1
|
Babkina AS, Pisarev MV, Grechko AV, Golubev AM. Arterial Thrombosis in Acute Respiratory Infections: An Underestimated but Clinically Relevant Problem. J Clin Med 2024; 13:6007. [PMID: 39408067 PMCID: PMC11477565 DOI: 10.3390/jcm13196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, there was increased interest in the issue of thrombotic complications of acute respiratory infections. Clinical reports and pathological studies have revealed that thrombus formation in COVID-19 may involve the venous and arterial vasculature. As thrombotic complications of infectious respiratory diseases are increasingly considered in the context of COVID-19, the fact that thrombosis in lung diseases of viral and bacterial etiology was described long before the pandemic is overlooked. Pre-pandemic studies show that bacterial and viral respiratory infections are associated with an increased risk of thrombotic complications such as myocardial infarction, ischemic stroke, pulmonary embolism, and other critical illnesses caused by arterial and venous thrombosis. This narrative review article aims to summarize the current evidence regarding thrombotic complications and their pathogenesis in acute lower respiratory tract infections.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.V.P.); (A.V.G.); (A.M.G.)
| | | | | | | |
Collapse
|
2
|
Eustes AS, Ahmed A, Swamy J, Patil G, Jensen M, Wilson KM, Kudchadkar S, Wahab A, Perepu U, Miller FJ, Lentz SR, Dayal S. Extracellular histones: a unifying mechanism driving platelet-dependent extracellular vesicle release and thrombus formation in COVID-19. J Thromb Haemost 2024; 22:2514-2530. [PMID: 38815756 PMCID: PMC11343660 DOI: 10.1016/j.jtha.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND COVID-19 can cause profound inflammation and coagulopathy, and while many mechanisms have been proposed, there is no known common pathway leading to a prothrombotic state. OBJECTIVES From the beginning of the COVID-19 pandemic, elevated levels of extracellular histones have been found in plasma of patients infected with SARS-CoV-2. We hypothesized that platelet activation triggered by extracellular histones might represent a unifying mechanism leading to increased thrombin generation and thrombosis. METHODS We utilized blood samples collected from an early clinical trial of hospitalized COVID-19 patients (NCT04360824) and recruited healthy subjects as controls. Using plasma samples, we measured the procoagulant and prothrombotic potential of circulating extracellular histones and extracellular vesicles (EVs). Platelet prothrombotic activity was assessed via thrombin generation potential and platelet thrombus growth. Circulating EVs were assessed for thrombin generation potential in vitro in plasma and enhancement of thrombotic susceptibility in vivo in mice. RESULTS Compared with controls, COVID-19 patients had elevated plasma levels of citrullinated histone H3, cell-free DNA, nucleosomes, and EVs. Plasma from COVID-19 patients promoted platelet activation, platelet-dependent thrombin generation, thrombus growth under venous shear stress, and release of platelet-derived EVs. These prothrombotic effects of COVID-19 plasma were inhibited by an RNA aptamer that neutralizes both free and DNA-bound histones. EVs isolated from COVID-19 plasma enhanced thrombin generation in vitro and potentiated venous thrombosis in mice in vivo. CONCLUSION We conclude that extracellular histones and procoagulant EVs drive the prothrombotic state in COVID-19 and that histone-targeted therapy may prove beneficial.
Collapse
Affiliation(s)
- Alicia S Eustes
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Azaj Ahmed
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jagadish Swamy
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Gokul Patil
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Melissa Jensen
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Katina M Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shibani Kudchadkar
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Abdul Wahab
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Usha Perepu
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Francis J Miller
- Department of Internal Medicine, Vanderbilt University Medical Center and VA Medical Center, Nashville, Tennessee, USA
| | - Steven R Lentz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA; Iowa City VA Healthcare System, Iowa City, Iowa, USA.
| |
Collapse
|
3
|
Tsuruga T, Fujimoto H, Yasuma T, D'Alessandro-Gabazza CN, Toda M, Ito T, Tomaru A, Saiki H, Okano T, Alhawsawi MAB, Takeshita A, Nishihama K, Takei R, Kondoh Y, Cann I, Gabazza EC, Kobayashi T. Role of microbiota-derived corisin in coagulation activation during SARS-CoV-2 infection. J Thromb Haemost 2024; 22:1919-1935. [PMID: 38453025 DOI: 10.1016/j.jtha.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Coagulopathy is a major cause of morbidity and mortality in COVID-19 patients. Hypercoagulability in COVID-19 results in deep vein thrombosis, thromboembolic complications, and diffuse intravascular coagulation. Microbiome dysbiosis influences the clinical course of COVID-19. However, the role of dysbiosis in COVID-19-associated coagulopathy is not fully understood. OBJECTIVES The present study tested the hypothesis that the microbiota-derived proapoptotic corisin is involved in the coagulation system activation during SARS-CoV-2 infection. METHODS This cross-sectional study included 47 consecutive patients who consulted for symptoms of COVID-19. A mouse acute lung injury model was used to recapitulate the clinical findings. A549 alveolar epithelial, THP-1, and human umbilical vein endothelial cells were used to evaluate procoagulant and anticoagulant activity of corisin. RESULTS COVID-19 patients showed significantly high circulating levels of corisin, thrombin-antithrombin complex, D-dimer, tumor necrosis factor-α, and monocyte-chemoattractant protein-1 with reduced levels of free protein S compared with healthy subjects. The levels of thrombin-antithrombin complex, D-dimer, and corisin were significantly correlated. A monoclonal anticorisin-neutralizing antibody significantly inhibited the inflammatory response and coagulation system activation in a SARS-CoV-2 spike protein-associated acute lung injury mouse model, and the levels of corisin and thrombin-antithrombin complex were significantly correlated. In an in vitro experiment, corisin increased the tissue factor activity and decreased the anticoagulant activity of thrombomodulin in epithelial, endothelial, and monocytic cells. CONCLUSION The microbiota-derived corisin is significantly increased and correlated with activation of the coagulation system during SARS-CoV-2 infection, and corisin may directly increase the procoagulant activity in epithelial, endothelial, and monocytic cells.
