1
|
Tyagi P, Singh A, Kumar J, Ahmad B, Bahuguna A, Vivekanandan P, Sarin SK, Kumar V. Furanocoumarins promote proteasomal degradation of viral HBx protein and down-regulate cccDNA transcription and replication of hepatitis B virus. Virology 2024; 595:110065. [PMID: 38569227 DOI: 10.1016/j.virol.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.
Collapse
Affiliation(s)
- Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Belal Ahmad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Aparna Bahuguna
- Elsevier/ RELX India Pvt Ltd., DLF Cyber City, Gurgaon, 122002, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
2
|
Dopico E, Vila M, Tabernero D, Gregori J, Rando-Segura A, Pacín-Ruíz B, Guerrero L, Ubillos I, Martínez MJ, Costa J, Quer J, Pérez-Garreta J, González-Sánchez A, Antón A, Pumarola T, Riveiro-Barciela M, Ferrer-Costa R, Buti M, Rodríguez-Frías F, Cortese MF. Genotyping Hepatitis B virus by Next-Generation Sequencing: Detection of Mixed Infections and Analysis of Sequence Conservation. Int J Mol Sci 2024; 25:5481. [PMID: 38791519 PMCID: PMC11122360 DOI: 10.3390/ijms25105481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Our aim was to develop an accurate, highly sensitive method for HBV genotype determination and detection of genotype mixtures. We examined the preS and 5' end of the HBV X gene (5X) regions of the HBV genome using next-generation sequencing (NGS). The 1852 haplotypes obtained were subjected to genotyping via the Distance-Based discrimination method (DB Rule) using two sets of 95 reference sequences of genotypes A-H. In clinical samples from 125 patients, the main genotypes were A, D, F and H in Caucasian, B and C in Asian and A and E in Sub-Saharan patients. Genotype mixtures were identified in 28 (22.40%) cases, and potential intergenotypic recombination was observed in 29 (23.20%) cases. Furthermore, we evaluated sequence conservation among haplotypes classified into genotypes A, C, D, and E by computing the information content. The preS haplotypes exhibited limited shared conserved regions, whereas the 5X haplotypes revealed two groups of conserved regions across the genotypes assessed. In conclusion, we developed an NGS-based HBV genotyping method utilizing the DB Rule for genotype classification. We identified two regions conserved across different genotypes at 5X, offering promising targets for RNA interference-based antiviral therapies.
Collapse
Affiliation(s)
- Eva Dopico
- Department of Microbiology, Metropolitana Sud Territorial Clinical Laboratory, Bellvitge University Hospital, Institut Català de la Salut (ICS), 08907 Hospitalet de Llobregat, Spain; (E.D.); (L.G.); (I.U.)
- Bellvitge Biomedical Research Institute (IDIBELL), 08908 Hospitalet de Llobregat, Spain
| | - Marta Vila
- Liver Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.V.); (A.R.-S.); (B.P.-R.); (J.P.-G.); (M.F.C.)
| | - David Tabernero
- Liver Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.V.); (A.R.-S.); (B.P.-R.); (J.P.-G.); (M.F.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
| | - Josep Gregori
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
| | - Ariadna Rando-Segura
- Liver Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.V.); (A.R.-S.); (B.P.-R.); (J.P.-G.); (M.F.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
- Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.G.-S.); (A.A.); (T.P.)
| | - Beatriz Pacín-Ruíz
- Liver Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.V.); (A.R.-S.); (B.P.-R.); (J.P.-G.); (M.F.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
| | - Laura Guerrero
- Department of Microbiology, Metropolitana Sud Territorial Clinical Laboratory, Bellvitge University Hospital, Institut Català de la Salut (ICS), 08907 Hospitalet de Llobregat, Spain; (E.D.); (L.G.); (I.U.)
| | - Itziar Ubillos
- Department of Microbiology, Metropolitana Sud Territorial Clinical Laboratory, Bellvitge University Hospital, Institut Català de la Salut (ICS), 08907 Hospitalet de Llobregat, Spain; (E.D.); (L.G.); (I.U.)
| | - Miguel J. Martínez
- Department of Microbiology, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (M.J.M.); (J.C.)
- ISGlobal, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josep Costa
- Department of Microbiology, Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; (M.J.M.); (J.C.)
| | - Josep Quer
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
- Liver Diseases-Viral Hepatitis, Liver Unit, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Javier Pérez-Garreta
- Liver Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.V.); (A.R.-S.); (B.P.-R.); (J.P.-G.); (M.F.C.)
| | - Alejandra González-Sánchez
- Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.G.-S.); (A.A.); (T.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Respiratory Virus Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Andrés Antón
- Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.G.-S.); (A.A.); (T.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Respiratory Virus Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Tomás Pumarola
- Virology Section, Microbiology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (A.G.-S.); (A.A.); (T.P.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Mar Riveiro-Barciela
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
- Liver Unit, Internal Medicine Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Roser Ferrer-Costa
- Clinical Biochemistry, Drug Delivery and Therapy (CB-DDT) Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Maria Buti
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
- Liver Unit, Internal Medicine Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| | - Francisco Rodríguez-Frías
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
- Clinical Biochemistry, Drug Delivery and Therapy (CB-DDT) Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain;
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Maria Francesca Cortese
- Liver Unit, Microbiology Department, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain; (M.V.); (A.R.-S.); (B.P.-R.); (J.P.-G.); (M.F.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.Q.); (M.R.-B.); (M.B.); (F.R.-F.)
| |
Collapse
|
3
|
Giraud G, El Achi K, Zoulim F, Testoni B. Co-Transcriptional Regulation of HBV Replication: RNA Quality Also Matters. Viruses 2024; 16:615. [PMID: 38675956 PMCID: PMC11053573 DOI: 10.3390/v16040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic hepatitis B (CHB) virus infection is a major public health burden and the leading cause of hepatocellular carcinoma. Despite the efficacy of current treatments, hepatitis B virus (HBV) cannot be fully eradicated due to the persistence of its minichromosome, or covalently closed circular DNA (cccDNA). The HBV community is investing large human and financial resources to develop new therapeutic strategies that either silence or ideally degrade cccDNA, to cure HBV completely or functionally. cccDNA transcription is considered to be the key step for HBV replication. Transcription not only influences the levels of viral RNA produced, but also directly impacts their quality, generating multiple variants. Growing evidence advocates for the role of the co-transcriptional regulation of HBV RNAs during CHB and viral replication, paving the way for the development of novel therapies targeting these processes. This review focuses on the mechanisms controlling the different co-transcriptional processes that HBV RNAs undergo, and their contribution to both viral replication and HBV-induced liver pathogenesis.
