1
|
He Y, Chang X, Liu Y, Fei J, Qin X, Song B, Yu Q, Shi M, Guo D, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. High plasma thrombomodulin level is associated with a decreased risk of cognitive impairment after ischemic stroke. J Stroke Cerebrovasc Dis 2025; 34:108172. [PMID: 39631512 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Thrombomodulin, a thrombin receptor with anticoagulant, anti-inflammatory, and cytoprotective properties, has been suggested to play a pivotal role in ischemic stroke. However, the association of plasma thrombomodulin with post-stroke cognitive impairment (PSCI) remains unclear. We aimed to prospectively investigate the associations of plasma thrombomodulin with PSCI among ischemic stroke patients in a multicenter cohort study. METHODS We measured plasma thrombomodulin levels at baseline among 615 ischemic stroke patients from a preplanned ancillary study of the CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). We used Montreal Cognitive Assessment (MoCA) to evaluate cognitive function at 3-month follow-up after ischemic stroke, and PSCI was defined as MoCA score <23. RESULTS Plasma thrombomodulin was inversely associated with PSCI, and the adjusted odds ratio of PSCI for the highest versus lowest quartile of thrombomodulin was 0.50 (95 % CI: 0.28-0.92, Ptrend=0.026). Each standard deviation increment of log-transformed thrombomodulin was associated with a 23 % (odds ratio: 0.77, 95 % CI: 0.62-0.97, P=0.029) decreased risk of PSCI. In addition, plasma thrombomodulin could significantly improve the risk reclassification of PSCI beyond established risk factors (net reclassification index: 25.04 %, 95 % CI: 7.20 %-42.87 %, P=0.007; integrated discrimination improvement: 1.13 %, 95 % CI: 0.18 %-2.09 %, P=0.020). CONCLUSIONS High plasma thrombomodulin levels were associated with a decreased risk of PSCI among ischemic stroke patients. Our findings suggest that plasma thrombomodulin might be a predictive biomarker and potential therapeutic target for PSCI.
Collapse
Affiliation(s)
- Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Jiawen Fei
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Xiaoli Qin
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Beiping Song
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Quan Yu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA; Department of Medicine, Tulane University School of Medicine, New Orleans, LA, USA.
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China.
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Major Chronic Non-communicable Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, Jiangsu Province 215123, PR China; Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
| |
Collapse
|
2
|
Niu XY, Xie XX, Tuo HZ, Lv CP, Huang YR, Zhu J, Liang SY, Du XY, Yang CG, Hou SJ, Sun XY, Li LJ, Cui F, Huang QX, Jia YB, Wang YJ, Liu RT. Thrombomodulin reduces α-synuclein generation and ameliorates neuropathology in a mouse model of Parkinson's disease. Cell Death Discov 2024; 10:167. [PMID: 38589400 PMCID: PMC11002034 DOI: 10.1038/s41420-024-01939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
The neurotoxic α-synuclein (α-syn) oligomers play an important role in the occurrence and development of Parkinson's disease (PD), but the factors affecting α-syn generation and neurotoxicity remain unclear. We here first found that thrombomodulin (TM) significantly decreased in the plasma of PD patients and brains of A53T α-syn mice, and the increased TM in primary neurons reduced α-syn generation by inhibiting transcription factor p-c-jun production through Erk1/2 signaling pathway. Moreover, TM decreased α-syn neurotoxicity by reducing the levels of oxidative stress and inhibiting PAR1-p53-Bax signaling pathway. In contrast, TM downregulation increased the expression and neurotoxicity of α-syn in primary neurons. When TM plasmids were specifically delivered to neurons in the brains of A53T α-syn mice by adeno-associated virus (AAV), TM significantly reduced α-syn expression and deposition, and ameliorated the neuronal apoptosis, oxidative stress, gliosis and motor deficits in the mouse models, whereas TM knockdown exacerbated these neuropathology and motor dysfunction. Our present findings demonstrate that TM plays a neuroprotective role in PD pathology and symptoms, and it could be a novel therapeutic target in efforts to combat PD. Schematic representation of signaling pathways of TM involved in the expression and neurotoxicity of α-syn. A TM decreased RAGE, and resulting in the lowered production of p-Erk1/2 and p-c-Jun, and finally reduce α-syn generation. α-syn oligomers which formed from monomers increase the expression of p-p38, p53, C-caspase9, C-caspase3 and Bax, decrease the level of Bcl-2, cause mitochondrial damage and lead to oxidative stress, thus inducing neuronal apoptosis. TM can reduce intracellular oxidative stress and inhibit p53-Bax signaling by activating APC and PAR-1. B The binding of α-syn oligomers to TLR4 may induce the expression of IL-1β, which is subsequently secreted into the extracellular space. This secreted IL-1β then binds to its receptor, prompting p65 to translocate from the cytoplasm into the nucleus. This translocation downregulates the expression of KLF2, ultimately leading to the suppression of TM expression. By Figdraw.
Collapse
Affiliation(s)
- Xiao-Yun Niu
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xi-Xiu Xie
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Hou-Zhen Tuo
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Cui-Ping Lv
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ya-Ru Huang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jie Zhu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shi-Yu Liang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Du
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Cheng-Gang Yang
- Department of BigData, Beijing Medintell Bioinformatic Technology Co., LTD, Beijing, China
| | - Sheng-Jie Hou
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiao-Ying Sun
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ling-Jie Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Fang Cui
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Qi-Xin Huang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Ying-Bo Jia
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yu-Jiong Wang
- College of Life Science, Ningxia University, Yinchuan, Ningxia, China.
