1
|
Hasdemir HS, Pozzi N, Tajkhorshid E. Atomistic characterization of β2-glycoprotein I domain V interaction with anionic membranes. J Thromb Haemost 2024; 22:3277-3289. [PMID: 39047943 DOI: 10.1016/j.jtha.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Interaction of β2-glycoprotein I (β2GPI) with anionic membranes is crucial in antiphospholipid syndrome (APS), implicating the role of its membrane-binding domain, domain V (DV). The mechanism of DV binding to anionic lipids is not fully understood. OBJECTIVES This study aimed to elucidate the molecular details of β2GPI DV binding to anionic membranes. METHODS We utilized molecular dynamics simulations to investigate the structural basis of anionic lipid recognition by DV. To corroborate the membrane-binding mode identified in the highly mobile membrane mimetic simulations, we conducted additional simulations using a full membrane model. RESULTS The study identified critical regions in DV, namely the lysine-rich loop and the hydrophobic loop, which are essential for membrane association via electrostatic and hydrophobic interactions, respectively. A novel lysine pair contributing to membrane binding was also discovered, providing new insights into β2GPI's membrane interaction. Simulations revealed 2 distinct binding modes of DV to the membrane, with mode 1 characterized by the insertion of the hydrophobic loop into the lipid bilayer, suggesting a dominant mechanism for membrane association. This interaction is pivotal for the pathogenesis of APS, as it facilitates the recognition of β2GPI by antiphospholipid antibodies. CONCLUSION The study advances our understanding of the molecular interactions between β2GPI's DV and anionic membranes, which are crucial for APS pathogenesis. It highlights the importance of specific regions in DV for membrane binding and reveals a predominant binding mode. These findings have significant implications for APS diagnostics and therapeutics, offering a deeper insight into the molecular basis of the syndrome.
Collapse
Affiliation(s)
- Hale S Hasdemir
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA. https://www.twitter.com/LabPozzi
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
2
|
Lihan M, Tajkhorshid E. Improved Highly Mobile Membrane Mimetic Model for Investigating Protein-Cholesterol Interactions. J Chem Inf Model 2024; 64:4822-4834. [PMID: 38844760 DOI: 10.1021/acs.jcim.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cholesterol (CHL) plays an integral role in modulating the function and activity of various mammalian membrane proteins. Due to the slow dynamics of lipids, conventional computational studies of protein-CHL interactions rely on either long-time scale atomistic simulations or coarse-grained approximations to sample the process. A highly mobile membrane mimetic (HMMM) has been developed to enhance lipid diffusion and thus used to facilitate the investigation of lipid interactions with peripheral membrane proteins and, with customized in silico solvents to replace phospholipid tails, with integral membrane proteins. Here, we report an updated HMMM model that is able to include CHL, a nonphospholipid component of the membrane, henceforth called HMMM-CHL. To this end, we had to optimize the effect of the customized solvents on CHL behavior in the membrane. Furthermore, the new solvent is compatible with simulations using force-based switching protocols. In the HMMM-CHL, both improved CHL dynamics and accelerated lipid diffusion are integrated. To test the updated model, we have applied it to the characterization of protein-CHL interactions in two membrane protein systems, the human β2-adrenergic receptor (β2AR) and the mitochondrial voltage-dependent anion channel 1 (VDAC-1). Our HMMM-CHL simulations successfully identified CHL binding sites and captured detailed CHL interactions in excellent consistency with experimental data as well as other simulation results, indicating the utility of the improved model in applications where an enhanced sampling of protein-CHL interactions is desired.