Collapse
Affiliation(s)
- Tatsuki Tsuruga
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Taro Yasuma
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan; Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Corina N D'Alessandro-Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Masaaki Toda
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Toshiyuki Ito
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Atsushi Tomaru
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Haruko Saiki
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Tomohito Okano
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Manal A B Alhawsawi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Atsuro Takeshita
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Kota Nishihama
- Department of Diabetes, Endocrinology and Metabolism, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan
| | - Reoto Takei
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Yasuhiro Kondoh
- Department of Respiratory Medicine and Allergy, Tosei General Hospital, Seto, Aichi, Japan
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Department of Animal Science, University of Illinois Urbana-Champaign, Urbana, Illinois, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Esteban C Gabazza
- Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Faculty and Graduate School of Medicine, Mie University, Tsu, Mie, Japan; Microbiome Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
4
|
Sharma S, Antoniak S. Microbiota-driven coagulation activation during SARS-CoV-2 infection. J Thromb Haemost 2024; 22:1835-1837. [PMID: 38945665 DOI: 10.1016/j.jtha.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 07/02/2024]
Affiliation(s)
- Swati Sharma
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Silvio Antoniak
- UNC Blood Research Center, Department of Pathology and Laboratory Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
5
|
Husieva SA, Osyodlo GV, Husiev AV, Savichan KV. A Clinical Case of Timely Diagnosis and Successful Treatment of Budd-Chiari Syndrome With Fulminant Cytolysis in the Setting of a First-time Diagnosed Myeloproliferative Disease. Mil Med 2024:usae331. [PMID: 38935394 DOI: 10.1093/milmed/usae331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/03/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
The article presents a clinical case of peculiarities of clinical manifestations, diagnostic and therapeutic approaches of undiagnosed chronic myeloproliferative disease, on the background of which Budd-Chiari syndrome (BCS) developed. The results of clinical course, examination, and treatment of a patient with BCS as a manifestation of the hidden course of primary myelofibrosis with the presence of somatic mutation (V617F) in Janus-tyrosine kinase-2 (JAK2) gene in myeloid cells are presented. Standard clinical and laboratory examinations, and cytomorphologic and histologic examination of bone marrow were used. The diagnosis of BCS was confirmed by ultrasound (US) Doppler examination of the portal system vessels. Symptomatic therapy resulted in insignificant positive results. The analysis of this clinical case showed that the development of BCS was due to a chronic myeloproliferative disease that was not diagnosed before the development of thrombosis. Hepatic vein thrombosis was accompanied by the development of fulminant cytolytic syndrome. Along with symptomatic therapy, patient K., female, 32 years old, underwent transjugular intrahepatic portosystemic shunting 1 month after the first symptoms of BCS appeared, which contributed to a significant clinical effect. Seven years after the installation of 4 transjugular intrahepatic portosystemic shunts, the patient's condition remains satisfactory. The uniqueness of this clinical case lies in the presence of 2 serious diseases at the same time: myeloproliferative pathology (primary myelofibrosis) JAK2-positive variant and BCS. Timely diagnosis of both hematological diseases and their complication in the form of hepatic vein thrombosis with fulminant cytolytic syndrome allowed timely prescription of adequate treatment with a good clinical response.
Collapse
Affiliation(s)
- Svitlana A Husieva
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01015, Ukraine
| | - Galyna V Osyodlo
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01015, Ukraine
| | - Andrii V Husiev
- Department of Liver Surgery and Transplantation, Shalimov National Scientific Center of Surgery and Transplantation of the National Academy of Medical Sciences of Ukraine, Kyiv 03680, Ukraine
| | - Kyrylo V Savichan
- Military Therapy Department, Ukrainian Military Medical Academy, Kyiv 01015, Ukraine
| |
Collapse
|
6
|
Sack KD, Eaton N, Tehrani MD, Flaumenhaft R. Interferons prime the endothelium for toll-like receptor-mediated thrombin generation. J Thromb Haemost 2024; 22:1215-1222. [PMID: 38159649 PMCID: PMC10960681 DOI: 10.1016/j.jtha.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Respiratory infection is associated with microvascular thrombus formation and marked elevation in cytokine levels. The role of cytokines elaborated by the pulmonary epithelium in thrombotic responses is poorly understood. OBJECTIVES Our goal was to identify cytokines of pulmonary epithelial cell origin that enhance thrombin generation in the endothelium at concentrations equal to or less than those found in the circulation during infection. METHODS We screened multiple cytokines produced by the pulmonary epithelium for the ability to enhance toll-like receptor (TLR)-mediated endothelial thrombin generation. Effects of cytokines on tissue factor and thrombomodulin expression, cytokine selectivity for different TLRs, and prothrombotic activity of endogenous cytokines in conditioned medium from pulmonary human epithelial cells were evaluated. RESULTS MIP-1β, MCP-1, IL-10, IL-6, IL-1β, TNFα, IFNα, IFNβ, and IFNγ were tested for their ability to enhance TLR3-mediated thrombin generation on endothelial cells. Only interferons (IFNs) and TNFα promoted TLR3-mediated thrombin generation at levels that circulate during infection. IFNs robustly enhanced tissue factor expression when used in conjunction with TLR agonists and reduced thrombomodulin expression in the endothelium independently of TLRs. IFNα, which is typically elevated with viral infection, only synergized with TLR3 agonists mimicking viral pathogen-associated molecular patterns. In contrast, IFNγ, which is typically observed in bacterial infection, synergized more effectively with TLR4 agonists released by bacteria. Conditioned media from inflamed pulmonary epithelial cells primed the endothelium for TLR-mediated thrombin generation. Anti-IFN type I antibodies blocked this effect, indicating that endogenous IFNs prime the endothelium for TLR-mediated thrombin generation. CONCLUSION IFNs elaborated by the pulmonary epithelium are necessary and sufficient to enhance TLR-mediated thrombin generation.
Collapse
Affiliation(s)
- Kelsey D Sack
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA. https://twitter.com/hemeThrombBIDMC
| | - Nathan Eaton
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maneli Doroudian Tehrani
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
7
|
Mackman N. Tissue Factor and COVID-19 Associated Thrombosis. Arterioscler Thromb Vasc Biol 2024; 44:523-529. [PMID: 38381854 PMCID: PMC10883617 DOI: 10.1161/atvbaha.123.320144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/17/2024] [Indexed: 02/23/2024]
Abstract
Microbial infections activate the innate and adaptive immune systems.1 Pathogen-associated molecular patterns produced by microbes, such as double-stranded RNA, are detected by PRRs (pattern-recognition receptors), such as toll-like receptor 3, and this leads to the expression of interferons and cytokines.1,2.
Collapse
Affiliation(s)
- Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill
| |
Collapse
|
8
|
Wen Y, Duan X, Ren J, Zhang J, Guan G, Ru Y, Li D, Zheng H. African Swine Fever Virus I267L Is a Hemorrhage-Related Gene Based on Transcriptome Analysis. Microorganisms 2024; 12:400. [PMID: 38399804 PMCID: PMC10892147 DOI: 10.3390/microorganisms12020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
African swine fever (ASF) is an acute and severe disease transmitted among domestic pigs and wild boars. This disease is notorious for its high mortality rate and has caused great losses to the world's pig industry in the past few years. After infection, pigs can develop symptoms such as high fever, inflammation, and acute hemorrhage, finally leading to death. African swine fever virus (ASFV) is the causal agent of ASF; it is a large DNA virus with 150-200 genes. Elucidating the functions of each gene could provide insightful information for developing prevention and control methods. Herein, to investigate the function of I267L, porcine alveolar macrophages (PAMs) infected with an I267L-deleted ASFV strain (named ∆I267L) and wild-type ASFV for 18 h and 36 h were taken for transcriptome sequencing (RNA-seq). The most distinct different gene that appeared at both 18 hpi (hours post-infection) and 36 hpi was F3; it is the key link between inflammation and coagulation cascades. KEGG analysis (Kyoto encyclopedia of genes and genomes analysis) revealed the complement and coagulation cascades were also significantly affected at 18 hpi. Genes associated with the immune response were also highly enriched with the deletion of I267L. RNA-seq results were validated through RT-qPCR. Further experiments confirmed that ASFV infection could suppress the induction of F3 through TNF-α, while I267L deletion partially impaired this suppression. These results suggest that I267L is a pathogenicity-associated gene that modulates the hemorrhages of ASF by suppressing F3 expression. This study provides new insights into the molecular mechanisms of ASFV pathogenicity and potential targets for ASFV prevention and control.