| | - Rui-Tian Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Pan CC, Maeso-Díaz R, Lewis TR, Xiang K, Tan L, Liang Y, Wang L, Yang F, Yin T, Wang C, Du K, Huang D, Oh SH, Wang E, Lim BJW, Chong M, Alexander PB, Yao X, Arshavsky VY, Li QJ, Diehl AM, Wang XF. Antagonizing the irreversible thrombomodulin-initiated proteolytic signaling alleviates age-related liver fibrosis via senescent cell killing. Cell Res 2023; 33:516-532. [PMID: 37169907 PMCID: PMC10313785 DOI: 10.1038/s41422-023-00820-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/10/2023] [Indexed: 05/13/2023] Open
Abstract
Cellular senescence is a stress-induced, stable cell cycle arrest phenotype which generates a pro-inflammatory microenvironment, leading to chronic inflammation and age-associated diseases. Determining the fundamental molecular pathways driving senescence instead of apoptosis could enable the identification of senolytic agents to restore tissue homeostasis. Here, we identify thrombomodulin (THBD) signaling as a key molecular determinant of the senescent cell fate. Although normally restricted to endothelial cells, THBD is rapidly upregulated and maintained throughout all phases of the senescence program in aged mammalian tissues and in senescent cell models. Mechanistically, THBD activates a proteolytic feed-forward signaling pathway by stabilizing a multi-protein complex in early endosomes, thus forming a molecular basis for the irreversibility of the senescence program and ensuring senescent cell viability. Therapeutically, THBD signaling depletion or inhibition using vorapaxar, an FDA-approved drug, effectively ablates senescent cells and restores tissue homeostasis in liver fibrosis models. Collectively, these results uncover proteolytic THBD signaling as a conserved pro-survival pathway essential for senescent cell viability, thus providing a pharmacologically exploitable senolytic target for senescence-associated diseases.
Collapse
Affiliation(s)
- Christopher C Pan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Raquel Maeso-Díaz
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tylor R Lewis
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Lianmei Tan
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Fengrui Yang
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Calvin Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kuo Du
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Seh Hoon Oh
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Mengyang Chong
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Xuebiao Yao
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Vadim Y Arshavsky
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
- Division of Ophthalmology, Department of Medicine, Duke University, Durham, NC, USA
| | - Qi-Jing Li
- Department of Immunology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Rana R, Manoharan J, Gupta A, Gupta D, Elwakiel A, Khawaja H, Fatima S, Zimmermann S, Singh K, Ambreen S, Gadi I, Biemann R, Jiang S, Shahzad K, Kohli S, Isermann B. Activated Protein C Ameliorates Tubular Mitochondrial Reactive Oxygen Species and Inflammation in Diabetic Kidney Disease. Nutrients 2022; 14:nu14153138. [PMID: 35956315 PMCID: PMC9370435 DOI: 10.3390/nu14153138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic kidney disease (DKD) is an emerging pandemic, paralleling the worldwide increase in obesity and diabetes mellitus. DKD is now the most frequent cause of end-stage renal disease and is associated with an excessive risk of cardiovascular morbidity and mortality. DKD is a consequence of systemic endothelial dysfunction. The endothelial-dependent cytoprotective coagulation protease activated protein C (aPC) ameliorates glomerular damage in DKD, in part by reducing mitochondrial ROS generation in glomerular cells. Whether aPC reduces mitochondrial ROS generation in the tubular compartment remains unknown. Here, we conducted expression profiling of kidneys in diabetic mice (wild-type and mice with increased plasma levels of aPC, APChigh mice). The top induced pathways were related to metabolism and in particular to oxidoreductase activity. In tubular cells, aPC maintained the expression of genes related to the electron transport chain, PGC1-α expression, and mitochondrial mass. These effects were associated with reduced mitochondrial ROS generation. Likewise, NLRP3 inflammasome activation and sterile inflammation, which are known to be linked to excess ROS generation in DKD, were reduced in diabetic APChigh mice. Thus, aPC reduces mitochondrial ROS generation in tubular cells and dampens the associated renal sterile inflammation. These studies support approaches harnessing the cytoprotective effects of aPC in DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Berend Isermann
- Correspondence: ; Tel.: +49-(0)341-972-2200; Fax: 49-(0)341-972-2379
| |
Collapse
|
5
|
Cao H, Seto SW, Bhuyan DJ, Chan HH, Song W. Effects of Thrombin on the Neurovascular Unit in Cerebral Ischemia. Cell Mol Neurobiol 2022; 42:973-984. [PMID: 33392917 PMCID: PMC11441220 DOI: 10.1007/s10571-020-01019-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022]
Abstract
Cerebral ischemia is a cerebrovascular disease with high morbidity and mortality that poses a significant burden on society and the economy. About 60% of cerebral ischemia is caused by thrombus, and the formation of thrombus proceeds from insoluble fibrin, following its transformation from liquid fibrinogen. In thrombus-induced ischemia, increased permeability of the blood-brain barrier (BBB), followed by the extravasation of blood components into the brain results in an altered brain microenvironment. Changes in the brain microenvironment affect brain function and the neurovascular unit (NVU), the working unit of the brain. Recent studies have reported that coagulation factors interact with the NVU and its components, but the specific function of this interaction is highly speculative and warrants further investigations. In this article, we reviewed the role of coagulation factors in cerebral ischemia and the role of coagulation factors in thrombosis. Additionally, the influence of thrombin on the NVU is introduced, as well as in the function of NVU, which may help to explore part of brain injury mechanism during ischemia. Lastly, we propose some novel therapeutic approaches on ischemic stroke by reducing the risk of coagulation.
Collapse
Affiliation(s)
- Hui Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China
| | - Sai Wang Seto
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Hoi Huen Chan
- Hong Kong Community College, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wenting Song
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, China.
| |
Collapse
|
6
|
Danielsson H, Tebani A, Zhong W, Fagerberg L, Brusselaers N, Hård AL, Uhlén M, Hellström A. Blood protein profiles related to preterm birth and retinopathy of prematurity. Pediatr Res 2022; 91:937-946. [PMID: 33895781 PMCID: PMC9064798 DOI: 10.1038/s41390-021-01528-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/25/2021] [Accepted: 03/30/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP. METHODS Longitudinal serum protein profiles the first months after birth in 14 extremely preterm infants were integrated with perinatal and ROP data. In total, 448 unique protein targets were analyzed using Proximity Extension Assays. RESULTS We found 20 serum proteins associated with gestational age and/or ROP functioning within mainly angiogenesis, hematopoiesis, bone regulation, immune function, and lipid metabolism. Infants with severe ROP had persistent lower levels of several identified proteins during the first postnatal months. CONCLUSIONS The study contributes to the understanding of the relationship between longitudinal serum protein levels and immaturity and abnormal retinal neurovascular development. This is essential for understanding pathophysiological mechanisms and to optimize diagnosis, treatment and prevention for ROP. IMPACT Longitudinal protein profiles of 14 extremely preterm infants were analyzed using a novel multiplex protein analysis platform combined with perinatal data. Proteins associated with gestational age at birth and the neurovascular disease ROP were identified. Among infants with ROP, longitudinal levels of the identified proteins remained largely unchanged during the first postnatal months. The main functions of the proteins identified were angiogenesis, hematopoiesis, immune function, bone regulation, lipid metabolism, and central nervous system development. The study contributes to the understanding of longitudinal serum protein patterns related to gestational age and their association with abnormal retinal neuro-vascular development.