Collapse
Affiliation(s)
- Muyun Lihan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- NIH Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Pitkänen HH, Haapio M, Saarela M, Taskinen MR, Brinkman HJ, Lassila R. Impact of therapeutic plasma exchange on intact protein S, apolipoproteins, and thrombin generation. Transfus Apher Sci 2024; 63:103918. [PMID: 38555232 DOI: 10.1016/j.transci.2024.103918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Therapeutic plasma exchange (TPE), with solvent/detergent (S/D)-treated plasma as replacement fluid, is an extracorporeal blood purification technique with major impact on both coagulation and lipids. Our previous in vitro study showed that S/D-plasma enhances thrombin generation by lowering intact protein S (PS) levels. AIMS To evaluate the impact of altered lipid balance on coagulation phenotype during heparin-anticoagulated TPE with S/D-plasma, and to investigate whether the lowered intact PS levels with concomitant procoagulant phenotype, are recapitulated in vivo. METHODS Coagulation biomarkers, thrombin generation with Calibrated Automated Thrombogram (CAT), and lipid levels were measured before and after the consecutive 1st, 3rd and 5th episodes of TPE performed to six patients with Guillain-Barré syndrome or myasthenia gravis. The effects of in vitro dilution of S/D-plasma on thrombin generation were explored with CAT to mimic TPE. RESULTS Patients did not have coagulation disorders, except elevated FVIII. Intact PS, lipoproteins, especially LDL, Apolipoprotein CIII (ApoC3) and ApoB/ApoA1 ratio declined (p < 0.05). In contrast, VLDL and triglyceride levels stayed intact. CAT lag time shortened (p < 0.05). In vitro dilution of S/D plasma with co-transfused Ringer's lactate and 4% albumin partially reduced its procoagulant phenotype in CAT, which is mainly seen as peak thrombin, and modestly shortened lag time. CONCLUSIONS After the five settings of TPE using S/D-plasma in vivo, which associated with heparinization and reduced coagulation factor activities, our observations of declining natural anticoagulant intact PS and apolipoproteins refer to rebalance of the hemostatic and lipid profiles.
Collapse
Affiliation(s)
- Hanna H Pitkänen
- Helsinki University, Division of Anesthesiology, Department of Anesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Hematology, Coagulation Disorders Unit, Helsinki University Hospital, Helsinki, Finland, and Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland.
| | - Mikko Haapio
- Division of Nephrology, Helsinki University Hospital, Helsinki, Finland
| | - Mika Saarela
- Department of Neurology, Brain center, Helsinki University Hospital and Clinical Neurosciences, Neurology, Helsinki, Finland, University of Helsinki, Finland
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Herm-Jan Brinkman
- Department of Molecular Hematology, Sanquin Research, Amsterdam, the Netherlands
| | - Riitta Lassila
- Department of Hematology, Coagulation Disorders Unit, Helsinki University Hospital, Helsinki, Finland, and Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
4
|
Sveshnikova AN, Shibeko AM, Kovalenko TA, Panteleev MA. Kinetics and regulation of coagulation factor X activation by intrinsic tenase on phospholipid membranes. J Theor Biol 2024; 582:111757. [PMID: 38336240 DOI: 10.1016/j.jtbi.2024.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/13/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND Factor X activation by the phospholipid-bound intrinsic tenase complex is a critical membrane-dependent reaction of blood coagulation. Its regulation mechanisms are unclear, and a number of questions regarding diffusional limitation, pathways of assembly and substrate delivery remain open. METHODS We develop and analyze here a detailed mechanism-driven computer model of intrinsic tenase on phospholipid surfaces. Three-dimensional reaction-diffusion-advection and stochastic simulations were used where appropriate. RESULTS Dynamics of the system was predominantly non-stationary under physiological conditions. In order to describe experimental data, we had to assume both membrane-dependent and solution-dependent delivery of the substrate. The former pathway dominated at low cofactor concentration, while the latter became important at low phospholipid concentration. Factor VIIIa-factor X complex formation was the major pathway of the complex assembly, and the model predicted high affinity for their lipid-dependent interaction. Although the model predicted formation of the diffusion-limited layer of substrate for some conditions, the effects of this limitation on the fXa production were small. Flow accelerated fXa production in a flow reactor model by bringing in fIXa and fVIIIa rather than fX. CONCLUSIONS This analysis suggests a concept of intrinsic tenase that is non-stationary, employs several pathways of substrate delivery depending on the conditions, and is not particularly limited by diffusion of the substrate.
