinical benefits of small molecule FXIa inhibitors, mainly asundexian and milvexian, in arterial thrombosis based on their pharmacological profiles and the compelling results of phase 2 clinical studies. The preclinical and epidemiological basis for the impact of FXIa in hemostasis and arterial thrombosis is also addressed. In recent clinical study results, asundexian appears to reduce ischemic events in patients with myocardial infarction and minor-to-moderate stroke, whereas milvexian possibly provides benefits in patients with minor stroke or high-risk transient ischemic attack (TIA). In addition, asundexian and milvexian had a minor impact on hemostasis even in combination with dual-antiplatelet therapy. Other orally active FXIa inhibitors also produce antithrombotic activity in vivo with low bleeding risk. Therefore, FXIa inhibitors might represent a new class of direct-acting oral anticoagulants (DOACs) for the treatment of thrombosis, although the explicit clinical positions of asundexian and milvexian in patients with ischemic stroke, high-risk TIA, and coronary artery disease require confirmation from the outcomes of ongoing phase 3 trials.
Collapse
Affiliation(s)
- Surasak Wichaiyo
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department
of Pharmacology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Satsawat Visansirikul
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nakkawee Saengklub
- Centre
of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Department
of Physiology, Faculty of Pharmacy, Mahidol
University, Bangkok 10400, Thailand
| | | |
Collapse
|
34
|
Hess NR, Kaczorowski DJ. The history of cardiac xenotransplantation: early attempts, major advances, and current progress. FRONTIERS IN TRANSPLANTATION 2023; 2:1125047. [PMID: 38993853 PMCID: PMC11235224 DOI: 10.3389/frtra.2023.1125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
In light of ongoing shortage of donor organs for transplantation, alternative sources for donor organ sources have been examined to address this supply-demand mismatch. Of these, xenotransplantation, or the transplantation of organs across species, has been considered, with early applications dating back to the 1600s. The purpose of this review is to summarize the early experiences of xenotransplantation, with special focus on heart xenotransplantation. It aims to highlight the important ethical concerns of animal-to-human heart xenotransplantation, identify the key immunological barriers to successful long-term xenograft survival, as well as summarize the progress made in terms of development of pharmacological and genetic engineering strategies to address these barriers. Lastly, we discuss more recent attempts of porcine-to-human heart xenotransplantation, as well as provide some commentary on the current concerns and possible applications for future clinical heart xenotransplantation.
Collapse
Affiliation(s)
- Nicholas R. Hess
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David J. Kaczorowski
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, United States
| |
Collapse
|
35
|
Martin M, Nilsson SC, Eikrem D, Fromell K, Scavenius C, Vogt LM, Bielecka E, Potempa J, Enghild JJ, Nilsson B, Ekdahl KN, Kapetanovic MC, Blom AM. Citrullination of C1-inhibitor as a mechanism of impaired complement regulation in rheumatoid arthritis. Front Immunol 2023; 14:1203506. [PMID: 37426666 PMCID: PMC10326043 DOI: 10.3389/fimmu.2023.1203506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Background Dysregulated complement activation, increased protein citrullination, and production of autoantibodies against citrullinated proteins are hallmarks of rheumatoid arthritis (RA). Citrullination is induced by immune cell-derived peptidyl-Arg deiminases (PADs), which are overactivated in the inflamed synovium. We characterized the effect of PAD2- and PAD4-induced citrullination on the ability of the plasma-derived serpin C1-inhibitor (C1-INH) to inhibit complement and contact system activation. Methods Citrullination of the C1-INH was confirmed by ELISA and Western blotting using a biotinylated phenylglyoxal probe. C1-INH-mediated inhibition of complement activation was analyzed by C1-esterase activity assay. Downstream inhibition of complement was studied by C4b deposition on heat-aggregated IgGs by ELISA, using pooled normal human serum as a complement source. Inhibition of the contact system was investigated by chromogenic activity assays for factor XIIa, plasma kallikrein, and factor XIa. In addition, autoantibody reactivity to native and citrullinated C1-INH was measured by ELISA in 101 RA patient samples. Results C1-INH was efficiently citrullinated by PAD2 and PAD4. Citrullinated C1-INH was not able to bind the serine protease C1s and inhibit its activity. Citrullination of the C1-INH abrogated its ability to dissociate the C1-complex and thus inhibit complement activation. Consequently, citrullinated C1-INH had a decreased capacity to inhibit C4b deposition via the classical and lectin pathways. The inhibitory effect of C1-INH on the contact system components factor XIIa, plasma kallikrein, and factor XIa was also strongly reduced by citrullination. In RA patient samples, autoantibody binding to PAD2- and PAD4-citrullinated C1-INH was detected. Significantly more binding was observed in anti-citrullinated protein antibody (ACPA)-positive than in ACPA-negative samples. Conclusion Citrullination of the C1-INH by recombinant human PAD2 and PAD4 enzymes impaired its ability to inhibit the complement and contact systems in vitro. Citrullination seems to render C1-INH more immunogenic, and citrullinated C1-INH might thus be an additional target of the autoantibody response observed in RA patients.