Collapse
Affiliation(s)
- Hanna Danielsson
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.416648.90000 0000 8986 2221Sach’s Children’s and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Abdellah Tebani
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden ,grid.41724.340000 0001 2296 5231Department of Metabolic Biochemistry, Rouen University Hospital, Rouen, France ,grid.41724.340000 0001 2296 5231Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Rouen, France
| | - Wen Zhong
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Linn Fagerberg
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Nele Brusselaers
- grid.4714.60000 0004 1937 0626Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Stockholm, Sweden ,grid.5284.b0000 0001 0790 3681Global Health Institute, Antwerp University, Antwerp, Belgium ,grid.5342.00000 0001 2069 7798Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anna-Lena Hård
- grid.1649.a000000009445082XThe Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- grid.5037.10000000121581746Science for Life Laboratory, Department of Protein Science, KTH—Royal Institute of Technology, Stockholm, Sweden
| | - Ann Hellström
- The Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
7
|
Procoagulant Extracellular Vesicles Alter Trophoblast Differentiation in Mice by a Thrombo-Inflammatory Mechanism. Int J Mol Sci 2021; 22:ijms22189873. [PMID: 34576036 PMCID: PMC8466022 DOI: 10.3390/ijms22189873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Procoagulant extracellular vesicles (EV) and platelet activation have been associated with gestational vascular complications. EV-induced platelet-mediated placental inflammasome activation has been shown to cause preeclampsia-like symptoms in mice. However, the effect of EV-mediated placental thrombo-inflammation on trophoblast differentiation remains unknown. Here, we identify that the EV-induced thrombo-inflammatory pathway modulates trophoblast morphology and differentiation. EVs and platelets reduce syncytiotrophoblast differentiation while increasing giant trophoblast and spongiotrophoblast including the glycogen-rich cells. These effects are platelet-dependent and mediated by the NLRP3 inflammasome. In humans, inflammasome activation was negatively correlated with trophoblast differentiation marker GCM1 and positively correlated with blood pressure. These data identify a crucial role of EV-induced placental thrombo-inflammation on altering trophoblast differentiation and suggest platelet activation or inflammasome activation as a therapeutic target in order to achieve successful placentation.
Collapse
|
8
|
Li Q, Yang W, Zhao K, Sun X, Bao L. Thrombomodulin gene polymorphism and the occurrence and prognostic value of sepsis acute kidney injury. Medicine (Baltimore) 2021; 100:e26293. [PMID: 34190147 PMCID: PMC8257907 DOI: 10.1097/md.0000000000026293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/20/2021] [Accepted: 05/19/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT To investigate the relationship between thrombomodulin (THBD) gene single nucleotide polymorphisms (SNPs) and susceptibility to sepsis and the occurrence and prognosis of acute kidney injury (AKI) in sepsis patients.The genotypes of THBD gene rs1962, rs3176123, and rs1042580 in 178 sepsis patients with AKI, 243 sepsis patients without AKI (No AKI), and 103 healthy controls were analyzed by direct sequencing. Enzyme-linked immunosorbent assay (ELISA) was used to detect the plasma THBD protein levels. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of plasma THBD levels in sepsis, AKI, and death of sepsis patients.The C allele carriers of THBD gene rs1962 were more likely to develop AKI and sepsis than the T allele carriers (OR = 1.61, 95% CI: 1.18-2.19, P < .01; OR = 2.16, 95% CI: 1.42-3.29, P < .01). The rs3176123 G allele was associated with an increased risk of AKI in sepsis patients (OR = 1.41, 95% CI: 1.06-1.88, P = .02), the G allele had a significant association with a higher risk of sepsis susceptibility (OR = 1.91, 95% CI: 1.33-2.75, P < .01). Sepsis patients of rs1042580 C allele had a lower risk of AKI than those of T allele (OR = 0.58, 95% CI: 0.37-0.91, P = .02), the C allele was related to a reduced risk of sepsis susceptibility (OR = 0.38, 95% CI: 0.26-0.55, P < .01). The THBD gene rs1962, rs3176123, and rs1042580 TGT haplotype was linked to higher risk of AKI in patients with sepsis (OR = 1.96, 95%CI: 1.14-3.38, P = .02). Sepsis patients with the THBD gene rs1962 TC + CC genotype had a higher risk of death than those with TT genotype (OR = 10.93, 95%CI: 5.05-26.96, P < .01), but there was no significant difference in the risk of death in sepsis patients with different genotypes at rs3176123 and rs1042580 (P > .05).The THBD gene rs1962, rs3176123, and rs1042580 SNPs are significantly associated with sepsis susceptibility and the risk of AKI. The rs1962 SNP is related to the risk of death in sepsis patients.