Collapse
Affiliation(s)
- Anastasia N Sveshnikova
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Faculty of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, 1/51 Leninskie Gory, 119991 Moscow, Russia; Department of Normal Physiology, Sechenov First Moscow State Medical University, 8/2 Trubetskaya St., 119991 Moscow, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Alexey M Shibeko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Tatiana A Kovalenko
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia
| | - Mikhail A Panteleev
- National Medical and Research Center of Pediatric Hematology, Oncology and Immunology Named After Dmitry Rogachev, 1 Samory Mashela St, Moscow, 117198, Russia; Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, 4 Kosygina St, Moscow, 119991, Russia; Faculty of Physics, Lomonosov Moscow State University, 1/2 Leninskie Gory, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Hasdemir HS, Pozzi N, Tajkhorshid E. Atomistic Characterization of Beta-2-Glycoprotein I Domain V Interaction with Anionic Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585743. [PMID: 38562685 PMCID: PMC10983932 DOI: 10.1101/2024.03.19.585743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Interaction of beta-2-glycoprotein I ( β 2 GPI) with anionic membranes is crucial in antiphospholipid syndrome (APS), implicating the role of it's membrane bind-ing domain, Domain V (DV). The mechanism of DV binding to anionic lipids is not fully understood. Objectives This study aims to elucidate the mechanism by which DV of β 2 GPI binds to anionic membranes. Methods We utilized molecular dynamics (MD) simulations to investigate the struc-tural basis of anionic lipid recognition by DV. To corroborate the membrane-binding mode identified in the HMMM simulations, we conducted additional simulations using a full mem-brane model. Results The study identified critical regions in DV, namely the lysine-rich loop and the hydrophobic loop, essential for membrane association via electrostatic and hydrophobic interactions, respectively. A novel lysine pair contributing to membrane binding was also discovered, providing new insights into β 2 GPI's membrane interaction. Simulations revealed two distinct binding modes of DV to the membrane, with mode 1 characterized by the insertion of the hydrophobic loop into the lipid bilayer, suggesting a dominant mechanism for membrane association. This interaction is pivotal for the pathogenesis of APS, as it facilitates the recognition of β 2 GPI by antiphospholipid antibodies. Conclusion The study advances our understanding of the molecular interactions be-tween β 2 GPI's DV and anionic membranes, crucial for APS pathogenesis. It highlights the importance of specific regions in DV for membrane binding and reveals a predominant bind-ing mode. These findings have significant implications for APS diagnostics and therapeutics, offering a deeper insight into the molecular basis of the syndrome.
Collapse
|
6
|
Muller MP, Morrissey JH, Tajkhorshid E. Molecular View into Preferential Binding of the Factor VII Gla Domain to Phosphatidic Acid. Biochemistry 2022; 61:1694-1703. [PMID: 35853076 PMCID: PMC9637449 DOI: 10.1021/acs.biochem.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Factor VII (FVII) is a serine protease with a key role in initiating the coagulation cascade. It is part of a family of vitamin K-dependent clotting proteins, which require vitamin K for formation of their specialized membrane-binding domains (Gla domains). Membrane binding of the FVII Gla domain is critical to the activity of FVII, mediating the formation of its complex with other clotting factors. While Gla domains among coagulation factors are highly conserved in terms of amino acid sequence and structure, they demonstrate differential binding specificity toward anionic lipids. Although most Gla domain-containing clotting proteins display a strong preference for phosphatidylserine (PS), it has been demonstrated that FVII and protein C instead bind preferentially to phosphatidic acid (PA). We have developed the first model of the FVII Gla domain bound to PA lipids in membranes containing PA, the highly mobile membrane mimetic model, which accelerates slow diffusion of lipids in molecular dynamics simulations and therefore facilitates the membrane binding process and enhances sampling of lipid interactions. Simulations were performed using atomic level molecular dynamics, requiring a fixed charge to all atoms. The overall charge assigned to each PA lipid for this study was -1. We also developed an additional model of the FVII Gla domain bound to a 1:1 PS/PC membrane and compared the modes of binding of PS and PA lipids to FVII, allowing us to identify potential PA-specific binding sites.
Collapse
Affiliation(s)
- Melanie P Muller
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Childers KC, Peters SC, Lollar P, Spencer HT, Doering CB, Spiegel PC. SAXS analysis of the intrinsic tenase complex bound to a lipid nanodisc highlights intermolecular contacts between factors VIIIa/IXa. Blood Adv 2022; 6:3240-3254. [PMID: 35255502 PMCID: PMC9198903 DOI: 10.1182/bloodadvances.2021005874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
The intrinsic tenase (Xase) complex, formed by factors (f) VIIIa and fIXa, forms on activated platelet surfaces and catalyzes the activation of factor X to Xa, stimulating thrombin production in the blood coagulation cascade. The structural organization of the membrane-bound Xase complex remains largely unknown, hindering our understanding of the structural underpinnings that guide Xase complex assembly. Here, we aimed to characterize the Xase complex bound to a lipid nanodisc with biolayer interferometry (BLI), Michaelis-Menten kinetics, and small-angle X-ray scattering (SAXS). Using immobilized lipid nanodiscs, we measured binding rates and nanomolar affinities for fVIIIa, fIXa, and the Xase complex. Enzyme kinetic measurements demonstrated the assembly of an active enzyme complex in the presence of lipid nanodiscs. An ab initio molecular envelope of the nanodisc-bound Xase complex allowed us to computationally model fVIIIa and fIXa docked onto a flexible lipid membrane and identify protein-protein interactions. Our results highlight multiple points of contact between fVIIIa and fIXa, including a novel interaction with fIXa at the fVIIIa A1-A3 domain interface. Lastly, we identified hemophilia A/B-related mutations with varying severities at the fVIIIa/fIXa interface that may regulate Xase complex assembly. Together, our results support the use of SAXS as an emergent tool to investigate the membrane-bound Xase complex and illustrate how mutations at the fVIIIa/fIXa dimer interface may disrupt or stabilize the activated enzyme complex.