Collapse
Affiliation(s)
- Yuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Xianghan Duan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Jingjing Ren
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Yi Ru
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Dan Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (Y.W.); (X.D.); (J.R.); (J.Z.); (G.G.); (Y.R.)
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730000, China
| |
Collapse
|
9
|
Rehill AM, Leon G, McCluskey S, Schoen I, Hernandez-Santana Y, Annett S, Klavina P, Robson T, Curtis AM, Renné T, Hussey S, O'Donnell JS, Walsh PT, Preston RJS. Glycolytic reprogramming fuels myeloid cell-driven hypercoagulability. J Thromb Haemost 2024; 22:394-409. [PMID: 37865288 DOI: 10.1016/j.jtha.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Myeloid cell metabolic reprogramming is a hallmark of inflammatory disease; however, its role in inflammation-induced hypercoagulability is poorly understood. OBJECTIVES We aimed to evaluate the role of inflammation-associated metabolic reprogramming in regulating blood coagulation. METHODS We used novel myeloid cell-based global hemostasis assays and murine models of immunometabolic disease. RESULTS Glycolysis was essential for enhanced activated myeloid cell tissue factor expression and decryption, driving increased cell-dependent thrombin generation in response to inflammatory challenge. Similarly, inhibition of glycolysis enhanced activated macrophage fibrinolytic activity through reduced plasminogen activator inhibitor 1 activity. Macrophage polarization or activation markedly increased endothelial protein C receptor (EPCR) expression on monocytes and macrophages, leading to increased myeloid cell-dependent protein C activation. Importantly, inflammation-dependent EPCR expression on tissue-resident macrophages was also observed in vivo. Adipose tissue macrophages from obese mice fed a high-fat diet exhibited significantly enhanced EPCR expression and activated protein C generation compared with macrophages isolated from the adipose tissue of healthy mice. Similarly, the induction of colitis in mice prompted infiltration of EPCR+ innate myeloid cells within inflamed colonic tissue that were absent from the intestinal tissue of healthy mice. CONCLUSION Collectively, this study identifies immunometabolic regulation of myeloid cell hypercoagulability, opening new therapeutic possibilities for targeted mitigation of thromboinflammatory disease.
Collapse
Affiliation(s)
- Aisling M Rehill
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland. https://twitter.com/aislingrehill
| | - Gemma Leon
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Sean McCluskey
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Ingmar Schoen
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Yasmina Hernandez-Santana
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Stephanie Annett
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Paula Klavina
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Tracy Robson
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Annie M Curtis
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Thomas Renné
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Seamus Hussey
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Paediatrics, University College Dublin and Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - James S O'Donnell
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland; Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Ireland
| | - Roger J S Preston
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland University of Medicine and Health Sciences, Dublin, Ireland; National Children's Research Centre, Children's Health Ireland Crumlin, Dublin, Ireland.
| |
Collapse
|
10
|
Heidari Z, Naeimzadeh Y, Fallahi J, Savardashtaki A, Razban V, Khajeh S. The Role of Tissue Factor In Signaling Pathways of Pathological Conditions and Angiogenesis. Curr Mol Med 2024; 24:1135-1151. [PMID: 37817529 DOI: 10.2174/0115665240258746230919165935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 10/12/2023]
Abstract
Tissue factor (TF) is an integral transmembrane protein associated with the extrinsic coagulation pathway. TF gene expression is regulated in response to inflammatory cytokines, bacterial lipopolysaccharides, and mechanical injuries. TF activity may be affected by phosphorylation of its cytoplasmic domain and alternative splicing. TF acts as the primary initiator of physiological hemostasis, which prevents local bleeding at the injury site. However, aberrant expression of TF, accompanied by the severity of diseases and infections under various pathological conditions, triggers multiple signaling pathways that support thrombosis, angiogenesis, inflammation, and metastasis. Protease-activated receptors (PARs) are central in the downstream signaling pathways of TF. In this study, we have reviewed the TF signaling pathways in different pathological conditions, such as wound injury, asthma, cardiovascular diseases (CVDs), viral infections, cancer and pathological angiogenesis. Angiogenic activities of TF are critical in the repair of wound injuries and aggressive behavior of tumors, which are mainly performed by the actions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 (HIF1-α). Pro-inflammatory effects of TF have been reported in asthma, CVDs and viral infections, including COVID-19, which result in tissue hypertrophy, inflammation, and thrombosis. TF-FVII induces angiogenesis via clotting-dependent and -independent mechanisms. Clottingdependent angiogenesis is induced via the generation of thrombin and cross-linked fibrin network, which facilitate vessel infiltration and also act as a reservoir for endothelial cells (ECs) growth factors. Expression of TF in tumor cells and ECs triggers clotting-independent angiogenesis through induction of VEGF, urokinase-type plasminogen activator (uPAR), early growth response 1 (EGR1), IL8, and cysteine-rich angiogenic inducer 61 (Cyr61).
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahar Khajeh
- Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Sharma S, Antoniak S. Hemostasis in arenavirus infection. Blood 2023; 142:2042-2043. [PMID: 38095923 PMCID: PMC10733820 DOI: 10.1182/blood.2023022303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
|
12
|
Sachetto ATA, Mackman N. Monocyte Tissue Factor Expression: Lipopolysaccharide Induction and Roles in Pathological Activation of Coagulation. Thromb Haemost 2023; 123:1017-1033. [PMID: 37168007 PMCID: PMC10615589 DOI: 10.1055/a-2091-7006] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The coagulation system is a part of the mammalian host defense system. Pathogens and pathogen components, such as bacterial lipopolysaccharide (LPS), induce tissue factor (TF) expression in circulating monocytes that then activates the coagulation protease cascade. Formation of a clot limits dissemination of pathogens, enhances the recruitment of immune cells, and facilitates killing of pathogens. However, excessive activation of coagulation can lead to thrombosis. Here, we review studies on the mechanism of LPS induction of TF expression in monocytes and its contribution to thrombosis and disseminated intravascular coagulation. Binding of LPS to Toll-like receptor 4 on monocytes induces a transient expression of TF that involves activation of intracellular signaling pathways and binding of various transcription factors, such as c-rel/p65 and c-Fos/c-Jun, to the TF promoter. Inhibition of TF in endotoxemia and sepsis models reduces activation of coagulation and improves survival. Studies with endotoxemic mice showed that hematopoietic cells and myeloid cells play major roles in the activation of coagulation. Monocyte TF expression is also increased after surgery. Activated monocytes release TF-positive extracellular vesicles (EVs) and levels of circulating TF-positive EVs are increased in endotoxemic mice and in patients with sepsis. More recently, it was shown that inflammasomes contribute to the induction of TF expression and activation of coagulation in endotoxemic mice. Taken together, these studies indicate that monocyte TF plays a major role in activation of coagulation. Selective inhibition of monocyte TF expression may reduce pathologic activation of coagulation in sepsis and other diseases without affecting hemostasis.