Collapse
Affiliation(s)
- Qin Li
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Wenjuan Yang
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Keming Zhao
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Xifeng Sun
- Department of Nephrology Ward, Zibo Central Hospital, Zhangdian, Zibo, Shandong
| | - Liuqian Bao
- Department of Emergency Medicine Department, People's Hospital of Tiantai County, Tiantai County, Taizhou City, Zhejiang, China
| |
Collapse
|
9
|
Jordan KR, Parra-Izquierdo I, Gruber A, Shatzel JJ, Pham P, Sherman LS, McCarty OJT, Verbout NG. Thrombin generation and activity in multiple sclerosis. Metab Brain Dis 2021; 36:407-420. [PMID: 33411219 PMCID: PMC7864536 DOI: 10.1007/s11011-020-00652-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
The coagulation cascade and immune system are intricately linked, highly regulated and respond cooperatively in response to injury and infection. Increasingly, evidence of hyper-coagulation has been associated with autoimmune disorders, including multiple sclerosis (MS). The pathophysiology of MS includes immune cell activation and recruitment to the central nervous system (CNS) where they degrade myelin sheaths, leaving neuronal axons exposed to damaging inflammatory mediators. Breakdown of the blood-brain barrier (BBB) facilitates the entry of peripheral immune cells. Evidence of thrombin activity has been identified within the CNS of MS patients and studies using animal models of experimental autoimmune encephalomyelitis (EAE), suggest increased thrombin generation and activity may play a role in the pathogenesis of MS as well as inhibit remyelination processes. Thrombin is a serine protease capable of cleaving multiple substrates, including protease activated receptors (PARs), fibrinogen, and protein C. Cleavage of all three of these substrates represent pathways through which thrombin activity may exert immuno-regulatory effects and regulate permeability of the BBB during MS and EAE. In this review, we summarize evidence that thrombin activity directly, through PARs, and indirectly, through fibrin formation and activation of protein C influences neuro-immune responses associated with MS and EAE pathology.
Collapse
Affiliation(s)
- Kelley R Jordan
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA.
| | - Ivan Parra-Izquierdo
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - András Gruber
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
- Aronora Inc, Portland, OR, USA
| | - Joseph J Shatzel
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Peter Pham
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Larry S Sherman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Knight Cancer Institute, Portland, OR, USA
| | - Norah G Verbout
- Department of Biomedical Engineering, Oregon Health and Science University, School of Medicine, 3303 SW Bond Avenue, Portland, OR, 97239, USA
- Aronora Inc, Portland, OR, USA
| |
Collapse
|
10
|
Kohli S, Singh KK, Gupta A, Markmeyer P, Lochmann F, Gupta D, Rana R, Elwakiel A, Huebner H, Ruebner M, Isermann B. Placental thromboinflammation impairs embryonic survival by reducing placental thrombomodulin expression. Blood 2021; 137:977-982. [PMID: 32870264 DOI: 10.1182/blood.2020005225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/11/2020] [Indexed: 12/23/2022] Open
Abstract
Excess platelet activation by extracellular vesicles (EVs) results in trophoblast inflammasome activation, interleukin 1β (IL-1β) activation, preeclampsia (PE), and partial embryonic lethality. Embryonic thrombomodulin (TM) deficiency, which causes embryonic lethality hallmarked by impaired trophoblast proliferation, has been linked with maternal platelet activation. We hypothesized that placental TM loss, platelet activation, and embryonic lethality are mechanistically linked to trophoblast inflammasome activation. Here, we uncover unidirectional interaction of placental inflammasome activation and reduced placental TM expression: although inflammasome inhibition did not rescue TM-null embryos from lethality, the inflammasome-dependent cytokine IL-1β reduced trophoblast TM expression and impaired pregnancy outcome. EVs, known to induce placental inflammasome activation, reduced trophoblast TM expression and proliferation. Trophoblast TM expression correlated negatively with IL-1β expression and positively with platelet numbers and trophoblast proliferation in human PE placentae, implying translational relevance. Soluble TM treatment or placental TM restoration ameliorated the EV-induced PE-like phenotype in mice, preventing placental thromboinflammation and embryonic death. The lethality of TM-null embryos is not a consequence of placental NLRP3 inflammasome activation. Conversely, EV-induced placental inflammasome activation reduces placental TM expression, promoting placental and embryonic demise. These data identify a new function of placental TM in PE and suggest that soluble TM limits thromboinflammatory pregnancy complications.
Collapse
Affiliation(s)
- Shrey Kohli
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Kunal Kumar Singh
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
| | - Anubhuti Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Paulina Markmeyer
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Franziska Lochmann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Dheerendra Gupta
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Rajiv Rana
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| | - Hanna Huebner
- Department of Gynecology and Obstetrics, Compreshensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (EMN), Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias Ruebner
- Department of Gynecology and Obstetrics, Compreshensive Cancer Center Erlangen-European Metropolitan Region of Nuremberg (EMN), Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry, and Molecular Diagnostics, University Hospital Leipzig, Leipzig University, Leipzig, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Otto von Guericke University Magdeburg, Magdeburg, Germany; and
| |
Collapse
|
11
|
Huang TC, Wu HL, Chen SH, Wang YT, Wu CC. Thrombomodulin facilitates peripheral nerve regeneration through regulating M1/M2 switching. J Neuroinflammation 2020; 17:240. [PMID: 32799887 PMCID: PMC7477856 DOI: 10.1186/s12974-020-01897-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Background Excessive inflammation within damaged tissue usually leads to delayed or insufficient regeneration, and nerves in the peripheral nervous system (PNS) generally do not recover fully following damage. Consequently, there is growing interest in whether modulation of the inflammatory response could help to promote nerve regeneration in the PNS. However, to date, there are no practical therapeutic strategies for manipulating inflammation after nerve injury. Thrombomodulin (TM) is a transmembrane glycoprotein containing five domains. The lectin-like domain of TM has the ability to suppress the inflammatory response. However, whether TM can modulate inflammation in the PNS during nerve regeneration has yet to be elucidated. Methods We investigated the role of TM in switching proinflammatory type 1 macrophages (M1) to anti-inflammatory type 2 macrophages (M2) in a human monocytic cell line (THP-1) and evaluated the therapeutic application of TM in transected sciatic nerve injury in rats. Results The administration of TM during M1 induction significantly reduced the expression levels of inflammatory cytokines, including TNF-a (p < 0.05), IL-6 (p < 0.05), and CD86 (p < 0.05), in THP-1 cells. Simultaneously, the expression levels of M2 markers, including IL-10 (p < 0.05) and CD206 (p < 0.05), were significantly increased in TM-treated THP-1 cells. Inhibition of IL-4R-c-Myc-pSTAT6-PPARγ signaling abolished the expression levels of IL-10 (p < 0.05) and CD206 (p < 0.05). The conditioned medium (CM) collected from M1 cells triggered an inflammatory response in primary Schwann cells, while CM collected from M1 cells treated with TM resulted in a dose-dependent reduction in inflammation. TM treatment led to better nerve regeneration when tested 6 weeks after injury and preserved effector muscle function. In addition, TM treatment reduced macrophage infiltration at the site of injury and led to potent M1 to M2 transition, thus indicating the anti-inflammatory capacity of TM. Conclusions Collectively, our findings demonstrate the anti-inflammatory role of TM during nerve regeneration. Therefore, TM represents a potential drug for the promotion and modulation of functional recovery in peripheral nerves that acts by regulating the M1/M2 ratio.