Collapse
Affiliation(s)
- Guillaume Giraud
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Khadija El Achi
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, Hôpital Croix Rousse, Service d’Hépato-Gastroentérologie, 69004 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
4
|
Kou B, Zhang Z, Han X, Zhou Z, Xu Z, Zhou X, Shen F, Zhou Y, Tian X, Yang G, Young JAT, Qiu H, Ottaviani G, Mayweg A, Zhu W, Shen HC, Liu H, Hu T. Discovery of 4,5,6,7-Tetrahydropyrazolo[1.5-a]pyrizine Derivatives as Core Protein Allosteric Modulators (CpAMs) for the Inhibition of Hepatitis B Virus. J Med Chem 2023; 66:14116-14132. [PMID: 37801325 DOI: 10.1021/acs.jmedchem.3c01145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Hepatitis B Virus (HBV) core protein allosteric modulators (CpAMs) are an attractive class of potential anti-HBV therapeutic agents. Here we describe the efforts toward the discovery of a series of 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazine (THPP) compounds as HBV CpAMs that effectively inhibit a broad range of nucleos(t)ide-resistant HBV variants. The lead compound 45 demonstrated inhibition of HBV DNA viral load in a HBV AAV mouse model by oral administration.
Collapse
Affiliation(s)
- Buyu Kou
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zhisen Zhang
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xingchun Han
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zheng Zhou
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Lead Discovery, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Zhiheng Xu
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Lead Discovery, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xue Zhou
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Fang Shen
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Yuan Zhou
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Xiaojun Tian
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Guang Yang
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - John A T Young
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Discovery Virology, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Hongxia Qiu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Pharmaceutical Sciences, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Giorgio Ottaviani
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Pharmaceutical Sciences, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Alexander Mayweg
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Wei Zhu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Hong C Shen
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Haixia Liu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| | - Taishan Hu
- China Innovation Center of Roche, Building 5, 371 Lishizhen Road, Shanghai 201203, China
- Medicinal Chemistry, Building 5, 371 Lishizhen Road, Shanghai 201203, China
| |
Collapse
|
5
|
Fang J, Zhang Q, Xi Y, Lang L, Wang K, Li S. Analysis of the Differential Expression and Antiviral Activity of Porcine Interferon-α In Vitro. Int J Pept Res Ther 2023; 29:42. [PMID: 37065431 PMCID: PMC10082627 DOI: 10.1007/s10989-023-10508-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2023] [Indexed: 04/18/2023]
Abstract
Porcine interferon α (poIFN-α) is a crucial cytokine that can prevent and treat viral infections. Seventeen functional porcine IFN-α subtypes were found in the porcine genome. In this study, multiple sequence alignment was performed to analyze IFN-α protein structure and function. Phylogenetic tree analysis of the poIFN gene family defined the evolutionary relationship of various subtypes. PoIFN-αs, including poIFN-α1-17, were expressed in an Escherichia coli expression system. The antiviral activities of these IFN-α proteins against vesicular stomatitis virus (VSV) and pseudorabies virus (PRV) were examined in PK-15 cells. We found that the antiviral activity of different poIFN-α molecules greatly differed as follows: the poIFN-α14 and 17 subtypes had the greatest antiviral activities against VSV and PRV in PK-15 cells, poIFN-α1, 2, 3, and 8 exhibited lower biological activities, and poIFN-α4, 5, 6, 7, 9, 10, 11, 12, 13, and 16 had minimal or no effect in the tested target cell‒virus systems. Moreover, our studies demonstrated that the antiviral activity of IFN-α was positively correlated with the induction of IFN-stimulated genes, such as 2'-5' oligoadenylate synthetase 1 (OSA1), interferon-stimulated gene 15 (ISG15), myxoma resistance protein 1 (Mx1), and protein kinase R (PKR). Thus, our experimental results provide important information about the antiviral functions and mechanism of poIFN-α.
Collapse
Affiliation(s)
- Jianyu Fang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Qingxian Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanyan Xi
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Animal Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| | - Limin Lang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Keling Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Key Laboratory of Animal Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, 450002 People’s Republic of China
| |
Collapse
|
6
|
Nakanishi A, Okumura H, Hashita T, Yamashita A, Nishimura Y, Watanabe C, Kamimura S, Hayashi S, Murakami S, Ito K, Iwao T, Ikeda A, Hirose T, Sunazuka T, Tanaka Y, Matsunaga T. Ivermectin Inhibits HBV Entry into the Nucleus by Suppressing KPNA2. Viruses 2022; 14:v14112468. [PMID: 36366568 PMCID: PMC9695645 DOI: 10.3390/v14112468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatitis B virus (HBV) specifically infects human hepatocytes and increases the risks of cirrhosis and liver cancer. Currently, nucleic acid analogs are the main therapeutics for chronic hepatitis caused by HBV infection. Although nucleic acid analogs can eliminate HBV DNA by inhibiting HBV reverse transcriptase, they cannot lead to negative conversion of covalently closed circular DNA (cccDNA) and hepatitis B surface antigen (HBsAg). In this study, we revealed that the antifilarial drug ivermectin suppresses HBV production by a different mechanism from the nucleic acid analog entecavir or Na+ taurocholate co-transporting polypeptide-mediated entry inhibitor cyclosporin A. Ivermectin reduced the levels of several HBV markers, including HBsAg, in HBV-infected human hepatocellular carcinoma cells (HepG2-hNTCP-C4 cells) and humanized mouse hepatocytes (PXB hepatocytes). In addition, ivermectin significantly decreased the expression of HBV core protein and the nuclear transporter karyopherin α2 (KPNA2) in the nuclei of HepG2-hNTCP-C4 cells. Furthermore, depletion of KPNA1-6 suppressed the production of cccDNA. These results suggest that KPNA1-6 is involved in the nuclear import of HBV and that ivermectin suppresses the nuclear import of HBV by inhibiting KPNA2. This study demonstrates the potential of ivermectin as a novel treatment for hepatitis B.