Collapse
Affiliation(s)
- Myriam Martin
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sara C. Nilsson
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - David Eikrem
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Leonie M. Vogt
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Ewa Bielecka
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Kristina N. Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
- School of Natural Sciences, Linnæus University, Kalmar, Sweden
| | - Meliha C. Kapetanovic
- Department of Clinical Sciences Lund, Rheumatology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Anna M. Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| |
Collapse
|
36
|
Shamanaev A, Litvak M, Cheng Q, Ponczek M, Dickeson SK, Smith SA, Morrissey JH, Gailani D. A site on factor XII required for productive interactions with polyphosphate. J Thromb Haemost 2023; 21:1567-1579. [PMID: 36863563 PMCID: PMC10192085 DOI: 10.1016/j.jtha.2023.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
BACKGROUND During plasma contact activation, factor XII (FXII) binds to surfaces through its heavy chain and undergoes conversion to the protease FXIIa. FXIIa activates prekallikrein and factor XI (FXI). Recently, we showed that the FXII first epidermal growth factor-1 (EGF1) domain is required for normal activity when polyphosphate is used as a surface. OBJECTIVES The aim of this study was to identify amino acids in the FXII EGF1 domain required for polyphosphate-dependent FXII functions. METHODS FXII with alanine substitutions for basic residues in the EGF1 domain were expressed in HEK293 fibroblasts. Wild-type FXII (FXII-WT) and FXII containing the EGF1 domain from the related protein Pro-HGFA (FXII-EGF1) were positive and negative controls. Proteins were tested for their capacity to be activated, and to activate prekallikrein and FXI, with or without polyphosphate, and to replace FXII-WT in plasma clotting assays and a mouse thrombosis model. RESULTS FXII and all FXII variants were activated similarly by kallikrein in the absence of polyphosphate. However, FXII with alanine replacing Lys73, Lys74, and Lys76 (FXII-Ala73,74,76) or Lys76, His78, and Lys81 (FXII-Ala76,78,81) were activated poorly in the presence of polyphosphate. Both have <5% of normal FXII activity in silica-triggered plasma clotting assays and have reduced binding affinity for polyphosphate. Activated FXIIa-Ala73,74,76 displayed profound defects in surface-dependent FXI activation in purified and plasma systems. FXIIa-Ala73,74,76 reconstituted FXII-deficient mice poorly in an arterial thrombosis model. CONCLUSION FXII Lys73, Lys74, Lys76, and Lys81 form a binding site for polyanionic substances such as polyphosphate that is required for surface-dependent FXII function.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA. https://twitter.com/Aleksan18944927
| | - Maxim Litvak
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiufang Cheng
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michal Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - S Kent Dickeson
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephanie A Smith
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James H Morrissey
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
37
|
Shamanaev A, Dickeson SK, Ivanov I, Litvak M, Sun MF, Kumar S, Cheng Q, Srivastava P, He TZ, Gailani D. Mechanisms involved in hereditary angioedema with normal C1-inhibitor activity. Front Physiol 2023; 14:1146834. [PMID: 37288434 PMCID: PMC10242079 DOI: 10.3389/fphys.2023.1146834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/12/2023] [Indexed: 06/09/2023] Open
Abstract
Patients with the inherited disorder hereditary angioedema (HAE) suffer from episodes of soft tissue swelling due to excessive bradykinin production. In most cases, dysregulation of the plasma kallikrein-kinin system due to deficiency of plasma C1 inhibitor is the underlying cause. However, at least 10% of HAE patients have normal plasma C1 inhibitor activity levels, indicating their syndrome is the result of other causes. Two mutations in plasma protease zymogens that appear causative for HAE with normal C1 inhibitor activity have been identified in multiple families. Both appear to alter protease activity in a gain-of-function manner. Lysine or arginine substitutions for threonine 309 in factor XII introduces a new protease cleavage site that results in formation of a truncated factor XII protein (Δ-factor XII) that accelerates kallikrein-kinin system activity. A glutamic acid substitution for lysine 311 in the fibrinolytic protein plasminogen creates a consensus binding site for lysine/arginine side chains. The plasmin form of the variant plasminogen cleaves plasma kininogens to release bradykinin directly, bypassing the kallikrein-kinin system. Here we review work on the mechanisms of action of the FXII-Lys/Arg309 and Plasminogen-Glu311 variants, and discuss the clinical implications of these mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