Collapse
Affiliation(s)
- Kenneth C Childers
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Shaun C Peters
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| | - Pete Lollar
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Harold Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Christopher B Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA
| | - Paul C Spiegel
- Department of Chemistry, Western Washington University, Bellingham, WA; and
| |
Collapse
|
8
|
Luchini A, Tidemand FG, Araya-Secchi R, Campana M, Cárdenas M, Arleth L. Structural model of tissue factor (TF) and TF-factor VIIa complex in a lipid membrane: A combined experimental and computational study. J Colloid Interface Sci 2022; 623:294-305. [PMID: 35594588 DOI: 10.1016/j.jcis.2022.04.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/11/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
Abstract
Tissue factor (TF) is a membrane protein involved in blood coagulation. TF initiates a cascade of proteolytic reactions, ultimately leading to the formation of a blood clot. The first reaction consists of the binding of the coagulation factor VII and its conversion to the activated form, FVIIa. Here, we combined experimental, i.e. quartz crystal microbalance with dissipation monitoring and neutron reflectometry, and computational, i.e. molecular dynamics (MD) simulation, methods to derive a complete structural model of TF and TF/FVIIa complex in a lipid bilayer. This model shows that the TF transmembrane domain (TMD), and the flexible linker connecting the TMD to the extracellular domain (ECD), define the location of the ECD on the membrane surface. The average orientation of the ECD relative to the bilayer surface is slightly tilted towards the lipid headgroups, a conformation that we suggest is promoted by phosphatidylserine lipids, and favours the binding of FVIIa. On the other hand, the formation of the TF/FVIIa complex induces minor changes in the TF structure, and reduces the conformational freedom of both TF and FVIIA. Altogether we describe the protein-protein and protein-lipid interactions favouring blood coagulation, but also instrumental to the development of new drugs.
Collapse
Affiliation(s)
- Alessandra Luchini
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark.
| | | | - Raul Araya-Secchi
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Mario Campana
- ISIS-STFC, Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX, United Kingdom
| | - Marité Cárdenas
- Biofilms Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, Per Albin Hanssons Väg 35, 21432 Malmö, Sweden
| | - Lise Arleth
- Niels Bohr Institute, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Paul D, Morrissey JH. Stoichiometric analysis reveals a unique phosphatidylserine binding site in coagulation factor X. J Thromb Haemost 2022; 20:600-604. [PMID: 34894064 PMCID: PMC8885840 DOI: 10.1111/jth.15620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cellular trauma or activation exposes phosphatidylserine (PS) and the substantially more abundant phospholipid, phosphatidylethanolamine (PE), on the outer layer of the plasma membrane, thereby allowing binding of many blood clotting proteins. We previously proposed the Anything But Choline (ABC) hypothesis to explain how PS and PE synergize to support binding of clotting proteins with gamma-carboxyglutamate (Gla)-rich domains, which posited that each Gla domain binds to a limited number of PS molecules and multiple PE molecules. However, the minimal number of PS molecules required to stably bind a Gla-domain-containing blood clotting protein in the presence of excess PE was unknown. OBJECTIVE To test the ABC hypothesis for factor X by determining the threshold binding requirement of PS molecules under conditions of PS-PE synergy. METHODS We used surface plasmon resonance to investigate the stoichiometry of factor X binding to nanoscale membrane bilayers (Nanodiscs) of varying phospholipid composition. RESULTS AND CONCLUSIONS We quantified 1.05 ± 0.2 PS molecules per bound factor X molecule in Nanodiscs containing a mixture of 10% PS, 60% PE, and 30% phosphatidylcholine. Hence, there appears to be one truly PS-specific binding site per Gla domain, while the remaining membrane binding interactions can be satisfied by PE.