Collapse
Affiliation(s)
- Anna Nakanishi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Hiroki Okumura
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Tadahiro Hashita
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Correspondence: (T.H.); (Y.T.)
| | - Aya Yamashita
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Yuka Nishimura
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Chihiro Watanabe
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sakina Kamimura
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Sanae Hayashi
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Shuko Murakami
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Kyoko Ito
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| | - Akari Ikeda
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Tomoyasu Hirose
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Toshiaki Sunazuka
- Ōmura Satoshi Memorial Institute, Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
- Department of Gastroenterology and Hepatology, Kumamoto University, Kumamoto 860-8556, Japan
- Correspondence: (T.H.); (Y.T.)
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
- Educational Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan
| |
Collapse
|
7
|
Yin GQ, Chen KP, Gu XC. Heterogeneity of immune control in chronic hepatitis B virus infection: Clinical implications on immunity with interferon-α treatment and retreatment. World J Gastroenterol 2022; 28:5784-5800. [PMID: 36353205 PMCID: PMC9639659 DOI: 10.3748/wjg.v28.i40.5784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/08/2022] [Accepted: 10/10/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a global public health issue. Interferon-α (IFN-α) treatment has been used to treat hepatitis B for over 20 years, but fewer than 5% of Asians receiving IFN-α treatment achieve functional cure. Thus, IFN-α retreatment has been introduced to enhance antiviral function. In recent years, immune-related studies have found that the complex interactions between immune cells and cytokines could modulate immune response networks, in-cluding both innate and adaptive immunity, triggering immune responses that control HBV replication. However, heterogeneity of the immune system to control HBV infection, particularly HBV-specific CD8+ T cell heterogeneity, has consequ-ential effects on T cell-based immunotherapy for treating HBV infection. Altogether, the host’s genetic variants, negative-feedback regulators and HBV components affecting the immune system's ability to control HBV. In this study, we reviewed the literature on potential immune mechanisms affecting the immune control of HBV and the clinical effects of IFN-α treatment and retreatment.
Collapse
Affiliation(s)
- Guo-Qing Yin
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ke-Ping Chen
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Chun Gu
- Center of Hepatology, Zhong-Da Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China
| |
Collapse
|
8
|
Hepatitis B Virus Variants with Multiple Insertions and/or Deletions in the X Open Reading Frame 3′ End: Common Members of Viral Quasispecies in Chronic Hepatitis B Patients. Biomedicines 2022; 10:biomedicines10051194. [PMID: 35625929 PMCID: PMC9139148 DOI: 10.3390/biomedicines10051194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Deletions in the 3′ end region of the hepatitis B virus (HBV) X open reading frame (HBX) may affect the core promoter (Cp) and have been frequently associated with hepatocellular carcinoma (HCC). The aim of this study was to investigate the presence of variants with deletions and/or insertions (Indels) in this region in the quasispecies of 50 chronic hepatitis B (CHB) patients without HCC. We identified 103 different Indels in 47 (94%) patients, in a median of 3.4% of their reads (IQR, 1.3–8.4%), and 25% (IQR, 13.1–40.7%) of unique sequences identified in each quasispecies (haplotypes). Of those Indels, 101 (98.1%) caused 44 different altered stop codons, the most commonly observed were at positions 128, 129, 135, and 362 (putative position). Moreover, 39 (37.9%) Indels altered the TATA-like box (TA) sequences of Cp; the most commonly observed caused TA2 + TA3 fusion, creating a new putative canonical TATA box. Four (8%) patients developed negative clinical outcomes after a median follow-up of 9.4 (8.7–12) years. In conclusion, we observed variants with Indels in the HBX 3′ end in the vast majority of our CHB patients, some of them encoding alternative versions of HBx with potential functional roles, and/or alterations in the regulation of transcription.
Collapse
|
9
|
Non-Achievement of Alanine Aminotransferase Normalization Associated with the Risk of Hepatocellular Carcinoma during Nucleos(t)ide Analogue Therapies: A Multicenter Retrospective Study. J Clin Med 2022; 11:jcm11092354. [PMID: 35566481 PMCID: PMC9101732 DOI: 10.3390/jcm11092354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Patients with a chronic hepatitis B virus (HBV) infection who are treated with nucleos(t)ide analogues (NAs) are still at risk for hepatocellular carcinoma (HCC), and it has been clinically questioned whether patients with a high risk of HCC can be identified efficiently. We aimed to clarify the risk factors associated with the development of HCC during NA therapies. A total of 611 chronically HBV-infected patients without a history of HCC, who were treated with NAs for more than 6 months (median 72 months), from 2000 to 2021, were included from 16 hospitals in the Tohoku district in Japan. Incidences of HCC occurrence were analyzed with clinical factors, including on-treatment responses. Alanine aminotransferase (ALT) normalization, based on the criteria of three guidelines, was analyzed with other parameters, including the age−male−ALBI−platelets (aMAP) risk score. During the observation period, 48 patients developed HCC, and the cumulative HCC incidence was 10.6% at 10 years. Non-achievement of ALT normalization at 1 year of therapy was mostly associated with HCC development when ALT ≤ 30 U/L was used as the cut-off (cumulative incidence, 19.9% vs. 5.3% at 10 years, p < 0.001). The effectiveness of the aMAP risk score at the start of treatment was validated in this cohort. A combination of an aMAP risk score ≥ 50 and non-achievement of ALT normalization could stratify the risk of HCC significantly, and notably, there was no HCC development in 103 patients without these 2 factors. In conclusion, non-achievement of ALT normalization (≤30 U/L) at 1 year might be useful in predicting HCC during NA therapies and, in combination with the aMAP risk score, could stratify the risk more precisely.