Collapse
Affiliation(s)
- Ana T. A. Sachetto
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| |
Collapse
|
13
|
Kasmani MY, Topchyan P, Brown AK, Brown RJ, Wu X, Chen Y, Khatun A, Alson D, Wu Y, Burns R, Lin CW, Kudek MR, Sun J, Cui W. A spatial sequencing atlas of age-induced changes in the lung during influenza infection. Nat Commun 2023; 14:6597. [PMID: 37852965 PMCID: PMC10584893 DOI: 10.1038/s41467-023-42021-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/26/2023] [Indexed: 10/20/2023] Open
Abstract
Influenza virus infection causes increased morbidity and mortality in the elderly. Aging impairs the immune response to influenza, both intrinsically and because of altered interactions with endothelial and pulmonary epithelial cells. To characterize these changes, we performed single-cell RNA sequencing (scRNA-seq), spatial transcriptomics, and bulk RNA sequencing (bulk RNA-seq) on lung tissue from young and aged female mice at days 0, 3, and 9 post-influenza infection. Our analyses identified dozens of key genes differentially expressed in kinetic, age-dependent, and cell type-specific manners. Aged immune cells exhibited altered inflammatory, memory, and chemotactic profiles. Aged endothelial cells demonstrated characteristics of reduced vascular wound healing and a prothrombotic state. Spatial transcriptomics identified novel profibrotic and antifibrotic markers expressed by epithelial and non-epithelial cells, highlighting the complex networks that promote fibrosis in aged lungs. Bulk RNA-seq generated a timeline of global transcriptional activity, showing increased expression of genes involved in inflammation and coagulation in aged lungs. Our work provides an atlas of high-throughput sequencing methodologies that can be used to investigate age-related changes in the response to influenza virus, identify novel cell-cell interactions for further study, and ultimately uncover potential therapeutic targets to improve health outcomes in the elderly following influenza infection.
Collapse
Affiliation(s)
- Moujtaba Y Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Paytsar Topchyan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ashley K Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Ryan J Brown
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaopeng Wu
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Donia Alson
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yue Wu
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Robert Burns
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
| | - Chien-Wei Lin
- Department of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Matthew R Kudek
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jie Sun
- Carter Immunology Center, University of Virginia, Charlottesville, VA, 22908, USA
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, 22908, USA
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, 53226, USA.
- Department of Pathology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
14
|
Price JM, Hisada Y, Hazeldine J, Bae-Jump V, Luther T, Mackman N, Harrison P. Detection of tissue factor-positive extracellular vesicles using the ExoView R100 system. Res Pract Thromb Haemost 2023; 7:100177. [PMID: 37333992 PMCID: PMC10276261 DOI: 10.1016/j.rpth.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/19/2023] [Accepted: 04/30/2023] [Indexed: 06/20/2023] Open
Abstract
Background Tissue factor (TF) is essential for hemostasis. TF-expressing extracellular vesicles (TF+ EVs) are released in pathological conditions, such as trauma and cancer, and are linked to thrombosis. Detection of TF+ EV antigenically in plasma is challenging due to their low concentration but may be of clinical utility. Objectives We hypthesised that ExoView can allow for direct measurement of TF+ EV in plasma, antigenically. Methods We utilized the anti-TF monoclonal antibody 5G9 to capture TF EV onto specialized ExoView chips. This was combined with fluorescent TF+ EV detection using anti-TF monoclonal antibody IIID8-AF647. We measured tumor cell-derived (BxPC-3) TF+ EV and TF+ EVs from plasma derived from whole blood with or without lipopolysaccharide (LPS) stimulation. We used this system to analyze TF+ EVs in 2 relevant clinical cohorts: trauma and ovarian cancer. We compared ExoView results with an EV TF activity assay. Results BxPC-3-derived TF+ EVs were identified with ExoView using 5G9 capture with IIID8-AF647 detection. 5G9 capture with IIID8-AF647 detection was significantly higher in LPS+ samples than in LPS samples and correlated with EV TF activity (R2 = 0.28). Trauma patient samples had higher levels of EV TF activity than healthy controls, but activity did not correlate with TF measurements made by ExoView (R2 = 0.15). Samples from patients with ovarian cancer have higher levels of EV TF activity than those from healthy controls, but activity did not correlate with TF measurement by ExoView (R2 = 0.0063). Conclusion TF+ EV measurement is possible in plasma, but the threshold and potential clinical applicability of ExoView R100, in this context, remain to be established.
Collapse
Affiliation(s)
- Joshua M.J. Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Yohei Hisada
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Thomas Luther
- Institute of Pathology, Technical University Dresden, Dresden, Germany
| | - Nigel Mackman
- Division of Hematology and Oncology, UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
15
|
Girard TJ, Antunes L, Zhang N, Amrute JM, Subramanian R, Eldem I, Remy KE, Mazer M, Erlich EC, Cruchaga C, Steed AL, Randolph GJ, Di Paola J. Peripheral blood mononuclear cell tissue factor (F3 gene) transcript levels and circulating extracellular vesicles are elevated in severe coronavirus 2019 (COVID-19) disease. J Thromb Haemost 2023; 21:629-638. [PMID: 36696180 PMCID: PMC9773443 DOI: 10.1016/j.jtha.2022.11.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with excessive coagulation, thrombosis, and mortality. OBJECTIVE To provide insight into mechanisms that contribute to excessive coagulation in coronavirus 2019 (COVID-19) disease. PATIENTS/METHODS Blood from COVID-19 patients was investigated for coagulation-related gene expression and functional activities. RESULTS Single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from severe COVID-19 patients revealed a 5.2-fold increase in tissue factor (TF [F3 gene]) transcript expression levels (P < .05), the trigger of extrinsic coagulation; a 7.7-fold increase in C1-inhibitor (SERPING1 gene; P < .01) transcript expression levels, an inhibitor of intrinsic coagulation; and a 4.4-fold increase in anticoagulant thrombomodulin (TM [THBD gene]) transcript expression levels (P < .001). Bulk RNA-seq analysis of sorted CD14+ monocytes on an independent cohort of COVID-19 patients confirmed these findings (P < .05). Indicative of excessive coagulation, 41% of COVID-19 patients' plasma samples contained high D-dimer levels (P < .0001); of these, 19% demonstrated extracellular vesicle TF activity (P = .109). COVID-19 patients' ex vivo plasma-based thrombin generation correlated positively with D-dimer levels (P < .01). Plasma procoagulant extracellular vesicles were elevated ∼9-fold in COVID-19 patients (P < .01). Public scRNA-seq data sets from bronchoalveolar lung fluid and our peripheral blood mononuclear cell scRNA-seq data show CD14+ monocytes/macrophages TF transcript expression levels are elevated in severe but not mild or moderate COVID-19 patients. CONCLUSIONS Beyond local lung injury, SARS-CoV-2 infection increases systemic TF (F3) transcript levels and elevates circulating extracellular vesicles that likely contribute to disease-associated coagulation, thrombosis, and related mortality.