Collapse
Affiliation(s)
- Divyani Paul
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - James H. Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Gegenschatz-Schmid K, Buzzi S, Grossmann J, Roschitzki B, Urbanet R, Heuberger R, Glück D, Zucker A, Ehrbar M. Reduced thrombogenicity of surface-treated Nitinol implants steered by altered protein adsorption. Acta Biomater 2022; 137:331-345. [PMID: 34673227 DOI: 10.1016/j.actbio.2021.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022]
Abstract
Blood-contacting medical implants made of Nitinol and other titanium alloys, such as neurovascular flow diverters and peripheral stents, have the disadvantage of being highly thrombogenic. This makes the use of systemic (dual) anti-platelet/anticoagulant therapies inevitable with related risks of device thrombosis, bleeding and other complications. Meeting the urgent clinical demand for a less thrombogenic Nitinol surface, we describe here a simple treatment of standard, commercially available Nitinol that renders its surface ultra-hydrophilic and functionalized with phosphate ions. The efficacy of this treatment was assessed by comparing standard and surface-treated Nitinol disks and braids, equivalent to flow diverters. Static and dynamic (Chandler loop) blood incubation tests showed a drastic reduction of thrombus formation on treated devices. Surface chemistry and proteomic analysis indicated a key role of phosphate and calcium ions in steering blood protein adsorption and avoiding coagulation cascade activation and platelet adhesion. A good endothelialization of the surface confirmed the biocompatibility of the treated surface. STATEMENT OF SIGNIFICANCE: Titanium alloys such as Nitinol are biocompatible and show favorable mechanical properties, which led to their widespread use in medical implants. However, in contact with blood their surface triggers the activation of the intrinsic coagulation cascade, which may result in catastrophic thrombotic events. The presented results showed that a phosphate functionalization of the titanium oxide surface suppresses the activation of both coagulation cascade and platelets, avoiding the subsequent formation of a blood clot. This novel approach has therefore a great potential for mitigating the risks associated to either thrombosis or bleeding complications (due to systemic anticoagulation) in patients with cardiovascular implants.
Collapse
|
11
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
12
|
Nestić D, Božinović K, Pehar I, Wallace R, Parker AL, Majhen D. The Revolving Door of Adenovirus Cell Entry: Not All Pathways Are Equal. Pharmaceutics 2021; 13:1585. [PMID: 34683878 PMCID: PMC8540258 DOI: 10.3390/pharmaceutics13101585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Adenoviruses represent exceptional candidates for wide-ranging therapeutic applications, from vectors for gene therapy to oncolytics for cancer treatments. The first ever commercial gene therapy medicine was based on a recombinant adenovirus vector, while most recently, adenoviral vectors have proven critical as vaccine platforms in effectively controlling the global coronavirus pandemic. Here, we discuss factors involved in adenovirus cell binding, entry, and trafficking; how they influence efficiency of adenovirus-based vectors; and how they can be manipulated to enhance efficacy of genetically modified adenoviral variants. We focus particularly on endocytosis and how different adenovirus serotypes employ different endocytic pathways to gain cell entry, and thus, have different intracellular trafficking pathways that subsequently trigger different host antiviral responses. In the context of gene therapy, the final goal of the adenovirus vector is to efficiently deliver therapeutic transgenes into the target cell nucleus, thus allowing its functional expression. Aberrant or inefficient endocytosis can impede this goal, therefore, it should be considered when designing and constructing adenovirus-based vectors.
Collapse
Affiliation(s)
- Davor Nestić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| | - Ksenija Božinović
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| | - Isabela Pehar
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| | - Rebecca Wallace
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (R.W.); (A.L.P.)
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (R.W.); (A.L.P.)
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (D.N.); (K.B.); (I.P.)
| |
Collapse
|
13
|
Ohkubo YZ, Madsen JJ. Uncovering Membrane-Bound Models of Coagulation Factors by Combined Experimental and Computational Approaches. Thromb Haemost 2021; 121:1122-1137. [PMID: 34214998 PMCID: PMC8432591 DOI: 10.1055/s-0040-1722187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the life sciences, including hemostasis and thrombosis, methods of structural biology have become indispensable tools for shedding light on underlying mechanisms that govern complex biological processes. Advancements of the relatively young field of computational biology have matured to a point where it is increasingly recognized as trustworthy and useful, in part due to their high space–time resolution that is unparalleled by most experimental techniques to date. In concert with biochemical and biophysical approaches, computational studies have therefore proven time and again in recent years to be key assets in building or suggesting structural models for membrane-bound forms of coagulation factors and their supramolecular complexes on membrane surfaces where they are activated. Such endeavors and the proposed models arising from them are of fundamental importance in describing and understanding the molecular basis of hemostasis under both health and disease conditions. We summarize the body of work done in this important area of research to drive forward both experimental and computational studies toward new discoveries and potential future therapeutic strategies.