Collapse
Affiliation(s)
- Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Hua-Lin Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ting Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, No. 1, University Rd, Tainan, 701, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
12
|
Kant R, Halder SK, Fernández JA, Griffin JH, Milner R. Activated Protein C Attenuates Experimental Autoimmune Encephalomyelitis Progression by Enhancing Vascular Integrity and Suppressing Microglial Activation. Front Neurosci 2020; 14:333. [PMID: 32351356 PMCID: PMC7174764 DOI: 10.3389/fnins.2020.00333] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Background Activated protein C (APC), a serine protease with antithrombotic effects, protects in animal models of ischemic stroke by suppressing inflammation and enhancing vascular integrity, angiogenesis, neurogenesis and neuroprotection. A small number of animal studies suggest it might also have therapeutic potential in multiple sclerosis (MS), though results have been mixed. Based on these conflicting data, the goals of this study were to clarify the therapeutic potential of APC in the experimental autoimmune encephalomyelitis (EAE) model of MS and to determine mechanistically how APC mediates this protective effect. Methods The protective potential of APC was examined in a chronic progressive model of EAE. Vascular breakdown, tight junction protein expression and vascular expression of fibronectin and α5β1 integrin as well as vascularity and glial activation were analyzed using immunofluorescence (IF) of spinal cord sections taken from mice with established EAE. The direct influence of APC on microglial activation was evaluated in vitro by a combination of morphology and MMP-9 expression. Results APC attenuated the progression of EAE, and this was strongly associated at the histopathological level with reduced levels of leukocyte infiltration and concomitant demyelination. Further analysis revealed that APC reduced vascular breakdown which was associated with maintained endothelial expression of the tight junction protein zonula occludens-1 (ZO-1). In addition, APC suppressed microglial activation in this EAE model and in vitro studies revealed that APC strongly inhibited microglial activation at both the morphological level and by the expression of the pro-inflammatory protease MMP-9. Conclusion These findings build on the work of others in demonstrating strong therapeutic potential for APC in the treatment of inflammatory demyelinating disease and suggest that enhancement of vascular integrity and suppression of microglial activation may be important mediators of this protection.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Sebok K Halder
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Jose A Fernández
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Richard Milner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
13
|
Chitu V, Biundo F, Shlager GGL, Park ES, Wang P, Gulinello ME, Gokhan Ş, Ketchum HC, Saha K, DeTure MA, Dickson DW, Wszolek ZK, Zheng D, Croxford AL, Becher B, Sun D, Mehler MF, Stanley ER. Microglial Homeostasis Requires Balanced CSF-1/CSF-2 Receptor Signaling. Cell Rep 2020; 30:3004-3019.e5. [PMID: 32130903 PMCID: PMC7370656 DOI: 10.1016/j.celrep.2020.02.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 12/18/2019] [Accepted: 02/06/2020] [Indexed: 02/08/2023] Open
Abstract
CSF-1R haploinsufficiency causes adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP). Previous studies in the Csf1r+/- mouse model of ALSP hypothesized a central role of elevated cerebral Csf2 expression. Here, we show that monoallelic deletion of Csf2 rescues most behavioral deficits and histopathological changes in Csf1r+/- mice by preventing microgliosis and eliminating most microglial transcriptomic alterations, including those indicative of oxidative stress and demyelination. We also show elevation of Csf2 transcripts and of several CSF-2 downstream targets in the brains of ALSP patients, demonstrating that the mechanisms identified in the mouse model are functional in humans. Our data provide insights into the mechanisms underlying ALSP. Because increased CSF2 levels and decreased microglial Csf1r expression have also been reported in Alzheimer's disease and multiple sclerosis, we suggest that the unbalanced CSF-1R/CSF-2 signaling we describe in the present study may contribute to the pathogenesis of other neurodegenerative conditions.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Gabriel G L Shlager
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Eun S Park
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maria E Gulinello
- Behavioral Core Facility, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Şölen Gokhan
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harmony C Ketchum
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kusumika Saha
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael A DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Deyou Zheng
- The Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, and Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich 8057, Switzerland
| | - Daqian Sun
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mark F Mehler
- Institute for Brain Disorders and Neural Regeneration, Departments of Neurology, Neuroscience, and Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
14
|
Oldani M, Fabbri M, Melchioretto P, Callegaro G, Fusi P, Gribaldo L, Forcella M, Urani C. In vitro and bioinformatics mechanistic-based approach for cadmium carcinogenicity understanding. Toxicol In Vitro 2020; 65:104757. [PMID: 31904401 PMCID: PMC7166080 DOI: 10.1016/j.tiv.2020.104757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/28/2019] [Accepted: 01/01/2020] [Indexed: 02/07/2023]
Abstract
Cadmium is a toxic metal able to enter the cells through channels and transport pathways dedicated to essential ions, leading, among others, to the dysregulation of divalent ions homeostasis. Despite its recognized human carcinogenicity, the mechanisms are still under investigation. A powerful tool for mechanistic studies of carcinogenesis is the Cell Transformation Assay (CTA). We have isolated and characterized by whole genome microarray and bioinformatics analysis of differentially expressed genes (DEGs) cadmium-transformed cells from different foci (F1, F2, and F3) at the end of CTA (6 weeks). The systematic analysis of up- and down-regulated transcripts and the comparison of DEGs in transformed cells evidence different functional targets and the complex picture of cadmium-induced transformation. Only 34 in common DEGs are found in cells from all foci, and among these, only 4 genes are jointly up-regulated (Ccl2, Ccl5, IL6 and Spp1), all responsible for cytokines/chemokines coding. Most in common DEGs are down-regulated, suggesting that the switching-off of specific functions plays a major role in this process. In addition, the comparison of dysregulated pathways immediately after cadmium treatment with those in transformed cells provides a valuable means to the comprehension of the overall process. Cell transformation Assay and toxicogenomics are integrated to study cadmium carcinogenesis mechanisms Inflammatory response is the only common feature in Cd-transformed cells from all different foci Switching-off of specific functions plays a major role in Cd-induced carcinogenesis Comparison of triggering signals and deregulated pathways in transformed cells provides hints on cadmium mechanisms
Collapse
Affiliation(s)
- Monica Oldani
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - Marco Fabbri
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA
| | - Pasquale Melchioretto
- Department of Earth and Environmental Sciences, University of Milan - Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Giulia Callegaro
- Department of Earth and Environmental Sciences, University of Milan - Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, Piazza della Scienza 3, 20126 Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL) Interuniversity Research Center, Italy
| | - Laura Gribaldo
- European Commission, DG Joint Research Centre, Via Fermi 2749, 21027 Ispra, VA, Italy.