Collapse
Affiliation(s)
- Thomas J Girard
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lilian Antunes
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nan Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junedh M Amrute
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Renumathi Subramanian
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irem Eldem
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kenneth E Remy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Monty Mazer
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emma C Erlich
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ashley L Steed
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
16
|
Perkins MV, Joseph S, Dittmer DP, Mackman N. Cardiovascular Disease and Thrombosis in HIV Infection. Arterioscler Thromb Vasc Biol 2023; 43:175-191. [PMID: 36453273 PMCID: PMC10165851 DOI: 10.1161/atvbaha.122.318232] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
HIV infection has transitioned from an acute, fatal disease to a chronic one managed by antiretroviral therapy. Thus, the aging population of people living with HIV (PLWH) continues to expand. HIV infection results in a dysregulated immune system, wherein CD4+ T cells are depleted, particularly in the gastrointestinal tract, disrupting the gut epithelial barrier. Long-term HIV infection is associated with chronic inflammation through potentially direct mechanisms caused by viral replication or exposure to viral proteins and indirect mechanisms resulting from increased translocation of microbial products from the intestine or exposure to antiretroviral therapy. Chronic inflammation (as marked by IL [interleukin]-6 and CRP [C-reactive protein]) in PLWH promotes endothelial cell dysfunction and atherosclerosis. PLWH show significantly increased rates of cardiovascular disease, such as myocardial infarction (risk ratio, 1.79 [95% CI, 1.54-2.08]) and stroke (risk ratio, 2.56 [95% CI, 1.43-4.61]). In addition, PLWH have increased levels of the coagulation biomarker D-dimer and have a two to ten-fold increased risk of venous thromboembolism compared with the general population. Several small clinical trials analyzed the effect of different antithrombotic agents on platelet activation, coagulation, inflammation, and immune cell activation. Although some markers for coagulation were reduced, most agents failed to reduce inflammatory markers in PLWH. More studies are needed to understand the underlying mechanisms driving inflammation in PLWH to create better therapies for lowering chronic inflammation in PLWH. Such therapies can potentially reduce atherosclerosis, cardiovascular disease, and thrombosis rates in PLWH and thus overall mortality in this population.
Collapse
Affiliation(s)
- Megan V. Perkins
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah Joseph
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
17
|
Schiavello M, Vizio B, Bosco O, Pivetta E, Mariano F, Montrucchio G, Lupia E. Extracellular Vesicles: New Players in the Mechanisms of Sepsis- and COVID-19-Related Thromboinflammation. Int J Mol Sci 2023; 24:ijms24031920. [PMID: 36768242 PMCID: PMC9916541 DOI: 10.3390/ijms24031920] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Sepsis and COVID-19 patients often manifest an imbalance in inflammation and coagulation, a complex pathological mechanism also named thromboinflammation, which strongly affects patient prognosis. Extracellular vesicles (EVs) are nanoparticles released by cells into extracellular space that have a relevant role in cell-to-cell communication. Recently, EVs have been shown to act as important players in a variety of pathologies, including cancer and cardiovascular disease. The biological properties of EVs in the mechanisms of thromboinflammation during sepsis and COVID-19 are still only partially known. Herein, we summarize the current experimental evidence on the role of EVs in thromboinflammation, both in bacterial sepsis and in COVID-19. A better understanding of EV involvement in these processes could be useful in describing novel diagnostic and therapeutic applications of EVs in these diseases.
Collapse
|
18
|
Setua S, Thangaraju K, Dzieciatkowska M, Wilkerson RB, Nemkov T, Lamb DR, Tagaya Y, Boyer T, Rowden T, Doctor A, D'Alessandro A, Buehler PW. Coagulation potential and the integrated omics of extracellular vesicles from COVID-19 positive patient plasma. Sci Rep 2022; 12:22191. [PMID: 36564503 PMCID: PMC9780627 DOI: 10.1038/s41598-022-26473-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) participate in cell-to-cell communication and contribute toward homeostasis under physiological conditions. But EVs can also contribute toward a wide array of pathophysiology like cancer, sepsis, sickle cell disease, and thrombotic disorders. COVID-19 infected patients are at an increased risk of aberrant coagulation, consistent with elevated circulating levels of ultra-high molecular weight VWF multimers, D-dimer and procoagulant EVs. The role of EVs in COVID-19 related hemostasis may depend on cells of origin, vesicular cargo and size, however this is not well defined. We hypothesized that the procoagulant potential of EV isolates from COVID-19 (+) patient plasmas could be defined by thrombin generation assays. Here we isolated small EVs (SEVs) and large EVs (LEVs) from hospitalized COVID-19 (+) patient (n = 21) and healthy donor (n = 20) plasmas. EVs were characterized by flow cytometry, Transmission electron microscopy, nanoparticle tracking analysis, plasma thrombin generation and a multi-omics approach to define coagulation potential. These data were consistent with differences in EV metabolite, lipid, and protein content when compared to healthy donor plasma isolated SEVs and LEVs. Taken together, the effect of EVs on plasma procoagulant potential as defined by thrombin generation and supported by multi-omics is enhanced in COVID-19. Further, we observe that this effect is driven both by EV size and phosphatidyl serine.