38
|
Miyata T, Horiuchi T. Biochemistry, molecular genetics, and clinical aspects of hereditary angioedema with and without C1 inhibitor deficiency. Allergol Int 2023:S1323-8930(23)00042-4. [PMID: 37169642 DOI: 10.1016/j.alit.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023] Open
Abstract
Hereditary angioedema (HAE) is a rare disorder characterized by cutaneous and submucosal swelling caused mostly by excessive local bradykinin production. Bradykinin is a vasoactive peptide generated by the limited proteolysis of high molecular weight kininogen (HMWK) by plasma kallikrein via the contact activation system. The contact activation system occurs not only in solution but also on the cell surface. Factor XII (FXII), prekallikrein, and HMWK are assembled on the endothelial cell surface via several proteins, including a trimer of a receptor for globular C1q domain in a Zn2+-dependent manner, and the reciprocal activation on the cell surface is believed to be physiologically important in vivo. Thus, the contact activation system leads to the activation of coagulation, complement, inflammation, and fibrinolysis. C1-inhibitor (C1-INH) is a plasma protease inhibitor that is a member of the serpin family. It mainly inhibits activated FXII (FXIIa), plasma kallikrein, and C1s. C1-INH hereditary deficiency induces HAE (HAE-C1-INH) due to excessive bradykinin production via the incomplete inhibition of plasma kallikrein and FXIIa through the low C1-INH level. HAE is also observed in patients with normal C1-INH (HAEnCI) who carry pathogenic variants in genes of factor XII, plasminogen, angiopoietin 1, kininogen, myoferlin, and heparan sulfate 3-O-sulfotransferase 6, which are associated with bradykinin production and/or vascular permeability. HAE-causing pathways triggered by pathogenic variants in patients with HAE-C1-INH and HAEnCI are reviewed and discussed.
Collapse
Affiliation(s)
- Toshiyuki Miyata
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan; Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan
| | - Takahiko Horiuchi
- Department of Internal Medicine, Kyushu University Beppu Hospital, Oita, Japan; Center for Research, Education, and Treatment of AngioEdema, A Specified Non-profit Corporation, Fukuoka, Japan.
| |
Collapse
|
39
|
Wang Q, Cui Y, Liang P, Wang C, Zhou K, Ma F, Duan H. Case report: cerebral venous sinus thrombosis and pulmonary embolism as the initial presentation in a child with asymptomatic primary nephrotic syndrome. Front Pediatr 2023; 11:1169116. [PMID: 37215608 PMCID: PMC10196485 DOI: 10.3389/fped.2023.1169116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Background Cerebral venous sinus thrombosis (CVST) is rare, but potentially life-threatening. The clinical course definitely become more unpredictable and fatal in patients complicated by pulmonary embolism (PE). Nephrotic syndrome (NS) is an uncommon etiology of CVST. Concurrence of CVST and PE at the initial onset of NS is extremely unusual and rarely reported. Considering that edema might be absent in NS individuals, thromboembolic events probably become unrecognized, thereby causing a missed or delayed diagnosis and poor outcome. Herein, we described an extraordinary case of an adolescent boy presenting with both CVST and PE initially just within 5 days of disease onset, who was ultimately diagnosed with asymptomatic NS, aiming to emphasize a high index of suspicion of these diseases in patients with conditions of hypercoagulability. Case presentation A 13-year-old male child presented acutely with dizziness, fever and dyspnea, with signs of shock but undetected edema. Initial laboratory investigations revealed hypoalbuminemia, typical images of pneumonia, and normal radiographic findings on non-enhanced computed tomography of head. Despite evidence of hypoalbuminemia and neurological symptoms, the child was still misdiagnosed as pneumonia. His dyspnea and period of headache deteriorated even if hemodynamic stability and undetected fever after initial therapy. The delayed urinalysis and 24-h urine examination both showed massive proteinuria. A computed tomography angiography of chest along with cranial magnetic resonance imaging/magnetic resonance venography were subsequently performed, consistent with the imaging features of PE and CVST, respectively. The diagnosis of asymptomatic primary NS complicated by PE and CVST was ultimately confirmed. The patient received corticosteroids and antithrombotic therapy with satisfactory results. Conclusion A persistent clinical suspicion of CVST should be borne in mind in patients with a sudden, new or worsening headache, specifically among those with prothrombotic conditions. NS should always be considered in the differential diagnosis of risk factors for CVST, even in absence of edema. Since CVST and PE can be present simultaneously at extraordinary early-onset of NS, early radiological diagnosis is clinically substantial to proper management and satisfactory long-term outcomes.
