1
|
Risman RA, Sen M, Tutwiler V, Hudson NE. Deconstructing fibrin(ogen) structure. J Thromb Haemost 2024:S1538-7836(24)00640-8. [PMID: 39536819 DOI: 10.1016/j.jtha.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Fibrinogen and its insoluble degradation product fibrin are pivotal plasma proteins that play important roles in blood coagulation, wound healing, and immune responses. This review highlights research from the last 24 months connecting our progressing view of fibrin(ogen)'s structure, and in particular its conformational flexibility and posttranslational modifications, to its (patho)physiologic roles, molecular interactions, mechanical properties, use as a biomaterial, and potential as a therapeutic target. Recent work suggests that fibrinogen structure is highly dynamic, sampling multiple conformations, which may explain its myriad physiologic functions and the presence of cryptic binding sites. Investigations into fibrin clot structure elucidated the impact of posttranslational modifications, therapeutic interventions, and pathologic conditions on fibrin network morphology, offering insights into thrombus formation and embolization. Studies exploring the mechanical properties of fibrin reveal its response to blood flow and platelet-driven contraction, offering implications for clot stability and embolization risk. Moreover, advancements in tissue engineering leverage fibrin's biocompatibility and customizable properties for diverse applications, from wound healing to tissue regeneration and biomaterial interactions. These findings underscore the structural origins of fibrin(ogen)'s multifaceted roles and its potential as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Rebecca A Risman
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/rebecca_risman
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Valerie Tutwiler
- Department of Biomedical Engineering, Rutgers University, New Brunswick, New Jersey, USA. https://twitter.com/vatutwiler
| | - Nathan E Hudson
- Department of Physics, East Carolina University, Greenville, North Carolina, USA.
| |
Collapse
|
2
|
Strunk T, Joshi A, Moeinkhah M, Renzelmann T, Dierker L, Grotheer D, Graupner N, Müssig J, Brüggemann D. Structure, Properties and Degradation of Self-Assembled Fibrinogen Nanofiber Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:6186-6200. [PMID: 39226515 PMCID: PMC11409215 DOI: 10.1021/acsabm.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Self-assembled fibrinogen nanofibers are promising candidates for skin tissue engineering due to their biocompatibility and ability to mimic the native blood clot architecture. Here, we studied the structure-property relationship and degradation of rehydrated fibrinogen nanofibers prepared by salt-induced self-assembly, focusing on the effect of scaffold layering, cross-linking time and freeze-drying. Optimal fiber stability was achieved with cross-linking by formaldehyde (FA) vapor, while treatment with liquid aldehydes, genipin, EDC, and transglutaminase failed to preserve the nanofibrous architecture upon rehydration. Scaffold layering did not significantly influence the mechanical properties but changed the scaffold architecture, with bulk fiber scaffolds being more compact than layered scaffolds. Freeze-drying maintained the mechanical properties and interconnected pore network with average pore diameters around 20 μm, which will enhance the storage stability of self-assembled fibrinogen scaffolds. Varying cross-linking times altered the scaffold mechanics without affecting the swelling behavior, indicating that scaffold hydration can be controlled independently of the mechanical characteristics. Cross-linking times of 240 min increased scaffold stiffness and decreased elongation, while 30 min resulted in mechanical properties similar to native skin. Cross-linking for 120 min was found to reduce scaffold degradation by various enzymes in comparison to 60 min. Overall, after 35 days of incubation, plasmin and a combination of urokinase and plasminogen exhibited the strongest degradative effect, with nanofibers being more susceptible to enzymatic degradation than planar fibrinogen due to their higher specific surface area. Based on these results, self-assembled fibrinogen fiber scaffolds show great potential for future applications in soft tissue engineering that require controlled structure-function relationships and degradation characteristics.