Collapse
|
10
|
Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021; 32:14-28. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After almost a decade of using CRISPR/Cas9 systems to edit target genes, CRISPR/Cas9 and related technologies are rapidly moving to clinical trials. Hepatitis B virus (HBV), which causes severe liver disease, cannot be cleared by modern antivirals, but represents an ideal target for CRISPR/Cas9 systems. Early studies demonstrated very high antiviral potency of CRISPR/Cas9 and supported its use for developing a cure against chronic HBV infection. This review discusses the key issues that must be solved to make CRISPR/Cas9 an anti-HBV therapy.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Natalia Ponomareva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
11
|
Akbar SMF, Al Mahtab M, Cesar Aguilar J, Uddin MH, Khan MSI, Yoshida O, Penton E, Gerardo GN, Hiasa Y. Exploring evidence-based innovative therapy for the treatment of chronic HBV infection: experimental and clinical. EXPLORATION OF MEDICINE 2021. [DOI: 10.37349/emed.2021.00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/03/2021] [Indexed: 01/02/2025] Open
Abstract
With the advent of various vaccines and antimicrobial agents during the 20th century, the control and containment of infectious diseases appeared to be a matter of time. However, studies unveiled the diverse natures of microbes, their lifestyle, and pathogenetic potentials. Since the ground-breaking discovery of the hepatitis B virus (HBV) by Baruch Blumberg and the subsequent development of a vaccine in the early 1980s, the main task of the scientific community has been to develop a proper management strategy for HBV-induced chronic liver diseases. In the early 1980’s, standard interferon (IFN) induced a reduction of HBV DNA levels, followed by the normalization of serum transaminases (alanine aminotransferase, ALT), in some chronic hepatitis B (CHB) patients. However, in the course of time, the limitations of standard IFN became evident, and the search for an alternative began. In the late 1980’s, nucleoside analogs entered the arena of CHB treatment as oral drugs with potent antiviral capacities. At the beginning of the 21st century, insights were developed into the scope and limitations of standard IFN, pegylated-IFN as well as nucleoside analogs for treating CHB. Considering the non-cytopathic nature of the HBV, the presence of covalently closed circular DNA (cccDNA) in the nucleus of the infected hepatocytes and HBV-induced immune-mediated liver damages, a new field of CHB management was initiated by modulating the hosts’ immune system through immune therapy. This review will discuss the nature and design of innovative immune therapy for CHB.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka 1000, Bangladesh
| | - Julio Cesar Aguilar
- Center for Genetic Engineering and Biotechnology, Havana, Havana 10600, Cuba
| | | | - Md. Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| | - Eduardo Penton
- Center for Genetic Engineering and Biotechnology, Havana, Havana 10600, Cuba
| | | | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Ehime 7910295, Japan
| |
Collapse
|
12
|
Lin HH, Hsu SJ, Lu SN, Chuang WL, Hsu CW, Chien RN, Yang SS, Su WW, Wu JC, Lee TH, Peng CY, Tseng KC, Qin A, Huang YW, Chen PJ. Ropeginterferon alfa-2b in patients with genotype 1 chronic hepatitis C: Pharmacokinetics, safety, and preliminary efficacy. JGH OPEN 2021; 5:929-940. [PMID: 34386602 PMCID: PMC8341194 DOI: 10.1002/jgh3.12613] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022]
Abstract
Background and Aim Ropeginterferon alfa‐2b (P1101) is a novel long‐acting mono‐PEGylated recombinant proline interferon (IFN) conjugated to a 40 kDa branched polyethylene glycol (PEG) chain at its N‐terminus, allowing every‐two‐week injection. It received European Medicines Agency and Taiwan marketing authorization for the treatment of polycythemia vera in 2019 and 2020, respectively. This phase 2 study aimed to evaluate the pharmacokinetics, safety, and preliminary efficacy of ropeginterferon alfa‐2b as compared with PEG‐IFN‐α2a in patients with chronic hepatitis C virus genotype 1 infection. Methods One hundred six treatment naive patients were enrolled in this phase 2 study and randomized to four treatment groups: subcutaneous weekly PEG‐IFN‐α2a 180 μg (group 1), weekly ropeginterferon alfa‐2b 180 μg (group 2), weekly ropeginterferon alfa‐2b 270 μg (group 3), or biweekly ropeginterferon alfa‐2b 450 μg (group 4) plus ribavirin for 48 weeks. Results After multiple weekly administration, serum exposure (AUC0‐τ) in ropeginterferon alfa‐2b 180 μg was approximately 41% greater and the accumulation ratio of 2‐fold greater than PEG‐IFN‐α2a 180 μg. The incidences of flu‐like symptoms were 66.7% (18/27), 53.3% (16/30), 55.0% (11/20), and 48.3% (14/29), anxiety were 14.8% (4/27), 6.7% (2/30), 0%, and 0%, and depression were 25.9% (7/27), 13.3% (4/30), 0%, and 3.4% (1/29), for groups 1–4, respectively. Two grade 2 of 3 depression were noted in PEG‐IFN‐α2a arm, but none in ropeginterferon arms. The SVR24 rates were 77.8% (21/27), 66.7% (20/30), 80% (16/20), and 69% (20/29), respectively. Conclusions Ropeginterferon alfa‐2b showed longer effective half‐life and superior safety profile than PEG‐IFN‐α2a. Biweekly injection of ropeginterferon alfa‐2b will be studied in larger viral hepatitis patient population.