Collapse
Affiliation(s)
- Y Zenmei Ohkubo
- Department of Bioinformatics, School of Life and Natural Sciences, Abdullah Gül University, Kayseri, Turkey
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
14
|
Structural basis of complex formation between mitochondrial anion channel VDAC1 and Hexokinase-II. Commun Biol 2021; 4:667. [PMID: 34083717 PMCID: PMC8175357 DOI: 10.1038/s42003-021-02205-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/06/2021] [Indexed: 02/04/2023] Open
Abstract
Complex formation between hexokinase-II (HKII) and the mitochondrial VDAC1 is crucial to cell growth and survival. We hypothesize that HKII first inserts into the outer membrane of mitochondria (OMM) and then interacts with VDAC1 on the cytosolic leaflet of OMM to form a binary complex. To systematically investigate this process, we devised a hybrid approach. First, we describe membrane binding of HKII with molecular dynamics (MD) simulations employing a membrane mimetic model with enhanced lipid diffusion capturing membrane insertion of its H-anchor. The insertion depth of the H-anchor was then used to derive positional restraints in subsequent millisecond-scale Brownian dynamics (BD) simulations to preserve the membrane-bound pose of HKII during the formation of the HKII/VDAC1 binary complex. Multiple BD-derived structural models for the complex were further refined and their structural stability probed with additional MD simulations, resulting in one stable complex. A major feature in the complex is the partial (not complete) blockade of VDAC1's permeation pathway, a result supported by our comparative electrophysiological measurements of the channel in the presence and absence of HKII. We also show how VDAC1 phosphorylation disrupts HKII binding, a feature that is verified by our electrophysiology recordings and has implications in mitochondria-mediated cell death.
Collapse
|
15
|
Gorgun D, Lihan M, Kapoor K, Tajkhorshid E. Binding mode of SARS-CoV-2 fusion peptide to human cellular membrane. Biophys J 2021; 120:2914-2926. [PMID: 33675757 PMCID: PMC7929786 DOI: 10.1016/j.bpj.2021.02.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 01/08/2023] Open
Abstract
Infection of human cells by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) relies on its binding to a specific receptor and subsequent fusion of the viral and host cell membranes. The fusion peptide (FP), a short peptide segment in the spike protein, plays a central role in the initial penetration of the virus into the host cell membrane, followed by the fusion of the two membranes. Here, we use an array of molecular dynamics simulations that take advantage of the highly mobile membrane mimetic model to investigate the interaction of the SARS-CoV2 FP with a lipid bilayer representing mammalian cellular membranes at an atomic level and to characterize the membrane-bound form of the peptide. Six independent systems were generated by changing the initial positioning and orientation of the FP with respect to the membrane, and each system was simulated in five independent replicas, each for 300 ns. In 73% of the simulations, the FP reaches a stable, membrane-bound configuration, in which the peptide deeply penetrated into the membrane. Clustering of the results reveals three major membrane-binding modes (binding modes 1-3), in which binding mode 1 populates over half of the data points. Taking into account the sequence conservation among the viral FPs and the results of mutagenesis studies establishing the role of specific residues in the helical portion of the FP in membrane association, the significant depth of penetration of the whole peptide, and the dense population of the respective cluster, we propose that the most deeply inserted membrane-bound form (binding mode 1) represents more closely the biologically relevant form. Analysis of FP-lipid interactions shows the involvement of specific residues, previously described as the "fusion-active core residues," in membrane binding. Taken together, the results shed light on a key step involved in SARS-CoV2 infection, with potential implications in designing novel inhibitors.