Collapse
Affiliation(s)
- Till Strunk
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Arundhati Joshi
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Mahta Moeinkhah
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Timon Renzelmann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Lea Dierker
- Hochschule Bremen - City University of Applied Sciences, Neustadtswall 30, 28199 Bremen, Germany
| | - Dietmar Grotheer
- Chemical Process Engineering, Faculty of Production Engineering, University of Bremen, Leobener Str. 6, 28359 Bremen, Germany
| | - Nina Graupner
- HSB - City University of Applied Sciences, Department of Biomimetics, The Biological Materials Group, Neustadtswall 30, 28199 Bremen, Germany
| | - Jörg Müssig
- HSB - City University of Applied Sciences, Department of Biomimetics, The Biological Materials Group, Neustadtswall 30, 28199 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
3
|
Zong ZP, Wu C. Clinical significance of peripheral blood UL16 and DR-70 for the early diagnosis and prognostic evaluation of colorectal cancer. World J Gastrointest Oncol 2024; 16:3832-3838. [PMID: 39350986 PMCID: PMC11438780 DOI: 10.4251/wjgo.v16.i9.3832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Early diagnosis of colorectal cancer (CRC) is of great significance to improve the survival rate and quality of life of patients, but early diagnosis of CRC requires more sensitive techniques. Peripheral blood UL16-binding protein 2 (ULBP2) and human fibrinogen degradation products (DR-70) are the main indicators for the diagnosis of malignant tumors. AIM To assess ULBP2 and DR-70 potential for the early diagnosis and prognostic evaluation of CRC to provide a reference. METHODS This study involved 60 patients with early-stage CRC (CRC group), 50 patients with benign colorectal tumors (benign group), and 50 healthy patients (control group) enrolled at the Affiliated Hospital of Jiangnan University and Jiangsu Province Official Hospital between January, 2020 and January, 2022. ULBP2 and DR-70 levels in the blood were determined and differences among the three groups and early diagnostic values for CRC were determined. Patients with CRC were divided into the good prognosis and poor prognosis groups, and ULBP2 and DR-70 levels in the blood and diagnostic values were compared. RESULTS ULBP2 and DR-70 serum levels were significantly higher in the CRC group than in the control and benign groups (P < 0.05); however, no significant differences were observed between the benign and control groups (P > 0.05). Among the 60 patients with CRC followed up for two years, two died (3.33%) and 15 exhibited tumor metastasis, progression, or recurrence (25.00%). ULBP2 and DR-70 serum levels were significantly higher in the poor prognosis group than in the good prognosis group (P < 0.05). A receiver operating characteristic curve was plotted. Area under the curve, sensitivity, and specificity of serum ULBP2 with DR-70 for the early diagnosis of CRC were higher than those of the single serum indices (P < 0.05) in both the good and poor prognosis groups. CONCLUSION ULBP2 and DR-70 serum levels were significantly high in patients with early-stage CRC. They improved the diagnostic rate of early-stage CRC and predicted patient prognosis, thereby showing clinical application potential.
Collapse
Affiliation(s)
- Zhi-Ping Zong
- Department of Blood Transfusion, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Chen Wu
- Clinical Laboratory, Jiangsu Province Official Hospital, Nanjing 210003, Jiangsu Province, China
| |
Collapse
|
4
|
Li SS, Liu QJ, Bao JX, Lu MT, Deng BQ, Li WW, Cao CC. Counteracting TGM2 by a Fibroin peptide ameliorated Adriamycin-induced nephropathy via regulation of lipid metabolism through PANX1-PPAR α/PANK1 pathway. Transl Res 2024; 271:26-39. [PMID: 38734063 DOI: 10.1016/j.trsl.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Peptide drug discovery for the treatment of chronic kidney disease (CKD) has attracted much attention in recent years due to the urge to find novel drugs and mechanisms to delay the progression of the disease. In this study, we identified a novel short peptide (named YR-7, primary sequence 'YEVEDYR') from the natural Fibroin protein, and demonstrated that it significantly alleviated pathological renal changes in ADR-induced nephropathy. PANX1 was identified as the most notably upregulated component by RNA-sequencing. Further analysis showed that YR-7 alleviated the accumulation of lipid droplets via regulation of the lipid metabolism-related proteins PPAR α and PANK1. Using chemical proteomics, fluorescence polarization, microscale thermophoresis, surface plasmon resonance, and molecular docking, YR-7 was proven to directly bind to β-barrel domains of TGM2 protein to inhibit lipid accumulation. TGM2 knockdown in vivo increased the protein levels of PPAR α and PANK1 while decreased the levels of fibrotic-related proteins to alleviate nephropathy. In vitro, overexpression TGM2 reversed the protective effects of YR-7. Co-immunoprecipitation indicated that TGM2 interacted with PANX1 to promote lipid deposition, and pharmacological inhibition or knockdown of PANX1 decreased the levels of PPAR α and PANK1 induced by ADR. Taken together, our findings revealed that TGM2-PANX1 interaction in promoting lipid deposition may be a new signaling in promoting ADR-induced nephropathy. And a novel natural peptide could ameliorate renal fibrosis through TGM2-PANX1-PPAR α/PANK1 pathway, which highlight the potential of it in the treatment of CKD.