Collapse
Affiliation(s)
- Qinhui Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Medical School of Sichuan University, Chengdu, China
| | - Yaru Cui
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- West China Medical School of Sichuan University, Chengdu, China
| | - Ping Liang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongyu Duan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Litvak M, Shamanaev A, Zalawadiya S, Matafonov A, Kobrin A, Feener EP, Wallisch M, Tucker EI, McCarty OJT, Gailani D. Titanium is a potent inducer of contact activation: implications for intravascular devices. J Thromb Haemost 2023; 21:1200-1213. [PMID: 36696212 PMCID: PMC10621279 DOI: 10.1016/j.jtha.2022.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Titanium (Ti) and its alloys are widely used in manufacturing medical devices because of their strength and resistance to corrosion. Although Ti compounds are considered compatible with blood, they appear to support plasma contact activation and may be thrombogenic. OBJECTIVES The objective of this study was to compare Ti and titanium nitride (TiN) with known activators of contact activation (kaolin and silica) in plasma-clotting assays and to assess binding and activation of factor XII, (FXII), factor XI (FXI), prekallikrein, and high-molecular-weight kininogen (HK) with Ti/TiN. METHODS Ti-based nanospheres and foils were compared with kaolin, silica, and aluminum in plasma-clotting assays. Binding and activation of FXII, prekallikrein, HK, and FXI to surfaces was assessed with western blots and chromogenic assays. RESULTS Using equivalent surface amounts, Ti and TiN were comparable with kaolin and superior to silica, for inducing coagulation and FXII autoactivation. Similar to many inducers of contact activation, Ti and TiN are negatively charged; however, their effects on FXII are not neutralized by the polycation polybrene. Antibodies to FXII, prekallikrein, or FXI or coating Ti with poly-L-arginine blocked Ti-induced coagulation. An antibody to FXII reduced FXII and PK binding to Ti, kallikrein generation, and HK cleavage. CONCLUSION Titanium compounds induce contact activation with a potency comparable with that of kaolin. Binding of FXII with Ti shares some features with FXII binding to soluble polyanions but may have unique features. Inhibitors targeting FXII or FXI may be useful in mitigating Ti-induced contact activation in patients with titanium-based implants that are exposed to blood.
Collapse
Affiliation(s)
- Maxim Litvak
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aleksandr Shamanaev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sandip Zalawadiya
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Matafonov
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Anton Kobrin
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Edward P Feener
- KalVista Pharmaceuticals, Inc., Cambridge, Massachusetts, USA
| | - Michael Wallisch
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Erik I Tucker
- Aronora, Inc., Portland, Oregon, USA; Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Oregon, USA
| | - David Gailani
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| |
Collapse
|
41
|
La CC, Smith SA, Vappala S, Adili R, Luke CE, Abbina S, Luo HD, Chafeeva I, Drayton M, Creagh LA, de Guadalupe Jaraquemada-Peláez M, Rhoads N, Kalathottukaren MT, Henke PK, Straus SK, Du C, Conway EM, Holinstat M, Haynes CA, Morrissey JH, Kizhakkedathu JN. Smart thrombosis inhibitors without bleeding side effects via charge tunable ligand design. Nat Commun 2023; 14:2177. [PMID: 37100783 PMCID: PMC10133246 DOI: 10.1038/s41467-023-37709-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Current treatments to prevent thrombosis, namely anticoagulants and platelets antagonists, remain complicated by the persistent risk of bleeding. Improved therapeutic strategies that diminish this risk would have a huge clinical impact. Antithrombotic agents that neutralize and inhibit polyphosphate (polyP) can be a powerful approach towards such a goal. Here, we report a design concept towards polyP inhibition, termed macromolecular polyanion inhibitors (MPI), with high binding affinity and specificity. Lead antithrombotic candidates are identified through a library screening of molecules which possess low charge density at physiological pH but which increase their charge upon binding to polyP, providing a smart way to enhance their activity and selectivity. The lead MPI candidates demonstrates antithrombotic activity in mouse models of thrombosis, does not give rise to bleeding, and is well tolerated in mice even at very high doses. The developed inhibitor is anticipated to open avenues in thrombosis prevention without bleeding risk, a challenge not addressed by current therapies.
Collapse
Affiliation(s)
- Chanel C La
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie A Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sreeparna Vappala
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Reheman Adili
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
- Bloodworks Research Institute, 1551 Eastlake Avenue E.; Ste. 100, Seattle, WA, 98102, USA
| | - Catherine E Luke
- Department of Surgery, Section of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Haiming D Luo
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Irina Chafeeva
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Drayton
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Louise A Creagh
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Nicole Rhoads
- Bloodworks Research Institute, 1551 Eastlake Avenue E.; Ste.100, Seattle, WA, 98102, USA
| | - Manu Thomas Kalathottukaren
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Peter K Henke
- Department of Surgery, Section of Vascular Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Caigan Du
- Department of Urological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- The School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Michael Holinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Haynes
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- The School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
42
|
Fromell K, Johansson U, Abadgar S, Bourzeix P, Lundholm L, Elihn K. The effect of airborne Palladium nanoparticles on human lung cells, endothelium and blood - A combinatory approach using three in vitro models. Toxicol In Vitro 2023; 89:105586. [PMID: 36931534 DOI: 10.1016/j.tiv.2023.105586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/24/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
A better understanding of the mechanisms behind adverse health effects caused by airborne fine particles and nanoparticles (NP) is essential to improve risk assessment and identification the most critical particle exposures. While the use of automobile catalytic converters is decreasing the exhausts of harmful gases, concentrations of fine airborne particles and nanoparticles (NPs) from catalytic metals such as Palladium (Pd) are reaching their upper safe level. Here we used a combinatory approach with three in vitro model systems to study the toxicity of Pd particles, to infer their potential effects on human health upon inhalation. The three model systems are 1) a lung system with human lung cells (ALI), 2) an endothelial cell system and 3) a human whole blood loop system. All three model systems were exposed to the exact same type of Pd NPs. The ALI lung cell exposure system showed a clear reduction in cell growth from 24 h onwards and the effect persisted over a longer period of time. In the endothelial cell model, Pd NPs induced apoptosis, but not to the same extent as the most aggressive types of NPs such as TiO2. Similarly, Pd triggered clear coagulation and contact system activation but not as forcefully as the highly thrombogenic TiO2 NPs. In summary, we show that our 3-step in vitro model of the human lung and surrounding vessels can be a useful tool for studying pathological events triggered by airborne fine particles and NPs.