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milan - Bicocca, Piazza della Scienza 3, 20126 Milan, Italy
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milan - Bicocca, Piazza della Scienza 1, 20126 Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL) Interuniversity Research Center, Italy
| |
Collapse
|
15
|
Activated clotting factor X mediates mitochondrial alterations and inflammatory responses via protease-activated receptor signaling in alveolar epithelial cells. Eur J Pharmacol 2019; 869:172875. [PMID: 31877279 DOI: 10.1016/j.ejphar.2019.172875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/10/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
There is growing evidence for the contribution of the activated coagulation factor X (FXa) in the development of chronic inflammatory lung diseases. Therefore, we aimed to investigate effects of exogenous FXa on mitochondrial and metabolic function as well as the induction of inflammatory molecules in type II alveolar epithelial cells. Effects of FXa on epithelial cells were investigated in A549 cell line. Activation of extracellular signal-regulated kinase (ERK) and induction of inflammatory molecules were examined by immunoblot and gene expression analysis. Mitochondrial function was assessed by the measurement of oxygen consumption during maximal oxidative phosphorylation and quantitative determination of cardiolipin oxidation. Apoptosis was tested using a caspase 3 antibody. Metabolic activity and lactate dehydrogenase assay were applied for the detection of cellular viability. FXa activated ERK1/2 and induced an increase in the expression of pro-inflammatory cytokines, which was prevented by an inhibitor of FXa, edoxaban, or an inhibitor of protease-activated receptor 1, vorapaxar. Exposure to FXa caused mitochondrial alteration with restricted capacity for ATP generation, which was effectively prevented by edoxaban, vorapaxar and GB83 (inhibitor of protease-activated receptor 2). Of note, exposure to FXa did not initiate apoptosis in epithelial cells. FXa-dependent pro-inflammatory state and impairment of mitochondria did not reach the level of significance in lung epithelial cells. However, these effects might limit regenerative potency of lung epithelial cells, particular under clinical circumstances where lung injury causes exposure to clotting factors.
Collapse
|
16
|
Ziliotto N, Zivadinov R, Baroni M, Marchetti G, Jakimovski D, Bergsland N, Ramasamy DP, Weinstock-Guttman B, Straudi S, Manfredini F, Ramanathan M, Bernardi F. Plasma levels of protein C pathway proteins and brain magnetic resonance imaging volumes in multiple sclerosis. Eur J Neurol 2019; 27:235-243. [PMID: 31408242 DOI: 10.1111/ene.14058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/05/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE The involvement of protein C (PC) pathway components in multiple sclerosis (MS) has scarcely been explored. The aim was to investigate their levels in relation to clinical and neurodegenerative magnetic resonance imaging (MRI) outcomes in patients. METHODS In all, 138 MS patients and 42 healthy individuals were studied. PC, protein S (PS) and soluble endothelial protein C receptor (sEPCR) were evaluated by multiplex assays and enzyme-linked immunosorbent assay. Regression analyses between 3 T MRI outcomes and PC pathway components were performed. ancova was used to compare MRI volumes based on protein level quartiles. Partial correlation was assessed amongst levels of PC pathway components and hemostasis protein levels, including soluble thrombomodulin (sTM), heparin cofactor II (HCII), plasminogen activator inhibitor 1 (PAI-1) and factor XII (FXII). The variation of PC concentration across four time points was evaluated in 32 additional MS patients. RESULTS There was an association between PC concentration, mainly reflecting the zymogen PC, and MRI measures for volumes of total gray matter (GM) (P = 0.003), thalamus (P = 0.007), cortex (P = 0.008), deep GM (P = 0.009) and whole brain (P = 0.026). Patients in the highest PC level quartile were characterized by the lowest GM volumes. Correlations of PC-HCII, PC-FXII and sEPCR-sTM values were detectable in MS patients, whilst PC-PS and PS-PAI-1 correlations were present in healthy individuals only. CONCLUSIONS Protein C plasma concentrations might be associated with neurodegenerative MRI outcomes in MS. Several differences in correlation amongst protein plasma levels suggest dysregulation of PC pathway components in MS patients. The stability of PC concentration over time supports a PC investigation in relation to GM atrophy in MS.