Collapse
Affiliation(s)
- Shan-Shan Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Qiao-Juan Liu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Xin Bao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Meng-Ting Lu
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Bing-Quan Deng
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Wen-Wen Li
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China
| | - Chang-Chun Cao
- Department of Nephrology, Sir Run Run hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Wu X, Yu X, Chen C, Chen C, Wang Y, Su D, Zhu L. Fibrinogen and tumors. Front Oncol 2024; 14:1393599. [PMID: 38779081 PMCID: PMC11109443 DOI: 10.3389/fonc.2024.1393599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Elevated plasma fibrinogen (Fg) levels consistently correlate with an unfavorable prognosis in various tumor patient cohorts. Within the tumor microenvironment, aberrant deposition and expression of Fg have been consistently observed, interacting with multiple cellular receptors and thereby accentuating its role as a regulator of inflammatory processes. Specifically, Fg serves to stimulate and recruit immune cells and pro-inflammatory cytokines, thereby contributing to the promotion of tumor progression. Additionally, Fg and its fragments exhibit dichotomous effects on tumor angiogenesis. Notably, Fg also facilitates tumor migration through both platelet-dependent and platelet-independent mechanisms. Recent studies have illuminated several tumor-related signaling pathways influenced by Fg. This review provides a comprehensive summary of the intricate involvement of Fg in tumor biology, elucidating its multifaceted role and the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyuan Wu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaomin Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cheng Chen
- Department of Hematology, Wenzhou Key Laboratory of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chenlu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuxin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongyan Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liqing Zhu
- Department of Clinical Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
6
|
Zhu F, Wang S, Zhu X, Pang C, Cui P, Yang F, Li R, Zhan Q, Xin H. Potential effects of biomaterials on macrophage function and their signalling pathways. Biomater Sci 2023; 11:6977-7002. [PMID: 37695360 DOI: 10.1039/d3bm01213a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The use of biomaterials in biomedicine and healthcare has increased in recent years. Macrophages are the primary immune cells that induce inflammation and tissue repair after implantation of biomaterials. Given that macrophages exhibit high heterogeneity and plasticity, the influence of biomaterials on macrophage phenotype should be considered a crucial evaluation criterion during the development of novel biomaterials. This review provides a comprehensive summary of the physicochemical, biological, and dynamic characteristics of biomaterials that drive the regulation of immune responses in macrophages. The mechanisms involved in the interaction between macrophages and biomaterials, including endocytosis, receptors, signalling pathways, integrins, inflammasomes and long non-coding RNAs, are summarised in this review. In addition, research prospects of the interaction between macrophages and biomaterials are discussed. An in-depth understanding of mechanisms underlying the spatiotemporal changes in macrophage phenotype induced by biomaterials and their impact on macrophage polarization can facilitate the identification and development of novel biomaterials with superior performance. These biomaterials may be used for tissue repair and regeneration, vaccine or drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Fujun Zhu
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Shaolian Wang
- Central Sterile Supply Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Xianglian Zhu
- Outpatient Department, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Caixiang Pang
- Department of Emergency Medicine, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Pei Cui
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Fuwang Yang
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| | - Rongsheng Li
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Qiu Zhan
- Animal Laboratory, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China
| | - Haiming Xin
- Department of Burns and Plastic Surgery, the No. 924th Hospital of the Joint Logistic Support Force of the Chinese PLA, Guilin, Guangxi 541002, People's Republic of China.