Collapse
Affiliation(s)
- Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA
| | - Derek R Lamb
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yutaka Tagaya
- Division of Virology, Pathogenesis and Cancer, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tori Boyer
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tobi Rowden
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allan Doctor
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Denver-Anschutz Medical Campus, 12801 East 17th Ave., Aurora, CO, 80045, USA.
| | - Paul W Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
19
|
Conway EM, Mackman N, Warren RQ, Wolberg AS, Mosnier LO, Campbell RA, Gralinski LE, Rondina MT, van de Veerdonk FL, Hoffmeister KM, Griffin JH, Nugent D, Moon K, Morrissey JH. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol 2022; 22:639-649. [PMID: 35931818 PMCID: PMC9362465 DOI: 10.1038/s41577-022-00762-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
COVID-19-associated coagulopathy (CAC) is a life-threatening complication of SARS-CoV-2 infection. However, the underlying cellular and molecular mechanisms driving this condition are unclear. Evidence supports the concept that CAC involves complex interactions between the innate immune response, the coagulation and fibrinolytic pathways, and the vascular endothelium, resulting in a procoagulant condition. Understanding of the pathogenesis of this condition at the genomic, molecular and cellular levels is needed in order to mitigate thrombosis formation in at-risk patients. In this Perspective, we categorize our current understanding of CAC into three main pathological mechanisms: first, vascular endothelial cell dysfunction; second, a hyper-inflammatory immune response; and last, hypercoagulability. Furthermore, we pose key questions and identify research gaps that need to be addressed to better understand CAC, facilitate improved diagnostics and aid in therapeutic development. Finally, we consider the suitability of different animal models to study CAC.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Q Warren
- Molecular Cellular and Systems Blood Science Branch, Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laurent O Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert A Campbell
- Department of Internal Medicine, Division of General Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew T Rondina
- Department of Internal Medicine, Division of General Medicine, University of Utah, Salt Lake City, UT, USA
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karin M Hoffmeister
- Versiti Translational Glycomics Center, Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Diane Nugent
- Department of Paediatrics, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Kyung Moon
- Molecular Cellular and Systems Blood Science Branch, Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
- Bacteriology and Mycology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Hisada Y, Sachetto ATA, Mackman N. Circulating tissue factor-positive extracellular vesicles and their association with thrombosis in different diseases. Immunol Rev 2022; 312:61-75. [PMID: 35708588 DOI: 10.1111/imr.13106] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022]
Abstract
Tissue factor (TF) is a procoagulant protein released from activated host cells, such as monocytes, and tumor cells on extracellular vesicles (EVs). TF + EVs are observed in the circulation of patients with various types of diseases. In this review, we will summarize the association between TF + EVs and activation of coagulation and survival in different types of diseases, including cancer, sepsis, and infections with different viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We will also discuss the source of TF + EVs in various diseases. EVTF activity is associated with thrombosis in pancreatic cancer patients and coronavirus disease 2019 patients (COVID-19) and with disseminated intravascular coagulation in cancer patients. EVTF activity is also associated with worse survival in patients with cancer and COVID-19. Monocytes are the major sources of TF + EVs in sepsis, and viral infections, such as HIV, Ebola virus, and SARS-CoV-2. In contrast, alveolar epithelial cells are the major source of TF + EVs in bronchoalveolar lavage fluid in COVID-19 and influenza A patients. These studies indicate that EVTF activity could be used as a biomarker to identify patients that have an increased risk of coagulopathy and mortality.
Collapse
Affiliation(s)
- Yohei Hisada
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ana Teresa Azevedo Sachetto
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- Division of Hematology, Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
21
|
Butov KR, Karetnikova NA, Pershin DY, Trofimov DY, Panteleev MA. Procoagulant Activity in Amniotic Fluid Is Associated with Fetal-Derived Extracellular Vesicles. Curr Issues Mol Biol 2022; 44:2710-2716. [PMID: 35735626 PMCID: PMC9221817 DOI: 10.3390/cimb44060185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Procoagulant activity in amniotic fluid (AF) is positively correlated with phosphatidylserine (PS) and tissue factor (TF)-expressing(+) extracellular vesicles (EVs). However, it is unknown if pathological fetal conditions may affect the composition, phenotype, and procoagulant potency of EVs in AF. We sought to evaluate EV-dependent procoagulant activity in AF from pregnant people with fetuses with or without diagnosed chromosomal mutations. AF samples were collected by transabdominal amniocentesis and assessed for common karyotype defects (total n = 11, 7 healthy and 4 abnormal karyotypes). The procoagulant activity of AF was tested using a fibrin generation assay with normal pooled plasma and plasmas deficient in factors XII, XI, IX, X, V, and VII. EV number and phenotype were determined by flow cytometry with anti-CD24 and anti-TF antibodies. We report that factor-VII-, X-, or V-deficient plasmas did not form fibrin clots in the presence of AF. Clotting time was significantly attenuated in AF samples with chromosomal mutations. In addition, CD24+, TF+, and CD24+ TF+ EV counts were significantly lower in this group. Finally, we found a significant correlation between EV counts and the clotting time induced by AF. In conclusion, we show that AF samples with chromosomal mutations had fewer fetal-derived CD24-bearing and TF-bearing EVs, which resulted in diminished procoagulant potency. This suggests that fetal-derived EVs are the predominant source of procoagulant activity in AF.
Collapse
Affiliation(s)
- Kirill R. Butov
- Hemostasis Research Department, Dmitry Rogachev Pediatric Hematology and Immunology Hospital, Moscow 117997, Russia
- Laboratory of Molecular Mechanisms of Hemostasis, Center for Theoretical Problems of Physico-Chemical Pharmacology, Moscow 109029, Russia
- Correspondence: (K.R.B.); (M.A.P.)
| | - Natalia A. Karetnikova
- Institute of Reproductive Genetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Moscow 117198, Russia; (N.A.K.); (D.Y.T.)
| | - Dmitry Y. Pershin
- Laboratory of Transplantation Immunology, Dmitry Rogachev Pediatric Hematology and Immunology Hospital, Moscow 117997, Russia;
| | - Dmitry Y. Trofimov
- Institute of Reproductive Genetics, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov, Moscow 117198, Russia; (N.A.K.); (D.Y.T.)
| | - Mikhail A. Panteleev
- Hemostasis Research Department, Dmitry Rogachev Pediatric Hematology and Immunology Hospital, Moscow 117997, Russia
- Laboratory of Molecular Mechanisms of Hemostasis, Center for Theoretical Problems of Physico-Chemical Pharmacology, Moscow 109029, Russia
- Department of Physics, Lomonosov Moscow State University, Moscow 119234, Russia
- Correspondence: (K.R.B.); (M.A.P.)
| |
Collapse
|
22
|
Abstract
Platelets are at the crossroads between thrombosis and inflammation. When activated, platelets can shed bioactive extracellular vesicles [pEVs] that share the hemostatic potential of their parent cells and act as bioactive shuttles of their granular contents. In a viral infection, platelets are activated, and pEVs are generated with occasional virion integration. Both platelets and pEVs are engaged in a bidirectional interaction with neutrophils and other cells of the immune system and the hemostatic pathways. Severe COVID-19 infection is characterized by a stormy thromboinflammatory response with platelets and their EVs at the center stage of this reaction. This review sheds light on the interactions of platelets, pEVS and SARS-CoV-2 infection and prognostic and potential therapeutic role of pEVs. The review also describes the role of pEVs in the rare adenovirus-based COVID-19 vaccine-induced thrombosis thrombocytopenia.