Collapse
Affiliation(s)
- Hsien-Hong Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Taipei Tzu Chi Hospital Taipei Taiwan
| | - Shih-Jer Hsu
- Department of Internal Medicine National Taiwan University Hospital Yunlin Branch Douliu and Huwei Taiwan.,Hepatology Medical Center, Department of Internal Medicine National Taiwan University Hospital Yunlin Branch Douliu Taiwan
| | - Sheng-Nan Lu
- Division of Hepatogastroenterology, Department of Internal Medicine Chia-Yi Chang Gung Memorial Hospital Puzi Taiwan
| | - Wan-Long Chuang
- Department of Internal Medicine Kaohsiung Medical University Hospital, Kaohsiung Medical University Kaohsiung Taiwan
| | - Chao-Wei Hsu
- Division of Hepatology, Department of Gastroenterology and Hepatology Linkou Medical Center, Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Rong-Nan Chien
- Division of Hepatology, Department of Gastroenterology and Hepatology Linkou Medical Center, Chang Gung Memorial Hospital Taoyuan Taiwan
| | - Sien-Sing Yang
- Liver Center, Department of Internal Medicine Cathay General Hospital Medical Center Taipei Taiwan
| | - Wei-Wen Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine Changhua Christian Hospital Changhua Taiwan
| | - Jaw-Ching Wu
- Medical Research Department Taipei Veterans General Hospital Taipei Taiwan
| | - Tzong-Hsi Lee
- Division Gastroenterology, Department of Internal Medicine Far-Eastern Memorial Hospital New Taipei City Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine China Medical University Hospital, and School of Medicine, China Medical University Taichung Taiwan
| | - Kuan-Chiao Tseng
- Department of Medical Research PharmaEssentia Corp Taipei Taiwan
| | - Albert Qin
- Department of Medical Research PharmaEssentia Corp Taipei Taiwan
| | - Yi-Wen Huang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine Taipei Medical University Taipei Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine Taipei Medical University Hospital Taipei Taiwan.,Department of Internal Medicine, School of Medicine National Taiwan University College of Medicine Taipei Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine National Taiwan University College of Medicine Taipei Taiwan.,Hepatitis Research Center National Taiwan University Hospital Taipei Taiwan
| |
Collapse
|
13
|
Novotny LA, Evans JG, Su L, Guo H, Meissner EG. Review of Lambda Interferons in Hepatitis B Virus Infection: Outcomes and Therapeutic Strategies. Viruses 2021; 13:1090. [PMID: 34207487 PMCID: PMC8230240 DOI: 10.3390/v13061090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) chronically infects over 250 million people worldwide and causes nearly 1 million deaths per year due to cirrhosis and liver cancer. Approved treatments for chronic infection include injectable type-I interferons and nucleos(t)ide reverse transcriptase inhibitors. A small minority of patients achieve seroclearance after treatment with type-I interferons, defined as sustained absence of detectable HBV DNA and surface antigen (HBsAg) antigenemia. However, type-I interferons cause significant side effects, are costly, must be administered for months, and most patients have viral rebound or non-response. Nucleos(t)ide reverse transcriptase inhibitors reduce HBV viral load and improve liver-related outcomes, but do not lower HBsAg levels or impart seroclearance. Thus, new therapeutics are urgently needed. Lambda interferons (IFNLs) have been tested as an alternative strategy to stimulate host antiviral pathways to treat HBV infection. IFNLs comprise an evolutionarily conserved innate immune pathway and have cell-type specific activity on hepatocytes, other epithelial cells found at mucosal surfaces, and some immune cells due to restricted cellular expression of the IFNL receptor. This article will review work that examined expression of IFNLs during acute and chronic HBV infection, the impact of IFNLs on HBV replication in vitro and in vivo, the association of polymorphisms in IFNL genes with clinical outcomes, and the therapeutic evaluation of IFNLs for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Laura A. Novotny
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29525, USA; (L.A.N.); (J.G.E.)
| | - John Grayson Evans
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29525, USA; (L.A.N.); (J.G.E.)
| | - Lishan Su
- Division of Virology, Pathogenesis, and Cancer, Institute of Human Virology, Departments of Pharmacology, Microbiology, and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Haitao Guo
- Department of Microbiology and Molecular Genetics, Cancer Virology Program, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Eric G. Meissner
- Division of Infectious Diseases, Medical University of South Carolina, Charleston, SC 29525, USA; (L.A.N.); (J.G.E.)
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
14
|
Wang Y, Li X, Chen Q, Jiao F, Shi C, Pei M, Wang L, Gong Z. The relationship between liver pathological inflammation degree and pyroptosis in chronic hepatitis B patients. J Med Virol 2021; 93:6229-6235. [PMID: 34061368 DOI: 10.1002/jmv.27114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 11/06/2022]
Abstract
The aim of this study is to explore the relationship between liver pathological inflammation degree and pyroptosis in patients with chronic hepatitis B (CHB). One hundred and twenty CHB patients' liver tissue samples, including A0-A3 inflammatory grades, were selected. Six tissue sections were selected for each indicator in each inflammation grade. The results of immunohistochemical analysis on the pyroptosis-related molecules (NLRP3, GSDMD, caspase1, interleukin [IL]-1β, and IL-18) were determined. The correlation between the pyroptosis-related molecules and liver inflammatory activities was analyzed. The expression of NLRP3, GSDMD, caspase1, IL-18, and IL-1β was respectively significantly positively correlated with the grade of inflammatory activity (rs = 0.690, p < 0.01; rs = 0.681, p < 0.01; rs = 0.540, p < 0.01; rs = 0.725, p < 0.01; rs = 0.663, p < 0.01) and linear relationship (χ2 = 56.763, p < 0.01; χ2 = 55.350, p < 0.01; χ2 = 34.776, p < 0.01; χ2 = 62.523, p < 0.01; χ2 = 52.521, p < 0.01) in liver tissue. The high expression of NLRP3, GSDMD, caspase1, IL-1β, and IL-18 may be involved in the process of liver tissue inflammation and damage, which is positively correlated with liver tissue inflammation in patients with CHB.
Collapse
Affiliation(s)
- Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xun Li
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fangzhou Jiao
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maohua Pei
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Luwen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Lucifora J, Baumert TF. Silencing of the HBV episome through degradation of HBx protein: Towards functional cure? J Hepatol 2021; 74:497-499. [PMID: 33187693 DOI: 10.1016/j.jhep.2020.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Julie Lucifora
- Centre de Recherche en Cancérologie de Lyon (CRCL), UMR Inserm 1052 - CNRS 5286, 151 cours Albert Thomas, 69424 Lyon Cedex 03, France.