Collapse
Affiliation(s)
- Defne Gorgun
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Muyun Lihan
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Karan Kapoor
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
16
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
17
|
Mallik S, Prasad R, Das K, Sen P. Alcohol functionality in the fatty acid backbone of sphingomyelin guides the inhibition of blood coagulation. RSC Adv 2021; 11:3390-3398. [PMID: 35424312 PMCID: PMC8694017 DOI: 10.1039/d0ra09218e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Cell-surface sphingomyelin (SM) inhibits binary and ternary complex activity of blood coagulation by an unknown mechanism. Here we show the OH functionality of SM contributes in forming the close assembly through intermolecular H-bond and through Ca2+ chelation, which restricts the protein–lipid/protein–protein interactions and thus inhibits the coagulation procedure. Cell-surface sphingomyelin (SM) inhibits binary and ternary complex activity of blood coagulation.![]()
Collapse
Affiliation(s)
- S Mallik
- Department of Biological Chemistry, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata-700032 India
| | - R Prasad
- Department of Biological Chemistry, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata-700032 India
| | - K Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata-700032 India
| | - P Sen
- Department of Biological Chemistry, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata-700032 India
| |
Collapse
|
18
|
Nakanishi S, Kurihara K, Denda M. Glutathione Counteracts the Effects of Japanese Cedar (Cryptomeria japonica) Pollen Allergen Cry j1. Biol Pharm Bull 2020; 43:1591-1594. [PMID: 32999169 DOI: 10.1248/bpb.b20-00264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Japanese cedar (Cryptomeria japonica) pollen allergen Cry j1 increases the intracellular calcium concentration in human keratinocytes, and also impairs the epidermal barrier function. Here, we show that reduced glutathione (GSH) blocks both thrombin activation and the Cry j1-induced intracellular calcium elevation in cultured human keratinocytes, and also prevents the Cry j1-induced decrease of barrier function in ex vivo human skin.
Collapse
|
19
|
Lu S, Lin W, Ji H, Su M, Zhao X, Wang C. A Compound Heterozygosis of Two Novel Mutations Causes Factor X Deficiency in a Chinese Pedigree. Acta Haematol 2020; 144:176-181. [PMID: 32599596 DOI: 10.1159/000507689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/03/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mutations in the F10-coding gene can cause factor X (FX) deficiency, leading to abnormal coagulation activity and severe tendency for hemorrhage. Therefore, identifying mutations in F10 is important for diagnosing congenital FX deficiency. METHODS We studied a 63-year-old male patient with FX deficiency and 10 of his family members. Clotting and immunological methods were used to determine activated partial thromboplastin time (aPTT), prothrombin time (PT), thrombin time (TT), fibrinogen levels, FX activity, and FX antigen levels. The platelet count was determined. A mixing study was performed to eliminate the presence of coagulation factor inhibitors and lupus anticoagulant. Mutations were searched using whole-exome sequencing and certified by Sanger sequencing. RESULTS Genetic analysis of the proband identified two single-base substitutions: c.1085G>A (p.Ser362Asn) and c.1152C>A (p.Tyr384Ter, termination codon, caused by the DNA sequence TAA). His FX activity and antigen levels were 1.7% and 408.53 pg/mL, respectively; aPTT and PT were 52.3 and 48.0 s, respectively. One brother had the same compound heterozygous mutations, and his FX activity and antigen levels were 1.3% and 465.47 pg/mL, respectively; his aPTT and PT were 65.2 and 54.5 s, respectively. His mother, another brother, and one sister were heterozygous for c.1085G>A (p.Ser362Asn), and his daughter and grandson (6 years old) were heterozygous for c.1152C>A (p.Tyr384Ter). CONCLUSION The heterozygous variants p.Ser362Asn or p.Tyr384Ter indicate mild FX deficiency, but the compound heterozygous mutation of the two causes severe congenital FX deficiency and bleeding. Genetic analysis of these two mutations may help characterize the bleeding tendency and confirm congenital FX deficiency.
Collapse
Affiliation(s)
- Songsong Lu
- Medical Laboratory Center, First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Weicheng Lin
- Department of Orthopedic Trauma, Peking University People's Hospital, Beijing, China
| | - Huijuan Ji
- Intensive Care Unit, Peking University People's Hospital, Beijing, China
| | - Ming Su
- Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiaotao Zhao
- Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Chengbin Wang
- Medical Laboratory Center, First Medical Center of Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China,
| |
Collapse
|
20
|
Pant S, Tajkhorshid E. Microscopic Characterization of GRP1 PH Domain Interaction with Anionic Membranes. J Comput Chem 2020; 41:489-499. [PMID: 31762060 PMCID: PMC7000246 DOI: 10.1002/jcc.26109] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/03/2019] [Accepted: 10/15/2019] [Indexed: 01/17/2023]
Abstract