Collapse
Affiliation(s)
- Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck laboratory C5:3, Uppsala university, SE-751 85 Uppsala, Sweden.
| | - Ulrika Johansson
- Department of Immunology, Genetics and Pathology, Rudbeck laboratory C5:3, Uppsala university, SE-751 85 Uppsala, Sweden; Linnæus Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Sophia Abadgar
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden; Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Pauline Bourzeix
- Department of Immunology, Genetics and Pathology, Rudbeck laboratory C5:3, Uppsala university, SE-751 85 Uppsala, Sweden
| | - Lovisa Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Karine Elihn
- Department of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
43
|
Gao S, Zhang Y, Peng R, Yan S, Teng Y, Qi J, Cheng G, Yu D, Liu G, Xu Q, Cai X, Zhou Z, Ji B. Hemostatic alterations during extracorporeal membrane oxygenation in ovine veno-venous and veno-arterial models. Artif Organs 2023; 47:526-536. [PMID: 36310416 DOI: 10.1111/aor.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/10/2022] [Accepted: 10/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Extracorporeal membrane oxygenation (ECMO) has salvaged many people's life during global pandemics. However, ECMO is associated with a high incidence of hemostatic complications. This study aims to explore the effects of the ECMO system on the coagulation system in the healthy ovine ECMO model. METHODS Ten healthy male sheep were included. Five received the veno-arterial ECMO and five received the veno-venous ECMO. Heparin was infused for systemic anticoagulation and was adjusted according to the activated clotting time. Blood routine tests, coagulation factors, anticoagulation proteins, and fibrinolysis markers were tested at the baseline and every 24 h. After weaning, the pump heads were dissected to explore thrombosis. RESULTS Platelets decreased in the first 72 h and returned to the baseline at the 120th hour. The neutrophils increased in the first 24 h and returned to the baseline at the 48th hour. Factors II, VII, and X decreased in the first 24 h and gradually increased, while factors VIII, IX, XI, and XII decreased in the first 24 h and remained at a low level. The baseline antithrombin was 73.2 ± 14.4% and reduced to 42.6 ± 9.9% at the 168th hour. Pathology showed seven sheep developed thrombus, but no clinically relevant bleeding or thrombosis events occurred. CONCLUSIONS The study explored hemostatic alterations during ECMO in healthy animal models, which eliminated the confounding under critically ill conditions. The study may provide insights into ECMO hemostatic disorders and aid the design of optimal therapeutic strategies.
Collapse
Affiliation(s)
- Sizhe Gao
- Department of Cardiopulmonary Bypass, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Yang Zhang
- Department of Laboratory Medicine, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Rui Peng
- Department of Laboratory Medicine, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China.,Center of Clinical Laboratory, Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Shujie Yan
- Department of Cardiopulmonary Bypass, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Yuan Teng
- Department of Cardiopulmonary Bypass, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Jiachen Qi
- Department of Cardiopulmonary Bypass, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Gaowa Cheng
- Department of Laboratory Medicine, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Dongze Yu
- Department of Laboratory Medicine, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Gang Liu
- Department of Cardiopulmonary Bypass, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Qiang Xu
- Department of Laboratory Medicine, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Xiaohui Cai
- Department of Laboratory Medicine, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Zhou Zhou
- Department of Laboratory Medicine, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| | - Bingyang Ji
- Department of Cardiopulmonary Bypass, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China
| |
Collapse
|
44
|
Fang M, Cha JH, Wang HC, Ye P, Chen B, Chen M, Yang WH, Yan X. An undefined cystatin CsCPI1 from tea plant Camellia sinensis harbors antithrombotic activity. Biomed Pharmacother 2023; 159:114285. [PMID: 36706630 DOI: 10.1016/j.biopha.2023.114285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Tea consumption has been linked to a decreased risk of cardiovascular disease (CVD) mortality, which imposes a heavy burden on the healthcare system; however, which components in tea cause this beneficial effect is not fully understood. Here we uncovered a cystatin (namely CsCPI1), which is a cysteine proteinase inhibitor (CPI) of the tea plant (Camellia sinensis) that promotes antithrombotic activity. Since thrombosis is a common pathogenesis of fatal CVDs, we investigated the effects of CsCPI1, which showed good therapeutic effects in mouse models of thrombotic disease and ischemic stroke. CsCPI1 significantly increases endothelial cell production of nitric oxide (NO) and inhibits platelet aggregation. Notably, CsCPI1 exhibited no cytotoxicity or resistance to pH and temperature changes, which indicates that CsCPI1 might be a potent antithrombotic agent that contributes to the therapeutic effects of tea consumption against CVD. Specifically, the antithrombotic effects of CsCPI1 are distinct from the classical function of plant cystatins against herbivorous insects. Therefore, our study proposes a new potential role of cystatins in CVD prevention and treatment, which requires further study.