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques, UMR_S1110, F-67000 Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, 67000 Strasbourg, France; Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
16
|
Liu D, Luo Y, Chen L, Chen L, Zuo D, Li Y, Zhang X, Wu J, Xi Q, Li G, Qi L, Yue X, Zhang X, Sun Z, Zhang N, Song T, Lu W, Guo H. Diagnostic value of 5 serum biomarkers for hepatocellular carcinoma with different epidemiological backgrounds: A large-scale, retrospective study. Cancer Biol Med 2021; 18:256-270. [PMID: 33628599 PMCID: PMC7877174 DOI: 10.20892/j.issn.2095-3941.2020.0207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is a lethal global disease that requires an accurate diagnosis. We assessed the potential of 5 serum biomarkers (AFP, AFU, GGT-II, GPC3, and HGF) in the diagnosis of HCC. Methods: In this retrospective study, we measured the serum levels of each biomarker using ELISAs in 921 participants, including 298 patients with HCC, 154 patients with chronic hepatitis (CH), 122 patients with liver cirrhosis (LC), and 347 healthy controls from 3 hospitals. Patients negative for hepatitis B surface antigen and hepatitis C antibody (called “NBNC-HCC”) and patients positive for the above indices (called “HBV-HCC and HCV-HCC”) were enrolled. The selected diagnostic model was constructed using a training cohort (n = 468), and a validation cohort (n = 453) was used to validate our results. Receiver operating characteristic analysis was used to evaluate the diagnostic accuracy. Results: The α-L-fucosidase (AFU)/α-fetoprotein (AFP) combination was best able to distinguish NBNC-HCC [area under the curve: 0.986 (95% confidence interval: 0.958–0.997), sensitivity: 92.6%, specificity: 98.9%] from healthy controls in the test cohort. For screening populations at risk of developing HCC (CH and LC), the AFP/AFU combination improved the diagnostic specificity for early-stage HCC [area under the curve: 0.776 (0.712–0.831), sensitivity: 52.5%, specificity: 91.6% in the test group]. In all-stage HBV-HCC and HCV-HCC, AFU was also the best candidate biomarker combined with AFP [area under the curve: 0.835 (0.784–0.877), sensitivity 69.1%, specificity: 87.4% in the test group]. All results were verified in the validation group. Conclusions: The AFP/AFU combination could be used to identify NBNC-HCC from healthy controls and hepatitis-related HCC from at-risk patients.
Collapse
Affiliation(s)
- Dongming Liu
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | - Yi Luo
- Department of Tumor Cell Biology
| | - Lu Chen
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | | | - Duo Zuo
- Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yueguo Li
- Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaofang Zhang
- Medical Laboratory, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wu
- Clinical Laboratory, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Qing Xi
- Department of Tumor Cell Biology
| | | | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiaofen Yue
- Department of Tianjin Research Institute of Liver Diseases, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Xiehua Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Zhuoyu Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Ning Zhang
- The Center for Translational Cancer Research, Peking University First Hospital, Beijing 100034, China
| | - Tianqiang Song
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | - Wei Lu
- Department of Hepatobiliary, Liver Cancer Research Center for Prevention and Therapy
| | - Hua Guo
- Department of Tumor Cell Biology
| |
Collapse
|
17
|
Ely A, Singh P, Smith TS, Arbuthnot P. In vitro transcribed mRNA for expression of designer nucleases: Advantages as a novel therapeutic for the management of chronic HBV infection. Adv Drug Deliv Rev 2021; 168:134-146. [PMID: 32485207 DOI: 10.1016/j.addr.2020.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023]
Abstract
Chronic infection with the hepatitis B virus (HBV) remains a significant worldwide medical problem. While diseases caused by HIV infection, tuberculosis and malaria are on the decline, new cases of chronic hepatitis B are on the rise. Because often fatal complications of cirrhosis and hepatocellular carcinoma are associated with chronic hepatitis B, the need for a cure is as urgent as ever. Currently licensed therapeutics fail to eradicate the virus and this is attributable to persistence of the viral replication intermediate comprising covalently closed circular DNA (cccDNA). Elimination or inactivation of the viral cccDNA is thus a goal of research aimed at hepatitis B cure. The ability to engineer nucleases that are capable of specific cleavage of a DNA sequence now provides the means to disable cccDNA permanently. The scientific literature is replete with many examples of using designer zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided endonucleases (RGENs) to inactivate HBV. However, important concerns about safety, dose control and efficient delivery need to be addressed before the technology is employed in a clinical setting. Use of in vitro transcribed mRNA to express therapeutic gene editors goes some way to overcoming these concerns. The labile nature of RNA limits off-target effects and enables dose control. Compatibility with hepatotropic non-viral vectors is convenient for the large scale preparation that will be required for advancing gene editing as a mode of curing chronic hepatitis B.
Collapse
|
18
|
Armandi A, Rosso C, Ribaldone DG, Caviglia GP. Moving towards core antigen for the management of patients with overt and occult HBV infection. Panminerva Med 2020; 63:499-507. [PMID: 33073556 DOI: 10.23736/s0031-0808.20.04163-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic hepatitis B virus (HBV) infection encompasses a wide virologic and clinical spectrum with heterogeneous outcomes. The natural history of chronic HBV infection ranges from an inactive carrier state (hepatitis B e antigen-negative chronic infection) to progressive chronic hepatitis that may evolve in end-stage liver disease and hepatocellular carcinoma. The issue becomes even more complicated when we consider the unique biology of the virus; the HBV covalently-closed-circular DNA, that acts as virus transcription template, is the key factor responsible of the persistence of the infection even after hepatitis B surface antigen loss. In the last decade, novel serological and immunological biomarkers associated to the core protein of HBV have been approached in different clinical conditions. Remarkable results have been obtained both in the setting of overt and occult HBV infection. Here, we reviewed the meaning and the potential clinical applications of the measurement of core antigen and antibodies.
Collapse
Affiliation(s)
- Angelo Armandi
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Gian P Caviglia
- Department of Medical Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
19
|
Makbul C, Nassal M, Böttcher B. Slowly folding surface extension in the prototypic avian hepatitis B virus capsid governs stability. eLife 2020; 9:e57277. [PMID: 32795390 PMCID: PMC7455244 DOI: 10.7554/elife.57277] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) is an important but difficult to study human pathogen. Most basics of the hepadnaviral life-cycle were unraveled using duck HBV (DHBV) as a model although DHBV has a capsid protein (CP) comprising ~260 rather than ~180 amino acids. Here we present high-resolution structures of several DHBV capsid-like particles (CLPs) determined by electron cryo-microscopy. As for HBV, DHBV CLPs consist of a dimeric α-helical frame-work with protruding spikes at the dimer interface. A fundamental new feature is a ~ 45 amino acid proline-rich extension in each monomer replacing the tip of the spikes in HBV CP. In vitro, folding of the extension takes months, implying a catalyzed process in vivo. DHBc variants lacking a folding-proficient extension produced regular CLPs in bacteria but failed to form stable nucleocapsids in hepatoma cells. We propose that the extension domain acts as a conformational switch with differential response options during viral infection.