| |
Collapse
|
7
|
Hur WS, King KC, Patel YN, Nguyen YV, Wei Z, Yang Y, Juang LJ, Leung J, Kastrup CJ, Wolberg AS, Luyendyk JP, Flick MJ. Elimination of fibrin polymer formation or crosslinking, but not fibrinogen deficiency, is protective against diet-induced obesity and associated pathologies. J Thromb Haemost 2022; 20:2873-2886. [PMID: 36111375 PMCID: PMC9669152 DOI: 10.1111/jth.15877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Abstract
BACKGROUND Obesity predisposes individuals to metabolic syndrome, which increases the risk of cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), and type 2 diabetes. A pathological manifestation of obesity is the activation of the coagulation system. In turn, extravascular fibrin(ogen) deposits accumulate in adipose tissues and liver. These deposits promote adiposity and downstream sequelae by driving pro-inflammatory macrophage function through binding the leukocyte integrin receptor αM β2 . OBJECTIVES An unresolved question is whether conversion of soluble fibrinogen to a crosslinked fibrin matrix is required to exacerbate obesity-driven diseases. METHODS Here, fibrinogen-deficient/depleted mice (Fib- or treated with siRNA against fibrinogen [siFga]), mice expressing fibrinogen that cannot polymerize to fibrin (FibAEK ), and mice deficient in the fibrin crosslinking transglutaminase factor XIII (FXIII-) were challenged with a high-fat diet (HFD) and compared to mice expressing a mutant form of fibrinogen lacking the αM β2 -binding domain (Fib𝛾390-396A ). RESULTS AND CONCLUSIONS Consistent with prior studies, Fib𝛾390-396A mice were significantly protected from increased adiposity, NAFLD, hypercholesterolemia, and diabetes while Fib- and siFga-treated mice gained as much weight and developed obesity-associated pathologies identical to wildtype mice. FibAEK and FXIII- mice displayed an intermediate phenotype with partial protection from some obesity-associated pathologies. Results here indicate that fibrin(ogen) lacking αM β2 binding function offers substantial protection from obesity and associated disease that is partially recapitulated by preventing fibrin polymer formation or crosslinking of the wildtype molecule, but not by reduction or complete elimination of fibrinogen. Finally, these findings support the concept that fibrin polymerization and crosslinking are required for the full implementation of fibrin-driven inflammation in obesity.
Collapse
Affiliation(s)
- Woosuk S. Hur
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katharine C. King
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yesha N. Patel
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Y-Van Nguyen
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zimu Wei
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Yi Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lih Jiin Juang
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Jerry Leung
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Christian J. Kastrup
- Michael Smith Laboratories, and Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
- Blood Research institute, Versiti, Milwaukee, WI, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - James P Luyendyk
- Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Mashabela LT, Maboa MM, Miya NF, Ajayi TO, Chasara RS, Milne M, Mokhele S, Demana PH, Witika BA, Siwe-Noundou X, Poka MS. A Comprehensive Review of Cross-Linked Gels as Vehicles for Drug Delivery to Treat Central Nervous System Disorders. Gels 2022; 8:563. [PMID: 36135275 PMCID: PMC9498590 DOI: 10.3390/gels8090563] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gels are attractive candidates for drug delivery because they are easily producible while offering sustained and/or controlled drug release through various mechanisms by releasing the therapeutic agent at the site of action or absorption. Gels can be classified based on various characteristics including the nature of solvents used during preparation and the method of cross-linking. The development of novel gel systems for local or systemic drug delivery in a sustained, controlled, and targetable manner has been at the epitome of recent advances in drug delivery systems. Cross-linked gels can be modified by altering their polymer composition and content for pharmaceutical and biomedical applications. These modifications have resulted in the development of stimuli-responsive and functionalized dosage forms that offer many advantages for effective dosing of drugs for Central Nervous System (CNS) conditions. In this review, the literature concerning recent advances in cross-linked gels for drug delivery to the CNS are explored. Injectable and non-injectable formulations intended for the treatment of diseases of the CNS together with the impact of recent advances in cross-linked gels on studies involving CNS drug delivery are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Madan S. Poka
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| |
Collapse
|