The pleckstrin homology (PH) domain of general receptor for phosphoionositides 1 (GRP1-PHD) binds specifically to phosphatidylinositol (3,4,5)-triphosphate (PIP3 ), and acts as a second messenger. Using an extensive array of molecular dynamics (MD) simulations employing highly mobile membrane mimetic (HMMM) model as well as complementary full membrane simulations, we capture differentiable binding and dynamics of GRP1-PHD in the presence of membranes containing PC, PS, and PIP3 lipids in varying compositions. While GRP1-PHD forms only transient interactions with pure PC membranes, incorporation of anionic lipids resulted in stable membrane-bound configurations. We report the first observation of two distinct PIP3 binding modes on GRP1-PHD, involving PIP3 interactions at a "canonical" and at an "alternate" site, suggesting the possibility of simultaneous binding of multiple anionic lipids. The full membrane simulations confirmed the stability of the membrane bound pose of GRP1-PHD as captured from our HMMM membrane binding simulations. By performing additional steered membrane unbinding simulations and calculating nonequilibrium work associated with the process, as well as metadynamics simulations, on the protein bound to full membranes, allowing for more quantitative examination of the binding strength of the GRP1-PHD to the membrane, we demonstrate that along with the bound PIP3 , surrounding anionic PS lipids increase the energetic cost of unbinding of GRP1-PHD from the canonical mode, causing them to dissociate more slowly than the alternate mode. Our results demonstrate that concurrent binding of multiple anionic lipids by GRP1-PHD contributes to its membrane affinity, which in turn control its signaling activity. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Shashank Pant
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| | - Emad Tajkhorshid
- Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
| |
Collapse
|
21
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
22
|
A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca 2+-activated Cl - channel ANO1 (TMEM16A). Proc Natl Acad Sci U S A 2019; 116:19952-19962. [PMID: 31515451 DOI: 10.1073/pnas.1904012116] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ANO1 (TMEM16A) is a Ca2+-activated Cl- channel that regulates diverse cellular functions including fluid secretion, neuronal excitability, and smooth muscle contraction. ANO1 is activated by elevation of cytosolic Ca2+ and modulated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Here, we describe a closely concerted experimental and computational study, including electrophysiology, mutagenesis, functional assays, and extended sampling of lipid-protein interactions with molecular dynamics (MD) to characterize PI(4,5)P2 binding modes and sites on ANO1. ANO1 currents in excised inside-out patches activated by 270 nM Ca2+ at +100 mV are increased by exogenous PI(4,5)P2 with an EC50 = 1.24 µM. The effect of PI(4,5)P2 is dependent on membrane voltage and Ca2+ and is explained by a stabilization of the ANO1 Ca2+-bound open state. Unbiased atomistic MD simulations with 1.4 mol% PI(4,5)P2 in a phosphatidylcholine bilayer identified 8 binding sites with significant probability of binding PI(4,5)P2 Three of these sites captured 85% of all ANO1-PI(4,5)P2 interactions. Mutagenesis of basic amino acids near the membrane-cytosol interface found 3 regions of ANO1 critical for PI(4,5)P2 regulation that correspond to the same 3 sites identified by MD. PI(4,5)P2 is stabilized by hydrogen bonding between amino acid side chains and phosphate/hydroxyl groups on PI(4,5)P2 Binding of PI(4,5)P2 alters the position of the cytoplasmic extension of TM6, which plays a crucial role in ANO1 channel gating, and increases the accessibility of the inner vestibule to Cl- ions. We propose a model consisting of a network of 3 PI(4,5)P2 binding sites at the cytoplasmic face of the membrane allosterically regulating ANO1 channel gating.
Collapse
|
23
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
24
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
25
|
Wen PC, Mahinthichaichan P, Trebesch N, Jiang T, Zhao Z, Shinn E, Wang Y, Shekhar M, Kapoor K, Chan CK, Tajkhorshid E. Microscopic view of lipids and their diverse biological functions. Curr Opin Struct Biol 2018; 51:177-186. [PMID: 30048836 DOI: 10.1016/j.sbi.2018.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
Biological membranes and their diverse lipid constituents play key roles in a broad spectrum of cellular and physiological processes. Characterization of membrane-associated phenomena at a microscopic level is therefore essential to our fundamental understanding of such processes. Due to the semi-fluid and dynamic nature of lipid bilayers, and their complex compositions, detailed characterization of biological membranes at an atomic scale has been refractory to experimental approaches. Computational modeling and simulation offer a highly complementary toolset with sufficient spatial and temporal resolutions to fill this gap. Here, we review recent molecular dynamics studies focusing on the diversity of lipid composition of biological membranes, or aiming at the characterization of lipid-protein interaction, with the overall goal of dissecting how lipids impact biological roles of the cellular membranes.
Collapse
Affiliation(s)
- Po-Chao Wen
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Noah Trebesch
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhiyu Zhao
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Eric Shinn
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuhang Wang
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mrinal Shekhar
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Karan Kapoor
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chun Kit Chan
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
26
|
|