Collapse
Affiliation(s)
- Cihan Makbul
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| | - Michael Nassal
- University Hospital Freiburg, Internal Medicine 2/Molecular BiologyFreiburgGermany
| | - Bettina Böttcher
- Julius Maximilian University of Würzburg, Department of Biochemistry and Rudolf Virchow CentreWürzburgGermany
| |
Collapse
|
20
|
Hepatitis B Virus Core Protein Domains Essential for Viral Capsid Assembly in a Cellular Context. J Mol Biol 2020; 432:3802-3819. [PMID: 32371046 DOI: 10.1016/j.jmb.2020.04.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein (HBc) is essential to the formation of the HBV capsid. HBc contains two domains: the N-terminal domain corresponding to residues 1-140 essential to form the icosahedral shell and the C-terminal domain corresponding to a basic and phosphorylated peptide, and required for DNA replication. The role of these two domains for HBV capsid assembly was essentially studied in vitro with HBc purified from mammalian or non-mammalian cell lysates, but their respective role in living cells remains to be clarified. We therefore investigated the assembly of the HBV capsid in Huh7 cells by combining fluorescence lifetime imaging microscopy/Förster's resonance energy transfer, fluorescence correlation spectroscopy and transmission electron microscopy approaches. We found that wild-type HBc forms oligomers early after transfection and at a sub-micromolar concentration. These oligomers are homogeneously diffused throughout the cell. We quantified a stoichiometry ranging from ~170 to ~230 HBc proteins per oligomer, consistent with the visualization of eGFP-containingHBV capsid shaped as native capsid particles by transmission electron microscopy. In contrast, no assembly was observed when HBc-N-terminal domain was expressed. This highlights the essential role of the C-terminal domain to form capsid in mammalian cells. Deletion of either the third helix or of the 124-135 residues of HBc had a dramatic impact on the assembly of the HBV capsid, inducing the formation of mis-assembled oligomers and monomers, respectively. This study shows that our approach using fluorescent derivatives of HBc is an innovative method to investigate HBV capsid formation.
Collapse
|
21
|
Menne S, Wildum S, Steiner G, Suresh M, Korolowicz K, Balarezo M, Yon C, Murreddu M, Hong X, Kallakury BV, Tucker R, Yang S, Young JAT, Javanbakht H. Efficacy of an Inhibitor of Hepatitis B Virus Expression in Combination With Entecavir and Interferon-α in Woodchucks Chronically Infected With Woodchuck Hepatitis Virus. Hepatol Commun 2020; 4:916-931. [PMID: 32490326 PMCID: PMC7262289 DOI: 10.1002/hep4.1502] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
RG7834 is a small‐molecule inhibitor of hepatitis B virus (HBV) gene expression that significantly reduces the levels of hepatitis B surface antigen (HBsAg) and HBV DNA in a humanized liver HBV mouse model. In the current study, we evaluated the potency of RG7834 in the woodchuck model of chronic HBV infection, alone and in combination with entecavir (ETV) and/or woodchuck interferon‐α (wIFN‐α). RG7834 reduced woodchuck hepatitis virus (WHV) surface antigen (WHsAg) by a mean of 2.57 log10 from baseline and WHV DNA by a mean of 1.71 log10. ETV + wIFN‐α reduced WHsAg and WHV DNA by means of 2.40 log10 and 6.70 log10, respectively. The combination of RG7834, ETV, and wIFN‐α profoundly reduced WHsAg and WHV DNA levels by 5.00 log10 and 7.46 log10, respectively. However, both viral parameters rebounded to baseline after treatment was stopped and no antibody response against WHsAg was observed. Effects on viral RNAs were mainly seen with the triple combination treatment, reducing both pregenomic RNA (pgRNA) and WHsAg RNA, whereas RG7834 mainly reduced WHsAg RNA and ETV mainly affected pgRNA. When WHsAg was reduced by the triple combination, peripheral blood mononuclear cells (PBMCs) proliferated significantly in response to viral antigens, but the cellular response was diminished after WHsAg returned to baseline levels during the off‐treatment period. Consistent with this, Pearson correlation revealed a strong negative correlation between WHsAg levels and PBMC proliferation in response to peptides covering the entire WHsAg and WHV nucleocapsid antigen. Conclusion: A fast and robust reduction of WHsAg by combination therapy reduced WHV‐specific immune dysfunction in the periphery. However, the magnitude and/or duration of the induced cellular response were not sufficient to achieve a sustained antiviral response.
Collapse
Affiliation(s)
- Stephan Menne
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Steffen Wildum
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Guido Steiner
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Manasa Suresh
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Kyle Korolowicz
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Maria Balarezo
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Changsuek Yon
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Marta Murreddu
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | - Xupeng Hong
- Department of Microbiology and Immunology Georgetown University Medical Center Washington DC
| | | | - Robin Tucker
- Department of Pharmacology Georgetown University Medical Center Washington DC
| | - Song Yang
- Roche Pharma Research and Early Development Roche Innovation Center Shanghai Shanghai China
| | - John A T Young
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| | - Hassan Javanbakht
- Roche Pharma Research and Early Development Roche Innovation Center Basel Basel Switzerland
| |
Collapse
|
22
|
Dailey PJ, Elbeik T, Holodniy M. Companion and complementary diagnostics for infectious diseases. Expert Rev Mol Diagn 2020; 20:619-636. [PMID: 32031431 DOI: 10.1080/14737159.2020.1724784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Companion diagnostics (CDx) are important in oncology therapeutic decision-making, but specific regulatory-approved CDx for infectious disease treatment are officially lacking. While not approved as CDx, several ID diagnostics are used as CDx. The diagnostics community, manufacturers, and regulatory agencies have made major efforts to ensure that diagnostics for new antimicrobials are available at or near release of new agents. AREAS COVERED This review highlights the status of Complementary and companion diagnostic (c/CDx) in the infectious disease literature, with a focus on genotypic antimicrobial resistance testing against pathogens as a class of diagnostic tests. EXPERT OPINION CRISPR, sepsis markers, and narrow spectrum antimicrobials, in addition to current and emerging technologies, present opportunities for infectious disease c/CDx. Challenges include slow guideline revision, high costs for regulatory approval, lengthy buy in by agencies, discordant pharmaceutical/diagnostic partnerships, and higher treatment costs. The number of patients and available medications used to treat different infectious diseases is well suited to support competing diagnostic tests. However, newer approaches to treatment (for example, narrow spectrum antibiotics), may be well suited for a small number of patients, i.e. a niche market in support of a CDx. The current emphasis is rapid and point-of-care (POC) diagnostic platforms as well as changes in treatment.