Collapse
|
23
|
Pilard M, Ollivier EL, Gourdou-Latyszenok V, Couturaud F, Lemarié CA. Endothelial Cell Phenotype, a Major Determinant of Venous Thrombo-Inflammation. Front Cardiovasc Med 2022; 9:864735. [PMID: 35528838 PMCID: PMC9068971 DOI: 10.3389/fcvm.2022.864735] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Reduced blood flow velocity in the vein triggers inflammation and is associated with the release into the extracellular space of alarmins or damage-associated molecular patterns (DAMPs). These molecules include extracellular nucleic acids, extracellular purinergic nucleotides (ATP, ADP), cytokines and extracellular HMGB1. They are recognized as a danger signal by immune cells, platelets and endothelial cells. Hence, endothelial cells are capable of sensing environmental cues through a wide variety of receptors expressed at the plasma membrane. The endothelium is then responding by expressing pro-coagulant proteins, including tissue factor, and inflammatory molecules such as cytokines and chemokines involved in the recruitment and activation of platelets and leukocytes. This ultimately leads to thrombosis, which is an active pro-inflammatory process, tightly regulated, that needs to be properly resolved to avoid further vascular damages. These mechanisms are often dysregulated, which promote fibrinolysis defects, activation of the immune system and irreversible vascular damages further contributing to thrombotic and inflammatory processes. The concept of thrombo-inflammation is now widely used to describe the complex interactions between the coagulation and inflammation in various cardiovascular diseases. In endothelial cells, activating signals converge to multiple intracellular pathways leading to phenotypical changes turning them into inflammatory-like cells. Accumulating evidence suggest that endothelial to mesenchymal transition (EndMT) may be a major mechanism of endothelial dysfunction induced during inflammation and thrombosis. EndMT is a biological process where endothelial cells lose their endothelial characteristics and acquire mesenchymal markers and functions. Endothelial dysfunction might play a central role in orchestrating and amplifying thrombo-inflammation thought induction of EndMT processes. Mechanisms regulating endothelial dysfunction have been only partially uncovered in the context of thrombotic diseases. In the present review, we focus on the importance of the endothelial phenotype and discuss how endothelial plasticity may regulate the interplay between thrombosis and inflammation. We discuss how the endothelial cells are sensing and responding to environmental cues and contribute to thrombo-inflammation with a particular focus on venous thromboembolism (VTE). A better understanding of the precise mechanisms involved and the specific role of endothelial cells is needed to characterize VTE incidence and address the risk of recurrent VTE and its sequelae.
Collapse
|
24
|
Platelet activation by SARS-CoV-2 implicates the release of active tissue factor by infected cells. Blood Adv 2022; 6:3593-3605. [PMID: 35443030 PMCID: PMC9023084 DOI: 10.1182/bloodadvances.2022007444] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/20/2022] Open
Abstract
Platelets are hyperactivated in coronavirus disease 2019 (COVID-19). However, the mechanisms promoting platelet activation by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not well understood. This may be due to inherent challenges in discriminating the contribution of viral vs host components produced by infected cells. This is particularly true for enveloped viruses and extracellular vesicles (EVs), as they are concomitantly released during infection and share biophysical properties. To study this, we evaluated whether SARS-CoV-2 itself or components derived from SARS-CoV-2-infected human lung epithelial cells could activate isolated platelets from healthy donors. Activation was measured by the surface expression of P-selectin and the activated conformation of integrin αIIbβ3, degranulation, aggregation under flow conditions, and the release of EVs. We find that neither SARS-CoV-2 nor purified spike activates platelets. In contrast, tissue factor (TF) produced by infected cells was highly potent at activating platelets. This required trace amounts of plasma containing the coagulation factors FX, FII, and FVII. Robust platelet activation involved thrombin and the activation of protease-activated receptor (PAR)-1 and -4 expressed by platelets. Virions and EVs were identified by electron microscopy. Through size-exclusion chromatography, TF activity was found to be associated with a virus or EVs, which were indistinguishable. Increased TF messenger RNA (mRNA) expression and activity were also found in lungs in a murine model of COVID-19 and plasma of severe COVID-19 patients, respectively. In summary, TF activity from SARS-CoV-2–infected cells activates thrombin, which signals to PARs on platelets. Blockade of molecules in this pathway may interfere with platelet activation and the coagulation characteristic of COVID-19.
Collapse
|
25
|
Hess CN, Capell WH, Bristow MR, Ruf W, Szarek M, Morrow DA, Nicolau JC, Graybill CA, Marshall D, Hsia J, Bonaca MP. Rationale and design of a study to assess the safety and efficacy of rNAPc2 in COVID-19: the Phase 2b ASPEN-COVID-19 trial. Am Heart J 2022; 246:136-143. [PMID: 34986394 PMCID: PMC8720379 DOI: 10.1016/j.ahj.2021.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022]
Abstract
Background The interaction between thrombosis and inflammation appears central to COVID-19-associated coagulopathy and likely contributes to poor outcomes. Tissue factor is a driver of disordered coagulation and inflammatory signaling in viral infections and is important for viral replication; therefore, tissue factor may be an important therapeutic target in COVID-19. Study Design ASPEN-COVID-19 (NCT04655586) is a randomized, prospective open-label blinded endpoint (PROBE), active comparator Phase 2b trial to evaluate the safety and efficacy of recombinant Nematode Anticoagulant Protein c2 (rNAPc2), a potent tissue factor inhibitor, in patients hospitalized with COVID-19 with elevated D-dimer levels. This report describes the design of the Phase 2b dose ranging and proof of concept study. Participants are randomly assigned, in a 1:1:2 ratio, to lower or higher dose rNAPc2 by subcutaneous injection on days 1, 3, and 5 or to heparin according to local standard of care; randomization is stratified by baseline D-dimer level (at 2X upper limit of normal). The primary efficacy endpoint for Phase 2b is proportional change in D-dimer concentration from baseline to Day 8 or day of discharge, whichever is earlier. The primary safety endpoint is major or non-major clinically relevant bleeding through Day 8. Phase 2b enrollment began in December 2020 and is projected to complete ∼160 participants by Q4 2021. Conclusions ASPEN-COVID-19 will provide important data on a novel therapeutic approach that may improve outcomes in hospitalized COVID-19 patients beyond available anticoagulants by targeting tissue factor, with potential effects on not only thrombosis but also inflammation and viral propagation.
Collapse
|
26
|
You H, Zhao Q, Dong M. The Key Genes Underlying Pathophysiology Correlation Between the Acute Myocardial Infarction and COVID-19. Int J Gen Med 2022; 15:2479-2490. [PMID: 35282650 PMCID: PMC8904943 DOI: 10.2147/ijgm.s354885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/23/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction Accumulating evidences disclose that COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a marked effect on acute myocardial infarction (AMI). Nevertheless, the underlying pathophysiology correlation between the AMI and COVID-19 remains vague. Materials and Methods Bioinformatics analyses of the altered transcriptional profiling of peripheral blood mononuclear cells (PBMCs) in patients with AMI and COVID-19 were implemented, including identification of differentially expressed genes and common genes between AMI and COVID-19, protein–protein interactions, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, TF-genes and miRNA coregulatory networks, to explore their biological functions and potential roles in the pathogenesis of COVID-19-related AMI. Conclusion Our bioinformatic analyses of gene expression profiling of PBMCs in patients with AMI and COVID-19 provide us with a unique view regarding underlying pathophysiology correlation between the two vital diseases.