Collapse
Affiliation(s)
- Mingqian Fang
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, Guangdong, China; Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences and Key Laboratory of Bioactive Peptides of Yunnan Province, Institute of Zoology, Kunming 650107, Yunnan, China
| | - Jong-Ho Cha
- Department of Biomedical Science and Engineering, Graduate School, Inha University, Incheon 22212, the Republic of Korea; Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, the Republic of Korea
| | - Hao-Ching Wang
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Peng Ye
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, Guangdong, China
| | - Bi Chen
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, Guangdong, China
| | - Mengrou Chen
- Product Development Department, Nanjing Legend Biotech Co., Ltd., Nanjing 211100, Jiangsu, China
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan.
| | - Xiuwen Yan
- Affiliated Cancer Institute & Hospital and Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 910095, Guangdong, China.
| |
Collapse
|
45
|
Cancian M, Triggianese P, Modica S, Arcoleo F, Bignardi D, Brussino L, Colangelo C, Di Agosta E, Firinu D, Guarino MD, Giardino F, Giliberti M, Montinaro V, Senter R. The impact of puberty on the onset, frequency, location, and severity of attacks in hereditary angioedema due to C1-inhibitor deficiency: A survey from the Italian Network for Hereditary and Acquired Angioedema (ITACA). Front Pediatr 2023; 11:1141073. [PMID: 37144145 PMCID: PMC10152551 DOI: 10.3389/fped.2023.1141073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Hereditary angioedema due to C1-inhibitor deficiency is influenced by hormonal factors, with a more severe course of disease in women. Our study aims to deepen the impact of puberty on onset, frequency, location and severity of attacks. Methods Retrospective data were collected through a semi-structured questionnaire and shared by 10 Italian reference centers of the Italian Network for Hereditary and Acquired Angioedema (ITACA). Results The proportion of symptomatic patients increased significantly after puberty (98.2% vs 83.9%, p=0.002 in males; 96.3% vs 68,4%, p<0.001 in females); the monthly mean of acute attacks was significantly higher after puberty, and this occurred both in females (median (IQR) = 0.41(2) in the three years before puberty vs 2(2.17) in the three years after, p<0.001) and in males (1(1.92) vs 1.25(1.56) respectively, p<0.001). The increase was greater in females. No significant differences were detected in attack location before and after puberty. Discussion Overall, our study confirms previous reports on a more severe phenotype in the female gender. Puberty predisposes to increased numbers of angioedema attacks, in particular in female patients.
Collapse
Affiliation(s)
- Mauro Cancian
- UOSD Allergologia, University Hospital of Padua, Padua, Italy
- Correspondence: Mauro Cancian
| | | | | | - Francesco Arcoleo
- UOC di Patologia Clinica e Immunologia, AOR Villa Sofia-Cervello, Palermo, Italy
| | | | - Luisa Brussino
- University Hospital Ordine Mauriziano di Torino, Turin, Italy
| | | | - Ester Di Agosta
- Immunoallergology unit, Careggi University Hospital, Florence, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Francesco Giardino
- Azienda Ospedaliero-Universitaria Policlinico “G.Rodolico-San Marco”, Catania, Italy
| | - Marica Giliberti
- Azienda Ospedaliero-Universitaria Policlinico di Bari, Bari, Italy
| | | | - Riccardo Senter
- UOSD Allergologia, University Hospital of Padua, Padua, Italy
| |
Collapse
|
46
|
Cai T, McCafferty C, Van Den Helm S, Letunica N, Attard C, Monagle P, Ignjatovic V. Protocol for the Investigation of Plasma and Whole Blood Clot Property of Fibrin Fiber Thickness Using Scanning Electron Microscopy. Methods Mol Biol 2023; 2663:775-786. [PMID: 37204752 DOI: 10.1007/978-1-0716-3175-1_52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Blood clot formation represents a key component of the coagulation process for preventing excessive hemorrhage. The structural characteristics of blood clots are associated with their strength and susceptibility to fibrinolysis. Scanning electron microscopy is a technique that allows for state-of-the-art image capture of blood clots, providing visualization of topography, fibrin thickness, fibrin network density, and blood cell involvement and morphology. In this chapter, we provide a detailed protocol for characterization of plasma and whole blood clot structure using SEM, covering the spectrum from blood collection, in vitro clot formation, sample preparation for SEM, imaging, and image analysis, specifically focusing on the measurement of fibrin fiber thickness.