Collapse
Affiliation(s)
- Peter J Dailey
- School of Public Health, University of California, Berkeley , Berkeley, CA, USA.,The Foundation for Innovative New Diagnostics (FIND) , Geneva, Switzerland
| | - Tarek Elbeik
- VA Palo Alto Health Care System, Department of Veterans Affairs , Palo Alto, CA, USA
| | - Mark Holodniy
- VA Palo Alto Health Care System, Department of Veterans Affairs , Palo Alto, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University , Stanford, CA, USA
| |
Collapse
|
23
|
Clinical utility of HBV surface antigen quantification in HBV e antigen-negative chronic HBV infection. Nat Rev Gastroenterol Hepatol 2019; 16:631-641. [PMID: 31477873 DOI: 10.1038/s41575-019-0197-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis B virus (HBV) infection is a serious problem owing to its worldwide distribution and potential adverse sequelae that include cirrhosis and/or hepatocellular carcinoma. Current antiviral therapies have much improved outcomes, but few patients achieve the ultimate goal of hepatitis B surface antigen (HBsAg) loss (functional cure). As hepatitis B e antigen (HBeAg)-negative chronic HBV infection is the final phase prior to HBsAg loss, the management of patients in this phase together with quantification of HBsAg has attracted increasing clinical and research interest. This Review integrates the findings from research in HBsAg kinetics and discusses how they might inform our understanding and management of HBeAg-negative chronic HBV infection. Studies have shown that HBsAg levels are highly predictive of the presence of inactive HBV infection and that serial changes in HBsAg levels might predict HBsAg loss within 1-3 years. Data also suggest that quantitative HBsAg monitoring is important during hepatitis flare and antiviral therapy, especially in the timing of the decision to stop therapy and to start off-therapy retreatment. These findings have shed new light on the natural course of HBV infection and might lead to optimization of the management of HBeAg-negative chronic HBV infection and contribute to the paradigm shift from indefinite to finite therapy for patients with HBV infection.
Collapse
|
24
|
Mohd-Ismail NK, Lim Z, Gunaratne J, Tan YJ. Mapping the Interactions of HBV cccDNA with Host Factors. Int J Mol Sci 2019; 20:ijms20174276. [PMID: 31480501 PMCID: PMC6747236 DOI: 10.3390/ijms20174276] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem affecting about 300 million people globally. Although successful administration of a prophylactic vaccine has reduced new infections, a cure for chronic hepatitis B (CHB) is still unavailable. Current anti-HBV therapies slow down disease progression but are not curative as they cannot eliminate or permanently silence HBV covalently closed circular DNA (cccDNA). The cccDNA minichromosome persists in the nuclei of infected hepatocytes where it forms the template for all viral transcription. Interactions between host factors and cccDNA are crucial for its formation, stability, and transcriptional activity. Here, we summarize the reported interactions between HBV cccDNA and various host factors and their implications on HBV replication. While the virus hijacks certain cellular processes to complete its life cycle, there are also host factors that restrict HBV infection. Therefore, we review both positive and negative regulation of HBV cccDNA by host factors and the use of small molecule drugs or sequence-specific nucleases to target these interactions or cccDNA directly. We also discuss several reporter-based surrogate systems that mimic cccDNA biology which can be used for drug library screening of cccDNA-targeting compounds as well as identification of cccDNA-related targets.
Collapse
Affiliation(s)
- Nur K Mohd-Ismail
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore
| | - Zijie Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 119228, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore 117545, Singapore.
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore 138673, Singapore.
| |
Collapse
|
25
|
Yurdaydin C. New treatment options for delta virus: Is a cure in sight? J Viral Hepat 2019; 26:618-626. [PMID: 30771261 DOI: 10.1111/jvh.13081] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Current treatment of chronic hepatitis D viral infection with interferons is poorly tolerated and effective only in a minority of patients. Despite delta virus causing the most severe form of chronic viral hepatitis, no other treatments are available. After many years of inactivity, there is now hope for new treatment approaches for delta virus and some are likely to enter clinical practice in the near future. Four new treatment approaches are currently being evaluated in phase 2 studies. These involve the hepatocyte entry inhibitor myrcludex B, the farnesyl transferase inhibitor lonafarnib, the nucleic acid inhibitor REP 2139 Ca and pegylated interferon lambda. Results obtained so far are promising, and phase 3 studies are expected shortly. This review summarizes the available data on the efficacy and safety of these new drugs.
Collapse
Affiliation(s)
- Cihan Yurdaydin
- Department of Gastroenterology, Ankara University Medical School, Ankara, Turkey.,Department of Gastroenterology and Hepatology, Koc University, Istanbul, Turkey
| |
Collapse
|
26
|
Evaluation of in vitro screening and diagnostic kits for hepatitis B virus infection. J Clin Virol 2019; 117:37-42. [PMID: 31176210 DOI: 10.1016/j.jcv.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND For the diagnosis of hepatitis B virus (HBV) infection, the detection and quantification of hepatitis B surface antigen (HBsAg) and HBV DNA are used. Several kits are available for this purpose, and there is a growing need for the evaluation of these kits because their performance may be affected by HBV genotype- or strain-specific polymorphisms. OBJECTIVES AND STUDY DESIGN In this study, we used International Standards and the established regional reference panel to evaluate the performance of two HBV DNA quantitative kits, five HBsAg qualitative kits, seven HBsAg quantitative kits and three rapid immune-chromatographic tests for HBsAg. RESULTS The quantification values of two HBV DNA quantitative kits exhibited excellent correlation. In the evaluation of HBsAg qualitative and quantitative kits, the titers of several specimens in the HBV-positive panel were below the detection limits of a few kits, and the specimens were determined as HBV-negative. Notably, the quantitative kit results exhibited low correlation values. However, when these data were analyzed for each genotype, the correlations improved. These results suggest that the HBsAg quantification data are influenced by HBV genotypes. The novel rapid immune-chromatographic test exhibited the comparable level of sensitivity to the HBsAg quantitative kits. CONCLUSIONS We evaluated the performance of kits for the detection of HBV infection. The HBV DNA quantification data correlated with an excellent agreement, whereas the HBsAg quantification data were affected by HBV genotype. Such evaluations will be useful for estimating the quality of currently available and new HBV assay kits, and for the quality control of these kits.
Collapse
|