Collapse
Affiliation(s)
- N Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - R Zivadinov
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA.,Neurology, State University of New York, Buffalo, NY, USA
| | - M Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - D Jakimovski
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - N Bergsland
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | - D P Ramasamy
- Buffalo Neuroimaging Analysis Center, Buffalo, NY, USA
| | | | - S Straudi
- Department of Neuroscience and Rehabilitation, Ferrara University Hospital, Ferrara, Italy
| | - F Manfredini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - M Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Activated protein C (APC) is a homeostatic coagulation protease with anticoagulant and cytoprotective activities. Focusing on APC's effects in the brain, this review discusses three different scenarios that illustrate how APC functions are intimately affecting the physiology and pathophysiology of the brain. RECENT FINDINGS Cytoprotective APC therapy holds promise for the treatment of ischemic stroke, and a recently completed trial suggested that cytoprotective-selective 3K3A-APC reduced bleeding in ischemic stroke patients. In contrast, APC's anticoagulant activity contributes to brain bleeding as shown by the disproportional upregulation of APC generation in cerebral cavernous malformations lesions in mice. However, too little APC generation also contributes to maladies of the brain, such as in case of cerebral malaria where the binding of infected erythrocytes to the endothelial protein C receptor (EPCR) may interfere with the EPCR-dependent functions of the protein C pathway. Furthermore, discoveries of new activities of APC such as the inhibition of the NLRP3-mediated inflammasome and of new applications of APC therapy such as in Alzheimer's disease and graft-versus-host disease continue to advance our knowledge of this important proteolytic regulatory system. SUMMARY APC's many activities or lack thereof are intimately involved in multiple neuropathologies, providing abundant opportunities for translational research.
Collapse
|
18
|
Ziliotto N, Bernardi F, Jakimovski D, Zivadinov R. Coagulation Pathways in Neurological Diseases: Multiple Sclerosis. Front Neurol 2019; 10:409. [PMID: 31068896 PMCID: PMC6491577 DOI: 10.3389/fneur.2019.00409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 04/04/2019] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made in understanding the complex interactions between the coagulation system and inflammation and autoimmunity. Increased blood-brain-barrier (BBB) permeability, a key event in the pathophysiology of multiple sclerosis (MS), leads to the irruption into the central nervous system of blood components that include virtually all coagulation/hemostasis factors. Besides their cytotoxic deposition and role as a possible trigger of the coagulation cascade, hemostasis components cause inflammatory response and immune activation, sustaining neurodegenerative events in MS. Early studies showing the contribution of altered hemostasis in the complex pathophysiology of MS have been strengthened by recent studies using methodologies that permitted deeper investigation. Fibrin(ogen), an abundant protein in plasma, has been identified as a key contributor to neuroinflammation. Perturbed fibrinolysis was found to be a hallmark of progressive MS with abundant cortical fibrin(ogen) deposition. The immune-modulatory function of the intrinsic coagulation pathway still remains to be elucidated in MS. New molecular details in key hemostasis components participating in MS pathophysiology, and particularly involved in inflammatory and immune responses, could favor the development of novel therapeutic targets to ameliorate the evolution of MS. This review article introduces essential information on coagulation factors, inhibitors, and the fibrinolytic pathway, and highlights key aspects of their involvement in the immune system and inflammatory response. It discusses how hemostasis components are (dys)regulated in MS, and summarizes histopathological post-mortem human brain evidence, as well as cerebrospinal fluid, plasma, and serum studies of hemostasis and fibrinolytic pathways in MS. Studies of disease-modifying treatments as potential modifiers of coagulation factor levels, and case reports of autoimmunity affecting hemostasis in MS are also discussed.
Collapse
Affiliation(s)
- Nicole Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dejan Jakimovski
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Robert Zivadinov
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University at Buffalo, State University of New York, Buffalo, NY, United States.,Clinical Translational Science Institute, Center for Biomedical Imaging, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
19
|
Princz A, Kounakis K, Tavernarakis N. Mitochondrial contributions to neuronal development and function. Biol Chem 2019; 399:723-739. [PMID: 29476663 DOI: 10.1515/hsz-2017-0333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
Abstract
Mitochondria are critical to tissues and organs characterized by high-energy demands, such as the nervous system. They provide essential energy and metabolites, and maintain Ca2+ balance, which is imperative for proper neuronal function and development. Emerging findings further underline the role of mitochondria in neurons. Technical advances in the last decades made it possible to investigate key mechanisms in neuronal development and the contribution of mitochondria therein. In this article, we discuss the latest findings relevant to the involvement of mitochondria in neuronal development, placing emphasis on mitochondrial metabolism and dynamics. In addition, we survey the role of mitochondrial energy metabolism and Ca2+ homeostasis in proper neuronal function, and the involvement of mitochondria in axon myelination.
Collapse
Affiliation(s)
- Andrea Princz
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Biology, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Konstantinos Kounakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, N. Plastira 100, Vassilika Vouton, Heraklion 70013, Crete, Greece
| |
Collapse
|
20
|
Plantone D, Inglese M, Salvetti M, Koudriavtseva T. A Perspective of Coagulation Dysfunction in Multiple Sclerosis and in Experimental Allergic Encephalomyelitis. Front Neurol 2019; 9:1175. [PMID: 30692962 PMCID: PMC6340371 DOI: 10.3389/fneur.2018.01175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/18/2018] [Indexed: 01/09/2023] Open
Abstract
A key role of both coagulation and vascular thrombosis has been reported since the first descriptions of multiple sclerosis (MS). Subsequently, the observation of a close concordance between perivascular fibrin(ogen) deposition and the occurrence of clinical signs in experimental allergic encephalomyelitis (EAE), an animal model of MS, led to numerous investigations focused on the role of thrombin and fibrin(ogen). Indeed, the activation of microglia, resident innate immune cells, occurs early after fibrinogen leakage in the pre-demyelinating lesion stage of EAE and MS. Thrombin has both neuroprotective and pro-apoptotic effects according to its concentration. After exposure to high concentrations of thrombin, astrocytes become reactive and lose their neuroprotective and supportive functions, microglia proliferate, and produce reactive oxygen species, IL-1β, and TNFα. Heparin inhibits the thrombin generation and suppresses EAE. Platelets play an important role too. Indeed, in the acute phase of the disease, they begin the inflammatory response in the central nervous system by producing of IL-1alpha and triggering and amplifying the immune response. Their depletion, on the contrary, ameliorates the course of EAE. Finally, it has been proven that the use of several anticoagulant agents can successfully improve EAE. Altogether, these studies highlight the role of the coagulation pathway in the pathophysiology of MS and suggest possible therapeutic targets that may complement existing treatments.