Collapse
Affiliation(s)
- Tengyi Cai
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Conor McCafferty
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Suelyn Van Den Helm
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | | | - Chantal Attard
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
| | - Paul Monagle
- Murdoch Children's Research Institute, Parkville, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Australia
- The Royal Children's Hospital, Parkville, Australia
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, Parkville, Australia.
- Department of Paediatrics, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
47
|
Zhang Y, Peng R, Pei S, Gao S, Sun Y, Cheng G, Yu D, Wang X, Gao Z, Ji B, Zhou Z. Neutrophil extracellular traps are increased after extracorporeal membrane oxygenation support initiation and present in thrombus: A preclinical study using sheep as an animal model. Thromb Res 2023; 221:173-182. [PMID: 36402603 DOI: 10.1016/j.thromres.2022.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The balance between thrombosis and hemostasis is a difficult issue during extracorporeal membrane oxygenation (ECMO) support. The pathogenesis leading to thrombotic complications during ECMO support is not well understood. Neutrophil extracellular traps (NETs) were reported to participate in thrombosis and have a key role in inflammation. This study aimed to explore the role of NETs in thrombosis during ECMO support and investigate NETs as a predictive biomarker for thrombotic complications during ECMO assistance. METHODS Ten ovine models of ECMO support were established. Animals were then randomly divided into 2 groups (5 sheep/group): venoarterial (VA) ECMO group and venovenous (VV) ECMO group. The venous blood samples were collected at different time points. Markers of NETs were detected in plasma, neutrophils, and thrombi from the vessels and membrane. Moreover, circulating NETs levels in 8 adults treated in the intensive care unit (ICU) who received VA-ECMO and 8 healthy controls were detected; patient survival was also recorded. RESULTS In vivo study showed that neutrophils and NETs markers (dsDNA and citH3) levels were significantly elevated 6 h after ECMO compared to baseline. Isolated neutrophils from fresh blood at 6 h could release more NETs. dsDNA and citH3 levels were significantly higher in the VA mode than in the VV mode. NETs were found in thrombi from the vessel and membrane. Clinical data further revealed that dsDNA, citH3, and nucleosomes were higher in patients who received ECMO than in healthy controls. CONCLUSIONS These data suggest NETs might be associated with thrombus during ECMO support, especially in the VA mode. These findings provide new insight into preventing thrombotic complications by targeting NETs. Also, NETs may potentially become an early warning biomarker for thrombosis under ECMO assistance.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Rui Peng
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China; Center of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shengqiang Pei
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Sizhe Gao
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Medicine, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yang Sun
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Gaowa Cheng
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Dongze Yu
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Ximing Wang
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Zhangwei Gao
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China
| | - Bingyang Ji
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Medicine, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Zhou Zhou
- Department of Laboratory Medicine, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, No.167, Beilishi Road, Xicheng District, Beijing 100037, China.
| |
Collapse
|
48
|
Gi (魏 峻洸) T, Kuwahara (桑原 彩) A, Yamashita (山下 篤) A, Matsuda (松田 俊太郎) S, Maekawa (前川 和也) K, Moriguchi-Goto (盛口 淸香) S, Sato (佐藤 勇一郎) Y, Asada (浅田 祐士郎) Y. Histopathological Features of Cancer-Associated Venous Thromboembolism: Presence of Intrathrombus Cancer Cells and Prothrombotic Factors. Arterioscler Thromb Vasc Biol 2023; 43:146-159. [PMID: 36384269 PMCID: PMC9762717 DOI: 10.1161/atvbaha.122.318463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cancer-associated venous thromboembolism (VTE) is a critical complication in patients with cancer. However, the pathological findings of VTE are limited. Here, we investigated the histopathological features of cancer-associated VTE in human autopsy cases. METHODS We clinically examined the autopsy cases of VTE with (n=114) and without cancer (n=66) and immunohistochemically analyzed the expression of prothrombotic factors in intrathrombus cancer cells, the thrombus contents of erythrocytes, fibrin, platelets, citrullinated histone H3, and degree of organization. RESULTS Vascular wall invasion or small cell clusters of cancer cells was observed in thrombi in 27.5% of deep vein thrombosis and 25.9% of pulmonary embolism cases. The majority of the cancer cells in deep vein thrombi appeared to be invading the vessel wall, whereas the majority of pulmonary thrombi had cancer cell clusters, consistent with embolization via blood flow. These cancer cells were immunohistochemically positive for TF (tissue factors) or podoplanin in up to 88% of VTE cases. The frequency of TF-positive monocyte/macrophages in thrombi was higher in cancer-associated VTE than that in VTE without cancer. Citrullinated histone H3 was predominantly observed in the early stages of organizing thrombi. There was no significant difference in thrombus components between VTE with cancer and without cancer groups. CONCLUSIONS Vascular wall invasion or cancer cell clusters in thrombi might influence thrombogenesis of cancer-associated VTE. TF and podoplanin in cancer cells and in monocyte/macrophages may induce coagulation reactions and platelet aggregation. Neutrophil extracellular traps may play a role in the early stages of VTE, regardless of cancer status.