Collapse
Affiliation(s)
- Hongjun You
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
| | - Qianqian Zhao
- Department of Clinical Immunology, The First Affiliated Hospital, Air Force Military Medical University, Xi’an, 710032, Shaanxi, People’s Republic of China
| | - Mengya Dong
- Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, Xi’an, 710068, Shaanxi, People’s Republic of China
- Correspondence: Mengya Dong, Department of Cardiovascular Medicine, Shaanxi Provincial People’s Hospital, 256 West Youyi Road, Xi’an, Shaanxi, 710068, People’s Republic of China, Tel +86–15802943974, Email
| |
Collapse
|
27
|
Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular Vesicle (EV) Therapy. Int J Mol Sci 2022; 23:2321. [PMID: 35216433 PMCID: PMC8876984 DOI: 10.3390/ijms23042321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.
Collapse
Affiliation(s)
| | | | - Sanjay B. Maggirwar
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA; (B.O.); (N.S.-S.)
| |
Collapse
|
28
|
Archibald SJ, Hisada Y, Bae‐Jump VL, Mackman N. Evaluation of a new bead-based assay to measure levels of human tissue factor antigen in extracellular vesicles in plasma. Res Pract Thromb Haemost 2022; 6:e12677. [PMID: 35284777 PMCID: PMC8897283 DOI: 10.1002/rth2.12677] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/27/2022] Open
Abstract
Background Circulating tissue factor (TF)-expressing extracellular vesicles (EVs) are associated with thrombosis in several diseases, such as coronavirus disease 2019 (COVID-19). Activity assays have higher sensitivity and specificity compared to antigen assays for measuring TF+ EVs in plasma. The MACSPlex Exosome Kit is designed to detect 37 exosomal surface epitopes, including TF, on EVs in plasma using various fluorescently labeled beads. The different EV-bead complexes are detected by flow cytometry. A recent study used the MACSPlex Exosome Kit to measure levels of TF+ EVs in serum from patients with COVID-19. Objectives To evaluate the ability of the MACSPlex Exosome Kit to detect TF on EVs in plasma. Methods We measured levels of TF+ EVs isolated from plasma with or without TF detected using our in-house EVTF activity assay and the MACSPlex Exosome Kit. Results The MACSPlex Exosome Kit gave a very low TF antigen signal (TF bead signal) compared to platelet-derived CD41b+ EVs, which was used as a control. Lipopolysaccharide (LPS) increased levels of EVTF activity but not TF bead signal in four donors. Inhibition of TF reduced levels of EVTF activity but did not affect the TF bead signal in EVs isolated from plasma from LPS-treated blood. Finally, we found no correlation between levels of EVTF activity and TF bead signal in EVs isolated from plasma from ovarian cancer patients (r = .16, P = .62). Conclusion Our data suggest that the MACSPlex Exosome Kit gives a nonspecific signal for TF and does not have the sensitivity to detect TF+ EVs in plasma.
Collapse
Affiliation(s)
- Sierra J. Archibald
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Yohei Hisada
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Victoria L. Bae‐Jump
- Division of Gynecologic OncologyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Lineberger Comprehensive Cancer CenterDepartment of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Nigel Mackman
- Division of HematologyUNC Blood Research CenterUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
29
|
Bogdanov VY, Khirmanov VN. SARS-CoV-2, platelets, and endothelium: coexistence in space and time, or a pernicious ménage à trois? VASCULAR BIOLOGY (BRISTOL, ENGLAND) 2022; 4:R35-R43. [PMID: 35949299 PMCID: PMC9354055 DOI: 10.1530/vb-22-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022]
Abstract
As we enter year 3 of SARS-CoV-2 pandemic, long-term consequences of COVID-19 have become a major public health issue worldwide; however, the molecular and cellular underpinnings of 'long COVID' remain very poorly understood. A paradigm has recently emerged that thrombo-inflammatory consequences of SARS-CoV-2's impact on endothelial cells and platelets likely play a significant role in the development of chronic symptomatology associated with COVID-19. In this brief overview, we discuss the recent findings pertaining to the detection of SARS-CoV-2 virions in vascular cell subtypes, the contribution of the coagulation system to the development of 'long COVID', and the potential role of stem/progenitor cells in the viral and thrombotic dissemination in this disorder.
Collapse
Affiliation(s)
- Vladimir Y Bogdanov
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Vladimir N Khirmanov
- Department of Cardiovascular Medicine, Nikiforov’s All-Russian Center for Emergency and Radiation Medicine, Saint Petersburg, Russia
| |
Collapse
|
30
|
Functional Characteristics and Regulated Expression of Alternatively Spliced Tissue Factor: An Update. Cancers (Basel) 2021; 13:cancers13184652. [PMID: 34572880 PMCID: PMC8471299 DOI: 10.3390/cancers13184652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.
Collapse
|
31
|
Zifkos K, Dubois C, Schäfer K. Extracellular Vesicles and Thrombosis: Update on the Clinical and Experimental Evidence. Int J Mol Sci 2021; 22:ijms22179317. [PMID: 34502228 PMCID: PMC8431093 DOI: 10.3390/ijms22179317] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) compose a heterogenous group of membrane-derived particles, including exosomes, microvesicles and apoptotic bodies, which are released into the extracellular environment in response to proinflammatory or proapoptotic stimuli. From earlier studies suggesting that EV shedding constitutes a cellular clearance mechanism, it has become evident that EV formation, secretion and uptake represent important mechanisms of intercellular communication and exchange of a wide variety of molecules, with relevance in both physiological and pathological situations. The putative role of EVs in hemostasis and thrombosis is supported by clinical and experimental studies unraveling how these cell-derived structures affect clot formation (and resolution). From those studies, it has become clear that the prothrombotic effects of EVs are not restricted to the exposure of tissue factor (TF) and phosphatidylserines (PS), but also involve multiplication of procoagulant surfaces, cross-linking of different cellular players at the site of injury and transfer of activation signals to other cell types. Here, we summarize the existing and novel clinical and experimental evidence on the role and function of EVs during arterial and venous thrombus formation and how they may be used as biomarkers as well as therapeutic vectors.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, D-55131 Mainz, Germany;
| | - Christophe Dubois
- Aix Marseille University, INSERM 1263, Institut National de la Recherche pour l’Agriculture, l’alimentation et l’Environnement (INRAE) 1260, Center for CardioVascular and Nutrition Research (C2VN), F-13380 Marseille, France;
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, D-55131 Mainz, Germany
- Correspondence:
| |
Collapse
|