Collapse
Affiliation(s)
| | - Matilde Inglese
- Department of Neurology, Radiology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marco Salvetti
- Department of Neuroscience Mental Health and Sensory Organs (NEMOS), Sapienza University, Sant'Andrea Hospital, Rome, Italy.,Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Tatiana Koudriavtseva
- Department of Clinical Experimental Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
21
|
Ziliotto N, Bernardi F, Jakimovski D, Baroni M, Marchetti G, Bergsland N, Ramasamy DP, Weinstock-Guttman B, Schweser F, Zamboni P, Ramanathan M, Zivadinov R. Hemostasis biomarkers in multiple sclerosis. Eur J Neurol 2018; 25:1169-1176. [PMID: 29758118 DOI: 10.1111/ene.13681] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 05/03/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND PURPOSE The aim was to investigate the plasma levels of hemostasis components in multiple sclerosis (MS) and their association with clinical and magnetic resonance imaging (MRI) outcomes. METHODS In all, 138 MS patients [85 with relapsing-remitting MS (RR-MS) and 53 with progressive MS (P-MS) with a mean age of 54 years; 72.5% female; median Expanded Disability Status Scale 3.5; mean disease duration 21 years] and 42 age- and sex-matched healthy individuals (HI) were studied. All subjects were examined with 3 T MRI and clinical examinations. Plasma levels of hemostasis factors [procoagulant, factor XII (FXII)] and inhibitors [tissue factor pathway inhibitor (TFPI), thrombomodulin, heparin cofactor II, a disintegrin-like and metalloprotease with thrombospondin type 1 motif 13 (ADAMTS13) and plasminogen activator inhibitor 1 (PAI-1)] were evaluated by magnetic Luminex assays and enzyme-linked immunosorbent assay. Associations between hemostasis plasma levels and clinical and MRI outcomes were assessed. RESULTS Lower ADAMTS13 levels were found in MS patients compared to HI (P = 0.008) and in MS patients presenting with cerebral microbleeds compared to those without (P = 0.034). Higher PAI-1 levels were found in MS patients compared to HI (P = 0.02). TFPI levels were higher in the P-MS subgroup compared to RR-MS patients (P = 0.011) and compared to HI (P = 0.002). No significant associations between hemostasis plasma levels and clinical or MRI outcomes were found. CONCLUSIONS Decreased ADAMTS13, particularly in MS patients with cerebral microbleeds, which deserves further investigation, and increased PAI-1 and TFPI levels were observed in MS patients, which deserves further investigation. No relationship between hemostasis plasma levels and measures of disease severity was detected.
Collapse
Affiliation(s)
- N Ziliotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - F Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - D Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - M Baroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - G Marchetti
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - N Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - D P Ramasamy
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - B Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - F Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - P Zamboni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - M Ramanathan
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | - R Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Biomedical Imaging, Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
22
|
Uzawa A, Mori M, Masuda H, Ohtani R, Uchida T, Kuwabara S. Recombinant thrombomodulin ameliorates experimental autoimmune encephalomyelitis by suppressing high mobility group box 1 and inflammatory cytokines. Clin Exp Immunol 2018; 193:47-54. [PMID: 29509323 DOI: 10.1111/cei.13123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 01/04/2023] Open
Abstract
Recombinant thrombomodulin (rTM) has pleiotrophic properties, including anti-coagulation and anti-inflammation; however, its effectiveness as a treatment for multiple sclerosis (MS) has not been evaluated fully. High mobility group box 1 (HMGB1) and proinflammatory cytokines, working as inflammatory mediators, are reportedly involved in the inflammatory pathogenesis of MS. The aim of this study was to determine whether rTM can be a potential therapeutic agent for experimental autoimmune encephalomyelitis (EAE). EAE mice received rTM treatment (1 mg or 0·1 mg/kg/day) from days 11 to 15 after immunization. The clinical variables, plasma levels of inflammatory cytokines and HMGB1 and pathological findings in EAE were evaluated. rTM administration ameliorated the clinical and pathological severity of EAE. An immunohistochemical study of the spinal cord showed weaker cytoplasmic HMGB1 staining in the rTM-treated EAE mice than in the untreated EAE mice. Plasma levels of inflammatory cytokines and HMGB1 were suppressed by rTM treatment. In conclusion, rTM down-regulated inflammatory mediators in the peripheral circulation and prevented HMGB1 release from nuclei in the central nervous system, suppressing EAE-related inflammation. rTM could have a novel therapeutic potential for patients with MS.
Collapse
Affiliation(s)
- A Uzawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - M Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - H Masuda
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - R Ohtani
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - T Uchida
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - S Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
23
|
Isermann B. Homeostatic effects of coagulation protease-dependent signaling and protease activated receptors. J Thromb Haemost 2017; 15:1273-1284. [PMID: 28671351 DOI: 10.1111/jth.13721] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A homeostatic function of the coagulation system in regard to hemostasis is well established. Homeostasis of blood coagulation depends partially on protease activated receptor (PAR)-signaling. Beyond coagulation proteases, numerous other soluble and cell-bound proteases convey cellular effects via PAR signaling. As we learn more about the mechanisms underlying cell-, tissue-, and context-specific PAR signaling, we concurrently gain new insights into physiological and pathophysiological functions of PARs. In this regard, regulation of cell and tissue homeostasis by PAR signaling is an evolving scheme. Akin to the control of blood clotting per se (the fibrin-platelet interaction) coagulation proteases coordinately regulate cell- and tissue-specific functions. This review summarizes recent insights into homeostatic regulation through PAR signaling, focusing on blood coagulation proteases. Considering the common use of drugs altering coagulation protease activity through either broad or targeted inhibitory activities, and the advent of PAR modulating drugs, an in-depth understanding of the mechanisms through which coagulation proteases and PAR signaling regulate not only hemostasis, but also cell and tissue homeostasis is required.
Collapse
Affiliation(s)
- B Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|