Collapse
Affiliation(s)
- Toshihiro Gi (魏 峻洸)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| | - Aya Kuwahara (桑原 彩)
- Department of Laboratory Center (A.K.), Faculty of Medicine, University of Miyazaki, Japan
| | - Atsushi Yamashita (山下 篤)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| | - Shuntaro Matsuda (松田 俊太郎)
- Department of Medicine and Community Health (S.M.), Faculty of Medicine, University of Miyazaki, Japan
| | - Kazunari Maekawa (前川 和也)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| | - Sayaka Moriguchi-Goto (盛口 淸香)
- Department of Diagnostic Pathology‚ University of Miyazaki Hospital (S.M.-G., Y.S.), Faculty of Medicine, University of Miyazaki, Japan
| | - Yuichiro Sato (佐藤 勇一郎)
- Department of Diagnostic Pathology‚ University of Miyazaki Hospital (S.M.-G., Y.S.), Faculty of Medicine, University of Miyazaki, Japan
| | - Yujiro Asada (浅田 祐士郎)
- Department of Pathology (T.G., A.Y., K.M., Y.A.), Faculty of Medicine, University of Miyazaki, Japan
| |
Collapse
|
49
|
Zhang G, Zhang L, Si S, Jiang T, Xia Y, Zhu Y, Zhang X, Yao C, Chen M, Chen S. Fibrinogen and antithrombin III are associated with in-hospital mortality among critically ill patients with acute kidney injury. Ren Fail 2022; 44:1938-1947. [DOI: 10.1080/0886022x.2022.2142138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Guangyuan Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Lei Zhang
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Sun Si
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Tiancheng Jiang
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Yi Xia
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Yongkun Zhu
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Xiangyu Zhang
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Chi Yao
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Institute of Urology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
50
|
Kim JG, Kim SI, Song SH, Gu JY, Lee M, Kim HK. Diagnostic and prognostic role of circulating neutrophil extracellular trap markers and prekallikrein in patients with high-grade serous ovarian cancer. Front Oncol 2022; 12:992056. [PMID: 36620601 PMCID: PMC9813379 DOI: 10.3389/fonc.2022.992056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Objective Tumor-promoting inflammation is among the hallmarks of cancer. Prekallikrein is among the acute-phase reactants in the inflammatory response; moreover, neutrophils release nuclear contents into the extracellular space to create neutrophil extracellular traps (NET). We aimed to investigate the diagnostic and prognostic utilities of circulating plasma NET markers and prekallikrein for high-grade serous ovarian cancer (HGSOC). Methods Circulating levels of three NET markers (histone-DNA complex, cell-free DNA, and neutrophil elastase) and prekallikrein were measured in 75 patients with HGSOC and 23 healthy controls. We used an area under the receiver operating characteristic curve (AUC) analysis to investigate their diagnostic and prognostic utilities for HGSOC. Results Compared with healthy controls, patients with HGSOC showed significantly higher levels of the three NET markers and prekallikrein. Patients with advanced-stage HGSOC showed significantly higher levels of the cell-free DNA (87.4 vs. 79.5 ng/ml; P = 0.013), compared with those with early-stage HGSOC. Further, the levels of histone-DNA complex, neutrophil elastase, and prekallikrein did not significantly differ according to the cancer stage. All markers showed significant diagnostic utility. Notably, a logistic regression-based model that comprised all four markers showed the strongest diagnostic power (AUC, 0.966; 95% confidence interval [CI], 0.933-1.000). Specifically, neutrophil elastase was identified as an independent poor prognostic factor for overall survival (adjusted hazard ratio [aHR], 10.17; 95% CI, 1.09-94.97; P = 0.042) and progression-free survival (aHR, 14.47; 95% CI, 1.52-137.35; P = 0.020) in patients with HGSOC. Conclusions The levels of the three NET markers and prekallikrein might be novel diagnostic and prognostic markers for HGSOC.
Collapse
Affiliation(s)
- Jisoo G. Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Se Ik Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Ja-Yoon Gu
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Maria Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea,Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| | - Hyun Kyung Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, South Korea,Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Maria Lee, ; Hyun Kyung Kim,
| |
Collapse
|